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Color image completion using tensor truncated nuclear norm
with l0 total variation
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Abstract. In recent years, the problem of incomplete data has been behind the appearance
of several completion methods and algorithms. The truncated nuclear norm has been known

as a powerful low-rank approach both for the matrix and the tensor cases. However, the

low-rank approaches are unable to characterize some additional information exhibited in data
such as the smoothness or feature-preserving properties. In this work, a tensor completion

model based on the convex truncated nuclear norm and the nonconvex-sparse total variation
is introduced. Notably, we develop an alternating minimization algorithm that combines the

accelerating proximal gradient for the convex step and a projection operator for the nonconvex

step to solve the optimization problem. Experiments and comparative results show that our
algorithm has a significant impact on the completion process.
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1. Introduction

Recovering missing values in multidimensional data is the main goal of tensor comple-
tion methods. Hence, the classic tensor completion problems assume the low-rankness
properties of the underlying multidimensional data. Commonly, the tensor nuclear
norm which is based on extending the definition of the matrix nuclear norm to the
tensor case is employed to depict the low-rankness prior to data. A basic approach
to completion problem is to directly minimize the tensor rank

min
X

rank(X )

s.t ‖PΩ(X )− PΩ(M)‖F ≤ ε.
(1)

where X ∈ Rp1×p2×p3 is the recovered tensor, M is the observed tensor, r is a given
bound rank of low-rank X , and PΩ denotes the projection of X on the observed set
Ω which is defined by

PΩ(X ) =

{
Xi1,i2,...,in if (i1, i2, ..., in) ∈ Ω,

0 otherwise.

The rank function is non-convex with respect to X , and the problem (1) is NP-
hard. Thus, as for the matrix case, the nuclear norm is then considered as the
convex surrogate of the nonconvex rank function. The definition of the nuclear norm
of a tensor is a complicated issue since it cannot be intuitively derived from the
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matrix case. Several versions of tensor nuclear norms have been proposed, but they
are quite different from each other. A recent version of the tensor nuclear norm is
the tubal nuclear norm (Tubal-NN) which stands on the new definition of tensor-
tensor product and the tensor singular value decomposition (T-SVD). The Tubal-NN
is defined as the sum of nuclear norms of all frontal slices in the Fourier domain.
Different from the nuclear norm-based approaches which minimize the summation
of all the singular values, the truncated nuclear regularization TNNR problem only
minimizes the smallest min(p1, p2)− r singular values since the rank of a matrix only
correspond to the r nonzero singular values. The truncated nuclear norm has proved
to be more accurate and robust in approximating the rank function for both matrix
and tensors [11, 1, 7, 3, 4].

On the other hand, exploiting spatial difference information of data becomes an
efficient way to improve the tensor completion performance. Specifically, the total
variation (TV) based l1 norms that has been receiving much attention due to the
smoothness property. The success of total variation-based methods for image pro-
cessing is due to their ability to preserve edges in images. However, using the convex
l1-TV which penalizes the large gradient magnitudes may affect the preservation of
the sharp edges. To address this drawback, a nonconvex-sparse l0 norm-based TV
regularization, furthering the sparsity in the gradient domain has been introduced in
[8].

This paper takes a step in this direction by introducing a tensor completion model
that combines the Nonconvex-Sparsity TV term and the tensor truncated nuclear
norm. This model improved the completion performance since it imposed the l0
norm on the spatial-spectral difference information of data, which can give rise to
truly piecewise structure and better enhance highest-contrast edges by confining the
number of nonzero gradients [8]. To solve the proposed model, we exploit the acceler-
ated proximal alternating minimization framework and we design a tensor completion
algorithm called truncated nuclear norm-based sparse total variation (TNNR-STV).
The experimental results showed that the proposed algorithm provides better comple-
tion performances for color images comparing with different popular tensor completion
algorithms.

