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The complex-type Fibonacci p-Sequences
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Abstract. In this paper, we define a new sequence which is called the complex-type Fibonacci

p-sequence and we obtain the generating matrix of this complex-type Fibonacci p-sequence.

We also derive the determinantal and the permanental representations. Then, using the roots
of the characteristic polynomial of the complex-type Fibonacci p-sequence, we produce the

Binet formula for this defined sequence. In addition, we give the combinatorial representations,

the generating function, the exponential representation and the sums of the complex-type
Fibonacci p-numbers.
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1. Introduction

In [20], Stakhov and Rozin gave a generalization of the Fibonacci numbers. The
generalization is called the Fibonacci p-numbers Fp (n) that are given for any positive
integer p by the following relation

Fp (n) = Fp (n− 1) + Fp (n− p− 1) for n > p

with the initial values Fp (0) = 0, Fp (1) = · · ·Fp (p) = 1. If we take p = 1, then
F1 (n) = Fn which are the classical Fibonacci numbers.

The complex Fibonacci sequence {F ∗n} is defined [9] by a two-order recurrence
equation:

F ∗n = Fn + iFn+1

for n ≥ 0, where
√
−1 = i and Fn is the nth Fibonacci number (cf. [1, 10]).

Kalman [12] derived a number of closed-form formulas for the generalized sequence
and he used the companion matrix method as follows:

Ak =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
... · · ·

...
...

0 0 0 · · · 0 1
c0 c1 c2 · · · ck−2 ck−1


.
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Also, he showed that

An
k


a0
a1
...

ak−1

 =


an
an+1

...
an+k−1


.

The study of linear and recurrent sequences has been known for a long time and
miscellaneous properties of these sequences have been studied by some authors; see,
for example [6, 7, 8, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 24]. Further, in [4] and [5],
the authors defined the new sequences using the quaternions and complex numbers
and then they gave miscellaneous properties. In this paper, we define the complex-
type Fibonacci p-sequence and we obtain the generating matrix of the complex-type
Fibonacci p-sequence. Also, we derive the determinantal and the permanental repre-
sentations by using certain matrices which are obtained from the generating matrix of
these numbers. Then, we produce the Binet formula for this defined sequence. Finally,
we give the combinatorial representations, the generating function, the exponential
representation and the sums of the complex-type Fibonacci p-numbers.

2. The complex-type Fibonacci p-sequences

Now, we define a new sequence called the complex-type Fibonacci p-sequence. The
recurrence relation of the complex-type Fibonacci p-sequence is

F ∗p,i (n+ p+ 1) = ip+1 · F ∗p,i (n+ p) + i · F ∗p,i (n) (1)

for any given p (p = 2, 3, . . .) and n ≥ 0, with the initial conditions F ∗p,i (0) = · · · =

F ∗p,i (p− 1) = 0, F ∗p,i (p) = 1 and
√
−1 = i.

By equation (1), we obtain the companion matrix of the complex-type Fibonacci
p-sequence as:

CF
p =


ip+1 0 · · · 0 i

1 0 · · · 0 0
0 1 0 0
...

. . .
. . .

...
0 0 1 0


(p+1)×(p+1).

and the nth power of the matrix CF
p is

(
CF

p

)n
=


F ∗p,i (n+ p) iF ∗p,i (n) iF ∗p,i (n+ 1) · · · iF ∗p,i (n+ p− 1)

F ∗p,i (n+ p− 1) iF ∗p,i (n− 1) iF ∗p,i (n) · · · iF ∗p,i (n+ p− 2)
...

...
...

...
F ∗p,i (n+ 1) iF ∗p,i (n− p+ 1) iF ∗p,i (n− p+ 2) · · · iF ∗p,i (n)
F ∗p,i (n) iF ∗p,i (n− p) iF ∗p,i (n− p+ 1) · · · iF ∗p,i (n− 1)


(2)

for n ≥ p. This companion matrix CF
p is said to be the complex-type Fibonacci

p-matrix.
From the above matrix, we can easily obtain the following relationships between

the complex-type Fibonacci p-numbers and the Fibonacci p-numbers for n ≥ 2p − 1
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such that every even p integer:

(
C

F
p

)n
=



(
ip+1

)n
Fp (n + 1)

(
ip+1

)n+1
Fp (n − p + 1)

(
ip+1

)n+2
Fp (n − p + 2) · · ·(

ip+1
)n−1

Fp (n)
(
ip+1

)n
Fp (n − p)

(
ip+1

)n+1
Fp (n − p + 1) · · ·

.