2. Preliminaries

In this section, we introduce basic notation and definitions on tenors used through
the rest of this paper. It will be convenient to break a tensor X ∈ Rp1×p2×p3 up
into various slices and tubal elements and to have indexing on those. Using Matlab
notation, X (i, :, :) corresponds to the ith horizontal slice, X (:, i, :) corresponds to the
ith lateral slice, and X (:, :, i) corresponds the ith frontal slice.
fold /unfold

unfold(X ) =


X(1)

X(2)

...
X(p3)

 , fold(unfold(X )) = X .

Where X(i) refers to the ith frontal slice X (:, :, i).
For multiplication between two tensors, we introduce the concept of converting X
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into a block circulant matrix, which is defined as

bcirc(X ) =


X(1) X(p3) X(p3−1) . . . X(2)

X(2) X(1) X(p3) . . . X(3)

...
...

...
. . .

...
X(p3) X(p3−1) X(p3−2) . . . X(1)

 ,
Let X be an p1 × p2 × p3 tensor and Fp3 be the p3 × p3 DFT matrix, then

(Fp3 ⊗ Ip1).bcirc(X ).(F ∗p3 ⊗ Ip2) = X̂.

where ⊗ denotes the Kronecker product, F ∗ denotes the conjugate transpose of F ,
and ”.” refers to the standard matrix product. We denote X̂ ∈ Rp1p3×p2p3 as a block
diagonal matrix with its ith block on the diagonal as the ith frontal slice X̂(i) of X̂ .

Definition 2.1 (T-product). Let X1 ∈ Rp1×p2×p3 and X2 ∈ Rp2×p4×p3 be 3-way
tensors. Then the tensor product (T-product) X1 ∗ X2 is the p1 × p4 × p3 tensor

X1 ∗ X2 = fold (bcirc(X1).unfold(X2)). (2)

Definition 2.2. Let X ∈ Rp1×p2×p3 be a given tensor. Its conjugate transpose
denoted by X T ∈ Rp2×p1×p3 is obtained by conjugate transposing each frontal slice
and then reversing the order of transposed frontal slices 2 through p3

X T = fold
(

[X(1)T , X(p3)T , . . . , X(3)T , X(2)T ]
)T

.

Definition 2.3. The tensor Q is orthogonal in the sense of the T-product if

Q ∗ QT = QT ∗ Q = I.

We define the tensor singular values decomposition denoted by T-SVD.

Definition 2.4 (Tensor singular value decomposition). Let X be an p1×p2×p3 real
valued tensor, the T-SVD is defined as

X = U ∗ S ∗ VT , (3)

where U and V are orthogonal p1 × p1 × p3 and p2 × p2 × p3, respectively, and S is a
p1 × p2 × p3 f -diagonal tensor.

We consider the Discrete Fourier Transformation (DFT) on tensors. For a tensor

X , we denote X̂ as the result of DFT on X along the 3rd dimension, i.e., performing
the DFT on all the tubes of X . By using the Matlab command fft, we have X̂ =
fft(X , [ ], 3). In a similar way, we can compute X from X̂ using the inverse FFT, i.e.,

X = ifft(X̂ , [ ], 3).

Definition 2.5 (Truncated nuclear norm). Given a tensor X ∈ Rp1×p2×p3 , the tensor
nuclear norm ‖X‖r is defined as the sum of min (p1, p2)− r minimum singular values

‖X‖r =

min(p1,p2)∑
i=r+1

σi(X ). (4)
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The tensor truncated nuclear norm (4) can be reformulated as follows [1]

‖X‖r = ‖X̂(1)‖r =

min(p1,p2)∑
i=r+1

σi(X̂(1)) = ‖X̂(1)‖∗ −
r∑
i=1

σi(X̂(1)),

= ‖X̂(1)‖∗ − max
Â(1)Â

T
(1)=I

Q̂(1)Q̂
T
(1)=I

tr(Â(1)X̂(1)Q̂
T
(1)),

= ‖X‖∗ − max
A∗AT=I
Q∗QT=I

tr(A ∗ X ∗ QT ).

where A and B are generated from the t-SVD of X by (13).

Definition 2.6 (Mixed l1,0 pseudo-norm). For a given vector y ∈ Rm and index sets
s1, . . . , si, . . . , sn(1 ≤ n ≤ m) that satisfies the following properties
• Each si is a subset of 1, . . . ,m,
• si ∩ sl = ∅ for any i 6= l
• ∪ni=1si = 1, . . . ,m

the mixed l1,0 pseudo-norm of y is defined as:

‖y‖s1,0 = ‖(‖ys1‖1 , . . . , ‖ysi‖1 , . . . ‖ysn‖1)‖
0

(5)

where ysi denotes a sub-vector of y with its entries specified by si and ‖·‖0 calculates
the number of the non-zero entries in (·).

Definition 2.7 (Indicator function). Let B be a given operator and γ be a positive
fixed integer, the indicator function of l1,0 mixed pseudonorm is defined as follows

I‖B·‖s1,0(y) =

{
0, ‖By‖s1,0 ≤ γ
∞, otherwise

(6)

3. Main results

We introduce a low-rank tensor completion model based on the TNNR. Beside, a
nonconvex-sparsity TV regularization term is included to enhance important compo-
nents in a given current data. Now, before introducing the new tensor completion
model based on the l0 TV term and TNNR term, we first brief review the l0 TV
model.

3.1. From Matrix l0-gradient to the tensor l0-TV model. The l0 gradient
penalty has become a powerful tool for edge-preserving property by globally control-
ling the number of nonzero gradients [8]. The l0 gradient of a matrix data Z ∈ Rh,v
is defined by:

l0TV(Z) =
∑

C (‖D1Z‖1 + ‖D2Z‖1)

=

h∑
i

v∑
j

C (|Zi+1,j − Zi,j |+ |Zi,j+1 − Zi,j |)
(7)

where D1 and D2 are the difference operators along the first and second directions of
the image. C(Z) is a binary function that count the number of non-zeros gradients
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and witch verify

C(Z) :=

{
1, if Z 6= 0
0, otherwise

(8)

Now, by extending this definition of l0 gradient to the tensorial framework, the defi-
nition become for a given third order tensor Z ∈ Rh,v,b as follow

l0TV(Z) =

h∑
i

v∑
j

C

(
b∑
k

(|Zi+1,j,k −Zi,j,k|+ |Zi,j+1,k −Zi,j,k|)

)
(9)

where boundary values of gradients are defined as follows{
Zi,j+1,k− Zi,j,k = 0, if i = h
Zi+1,j,k −Zi,j,k = 0, if j = v

(10)

Here, the l0TV(X ) counts the non-zeros of spatial difference information with the
assistance of third-mode information. Using definition 2.6, another formulation of
the l0-TV becomes:

l0TV(Z) = ‖BDZ‖s1,0 (11)

where operator D is an operator to calculate both first-mode and second-mode dif-
ferences. The given operator B forces boundary values of gradients to be zero when
i = h and j = v.

3.2. Tensor completion via TNNR with nonconvex-sparse TV prior. Given
a tensor X ∈ Rp1×p2×p3 , the truncated nuclear norm ‖X‖r completion problem is
formulated as:

min
X
‖X‖∗ − max

A∗AT=I
Q∗QT=I

tr(A ∗ X ∗ QT )

s.t ‖PΩ(X −M)‖F ≤ ε.
(12)

where A and Q are updated at each iteration using the tensor singular values de-
composition of the computed tensor X . We define the operator of selecting the first
r columns in the second dimension of U and V, with Matlab notation, used also for
updating A and Q at each iteration

A = U(:, 1 : r, :)T , Q = V(:, 1 : r, :)T . (13)

The tensor X can be updated by minimizing the objective function

min
X
‖X‖∗ − tr(A ∗ X ∗ QT )

s.t ‖PΩ(X −M)‖F ≤ ε.
(14)