.

.

.

.

.

.

.

.(
ip+1

)n−p+1
Fp (n − p + 2)

(
ip+1

)n−p+2
Fp (n − 2p + 2)

(
ip+1

)n−p+3
Fp (n − 2p + 3) · · ·(

ip+1
)n−p

Fp (n − p + 1)
(
ip+1

)n−p+1
Fp (n − 2p + 1)

(
ip+1

)n−p+2
Fp (n − 2p + 2) · · ·

(
ip+1

)n+p
Fp (n)(

ip+1
)n+p−1

Fp (n − 1)

.

.

.(
ip+1

)n+1
Fp (n − p + 1)(

ip+1
)n

Fp (n − p)


.

Now, we consider the permanental representations for the complex-type k-Fibonacci
numbers.

Definition 2.1. A u×v real matrix M = [mi,j ] is called a contractible matrix in the
kth column (resp. row.) if the kth column (resp. row.) contains exactly two non-zero
entries.

Suppose that x1, x2, . . .,xu are row vectors of the matrix M . If M is contractible
in the kth column such that mi,k 6= 0,mj,k 6= 0 and i 6= j, then the (u− 1)× (v − 1)
matrix Mij:k is obtained from M by replacing the ith row with mi,kxj +mj,kxi and
deleting the jth row. The kth column is called the contraction in the kth column
relative to the ith row and the jth row.

In [2], Brualdi and Gibson obtained that per (M) = per (N) if M is a real matrix
of order α > 1 and N is a contraction of M.

Let p ≥ 2 be a positive integer and let Gi
p,r =

[
g
(p,i,r)
k,j

]
be the r× r super-diagonal

matrix, defined by

Gi
p,r =

p+ 1th
↓

ip+1 0 0 · · · 0 i 0 · · · 0 0 0
1 ip+1 0 0 · · · 0 i 0 · · · 0 0
0 1 ip+1 0 0 · · · 0 i 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...
0 · · · 0 1 ip+1 0 0 · · · 0 i 0
0 0 · · · 0 1 ip+1 0 0 · · · 0 i
0 0 0 · · · 0 1 ip+1 0 0 · · · 0
...

. . .
. . .

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 0 · · · 0 1 ip+1 0 0
0 0 0 0 0 0 · · · 0 1 ip+1 0
0 0 0 0 0 0 0 · · · 0 1 ip+1


for r > p+ 1.

Theorem 2.1. For r > p+ 1 and p ≥ 2,

perGi
p,r = F ∗p,i (r + p) .
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Proof. We prove this by induction on r. Suppose that the equation holds for r > p+1.
Now, we consider r + 1. If we expand the perGi

p,r by the Laplace expansion of a
permanent with respect to the first row, then we obtain

perGi
p,r+1 = ip+1 · perGi

p,r + i · perGi
p,r−p.

Since perGi
p,r = F ∗p,i (r + p) and perGi

p,r−p = F ∗p,i (r), it is clear that perGi
p,r+1 =

F ∗p,i (r + p+ 1). Thus the result of the theorem holds. �

Let r > p+ 1 such that p ≥ 2. Define the r × r matrix Hi
p,r =

[
h
(p,i,r)
k,j

]
as shown:

h
(p,i,r)
k,j



ip+1 if k = t and j = t for 1 ≤ t ≤ r − p− 1
i if k = t and j = t+ p for 1 ≤ t ≤ r − p,

1
if k = t+ 1 and j = t for 1 ≤ t ≤ r − p− 2

and
if k = t and j = t for r − p ≤ t ≤ r

0 otherwise.