The proposed nonconvex-sparse tensor completion formulation can be expressed
by the following optimization problem:

min
X

µ

2
‖PΩ(X )− PΩ(M)‖2F − tr

(
A ∗ X ∗ QT

)
+ ‖X‖∗

s.t. ‖BDX‖s1,0 ≤ γ
(15)

First, we introduce an auxiliary variable W to relax the model. For this purpose, we
first rewrite (15) to be the following equivalent problem:

min
W,X

µ

2
‖PΩ(X )− PΩ(M)‖2F − tr

(
A ∗ X ∗ QT

)
+ ‖X‖∗ + I‖B·‖s1,0(W)

s.t. W = DX
(16)
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which is equivalent to the following basic problem

min
W,X

µ

2
‖PΩ(X )−PΩ(M)‖2F −tr

(
A ∗ X ∗ QT

)
+
ρ

2
‖W−DX‖2F + ‖X‖∗+I‖B·‖s1,0(W)

(17)
To solve the aforementioned problem, we propose an alternating method based on

an accelerated proximal gradient [5] step and a projection step. The accelerated prox-
imal gradient algorithm alternatively applies the proximal gradient method to each
subproblem. Differently, in the proposed algorithm we use the proximal gradient
method for the computation of Xk-subproblem while we consider the projection onto
l1,0 to calculate the auxiliary variable at the current iterate Wk. The use of the ac-
celeration technique can be explained as follows. If the current iterate Xk approaches
the optimal point X ∗ more than the previous iterate Xk+1, then the extrapolation
point may be closer to X ∗ than Xk with appropriate extrapolation weight.

The objective function is the sum of a smooth and convex functions. Thus, let f
be the smooth function defined as follows

f(X ,W) =
µ

2
‖PΩ(X )− PΩ(M)‖2F − tr

(
A ∗ X ∗ QT

)
+
ρ

2
‖Wk −DX‖2F (18)

The proposed accelerated alternating method consists of the following steps:

tk =
1+
√

4t2k−1+1

2

wk = tk−1−1
tk

Yk = Xk + wk (Xk −Xk−1)

Xk+1 = Prox
‖.‖∗
ρ̃

(
Yk − ρ̃−1∇Ykf (Yk,Wk)

)
Wk+1 = arg minW f(Xk+1,W) + I‖B·‖s1,0(W)

(19)

with initial value t0 = 1, ∇X f(X ,W) = µ(PΩ(X ) − PΩ(Y))−ATk ∗Qk + ρDT (Wk−
DX ) and the proximal mapping is defined as

Prox‖.‖∗ρ (X ) = arg min
X

1

2
‖X − Y‖2F +

1

ρ
‖X‖∗.

The proximal operator of the nuclear norm regularization is given by the singular
value thresholding operator, denoted by D 1

ρ
(X )

D 1
ρ
(X ) = U ∗ S 1

ρ
(S) ∗ VT . (20)

where Sτ is the soft-thresholding operator. In the tensorial case, the thresholding is
applied on each frontal slice of the given tensor X ∈ Rp1×p2×p3

Sτ (X ) = ifft(Sτ (X̂ )), (21)

where

Sτ (X̂(i)) = diag(max{σi − τ, 0}1≤i≤r), i = 1, 2, ..., p3. (22)

Now, for the sub-problem of Wk+1 can be expressed by the following constrained
minimization problem:

min
W
‖W − Xk+1‖2F

s.t. ‖BW‖s1,0 ≤ γ
(23)

The resolution of problem (23) is performed by the following Proposition.
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Proposition 3.1 (Projection onto l1,0 mixed pseudo-norm ball with binary mask [6]).
Set y ∈ Rm as a known vector, set γ as a non-negative integer. Let W be a known di-
agonal binary matrix, and let s1, . . . , si, . . . , sn(1 ≤ n ≤ m) be index sets satisfying the

conditions from definition 2.6. Without loss of generality, Wy =
(
yTs1 . . .y

T
sn

)T
are

assumed. ys1 . . .ysn are sorted in descending order according to
∥∥ys~1∥∥2

>
∥∥ys~2∥∥2

>

. . . > ‖ys~n‖2, where ys~1 . . .ys~n are obtained with the new order, and the original index

sets i have ~i that corresponds to it one by one. For the following problem

z? ∈ argmin
z∈Rm

‖y − z‖2 t.q ‖Wz‖s1,0 ≤ α

one of the optimal solution is given by:

z? =

y, if ‖Wy‖s1,0 ≤ α,(
y>s~1 · · ·y

>
s~n

)>
+ (I−W)y, if ‖Wy‖s1,0 > α,

where,

y>s~k :=

{
y>sk , if k ∈ {(1), . . . , (α)},
0, if k ∈ {(α+ 1), . . . , (n)}

4. Numerical results

This section presents the numerical results in which we evaluate the performance of
the proposed TNNR-STV completion algorithm. We conduct experiments on four
benchmark 3D channel RGB color images. The missing values are distributed ran-
domly. The accuracy of the obtained results are measured by the peak signal to noise
ratio (PSNR) and structural similarity (SSIM).

We present in Table 1, the PSNR and SSIM values of the obtained results of dif-
ferent tests using the three images with different choices of the percentage of missing
data. The best value of the PSNR is the number written in italics on each row. Over-
all, we clearly observe that the proposed TNNR-STV model presents larger PSNR
and SSIM values compared with the three tensor completion methods which assures
the efficiency of our algorithm.

To further show the significant impact of our algorithm on the completion of RGB
color images, we visually compare the results of the four tensor completion methods.
Thus, in Figures 1, 2, and Figure 3 we show the simulated images compared with the
recovered images using T-TNN, LRTC, MF TV and our proposed TNNR-STV model
for test images with 70% of missing values respectively. Visually, we can ensure that
our approach reconstruct the missing pixels effectively.

5. Conclusion

In this paper, we consider the color image completion problem by introducing a model-
based nonconvex regularization. Besides, we have integrated the truncated nuclear
norm schema for exhibiting the low-rankness representation. The main idea is to
enforce the l0 norm on the spatial difference images without ignoring the spectral
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Table 1. The PSNR/SSIM obtained by the completion of four im-
ages with the percentage of missing entries 90%, 80%, 70%, and 60%.
For each test, the results of LRTC [10], T-TNN [9], MF-TV [2], and
our proposed TNNR-STV are illustrated and the best among the
results is highlight in bold face.

SR 90% 80% 70% 60%

Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Plat

T-TNN 20.91 0.3568 23.98 0.5446 26.18 0.6643 28.06 0.7601

LRTC 20.22 0.3129 23.56 0.4951 25.85 0.6242 27.66 0.7229
MF-TV 16.96 0.2636 19.28 0.3246 23.92 0.5107 29.33 0.7563

TNNR-STV 21.29 0.3701 24.13 0.5572 26.18 0.6722 28.26 0.7564

House

T-TNN 20.34 0.3817 24.81 0.6241 27.92 0.7538 30.32 0.8295
LRTC 19.77 0.3533 24.54 0.6037 27.61 0.7380 30.10 0.8208

MF-TV 9.378 0.0496 17.68 0.3116 26.68 0.7640 28.33 0.8553

TNNR-STV 20.59 0.4112 25.18 0.6142 28.12 0.7651 30.63 0.8297

Parthenon

T-TNN 18.78 0.3874 22.81 0.6289 25.71 0.7616 28.43 0.8521

LRTC 18.39 0.3689 22.60 0.6180 25.47 0.7520 28.56 0.8472

MF-TV 8.259 0.0608 13.76 0.2140 20.86 0.5117 28.75 0.8264
TNNR-STV 19.86 0.4241 23.30 0.6377 26.16 0.7734 28.75 0.8608

information. The proposed algorithm has been shown to be effective for recovering
the missing values in color images.
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