Suppose that the r × r matrix Ki
p,r =

[
k
(p,i,r)
k,j

]
is defined by

(r−p−1)th
↓

Ki
p,r =


1 · · · 1 0 · · · 0
1
0 Hi

p,r−1
...
0


.

Theorem 2.2. Let F ∗p,i (n) be the nth element of a complex-type Fibonacci p-number.
Then
i.For r > p+ 1,

perHi
p,r = F ∗p,i (r − 1) .

ii.For r > p+ 2,

perKi
p,r =

r−2∑
n=0

F ∗p,i (n) .

Proof. We will use the induction method on r.
i. Now assume that perHi

p,r = F ∗p,i (r − 1) for r > p+1. We examine the case r+1.

If we expand the perHi
p,r by the Laplace expansion of a permanent with respect to

the first row, by the definition of the matrix Hi
p,r, we obtain

perHi
p,r+1 = ip+1 · perHi

p,r + i · perHi
p,r−p.

By our assumption and the recurrence relation of the complex-type Fibonacci p-
numbers,

perHi
p,r+1 = F ∗p,i (r) = ip+1 · F ∗p,i (r − 1) + i · F ∗p,i (r − p− 1) .

So the result holds.
ii. If we expand the perKi

p,r by the Laplace expansion of a permanent with respect
to the first row, then we write

perKi
p,r = perKi

p,r−1 +Hi
p,r−1.
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Thus, by the results and an inductive argument, the proof is easily seen. �

Let the notation M◦K denotes the Hadamard product of M and K. A matrix M is
called convertible if there is an n×n (1,−1)-matrix K such that perM = det (M ◦K).

Let r > p+ 2 and let L be the r × r matrix, defined by

L =



1 1 1 · · · 1 1
−1 1 1 · · · 1 1
1 −1 1 · · · 1 1
...

. . .
. . .

. . .
. . .

...
1 · · · 1 −1 1 1
1 · · · 1 1 −1 1


.

Corollary 2.3. For r > p+ 2,

det
(
Gi

p,r ◦ L
)

= F ∗p,i (r + p) ,

det
(
Hi

p,r ◦ L
)

= F ∗p,i (r − 1)

and

det
(
Ki

p,r ◦ L
)

=

r−2∑
n=0

F ∗p,i (n) .

Proof. Since perGi
p,r = det

(
Gi

p,r ◦ L
)
, perHi

p,r = det
(
Hi

p,r ◦ L
)

and perKi
p,r = det

(
Ki

p,r ◦ L
)

for r > p+ 2,, by Theorem 2.1 and Theorem 2.2, the results are obvious. �

Now we give the Binet formulas for the complex-type Fibonacci p-numbers.

Lemma 2.4. The characteristic equation of the complex-type Fibonacci p-numbers
xp+1 − ip+1 · xp − i = 0 does not have multiple roots for p ≥ 2.

Proof. Let f (x) = xp+1− ip+1 ·xp− i. Suppose that θ is a multiple root of f (x) = 0.
Note that θ 6= 0 and θ 6= 1. When θ is a multiple root, f (θ) = θp+1−ip+1·θp−i = 0 and
f ′ (θ) = (p+ 1) θp−

(
ip+1 · p

)
·θp−1 = 0. Then f ′ (θ) = θp−1

(
(p+ 1) θ −

(
ip+1 · p

))
=

0. Thus, we obtain θ = ip+1·p
p+1 . For p ≥ 2, f (θ) 6= 0, which is a contradiction.

Therefore, the equation f (x) = 0 does not have multiple roots. �

Let f (z) be the characteristic polynomial of the matrix CF
p . Then by Lemma 2.4,

z1, z2, . . . , zp+1 are distinct eigenvalues of matrix CF
p . Define the (p+ 1) × (p+ 1)

Vandermonde matrix V p as follows:

V p =


(z1)

p
(z2)

p
. . . (zp+1)

p

(z1)
p−1

(z2)
p−1

. . . (zp+1)
p−1

...
...

...
z1 z2 . . . zp+1

1 1 . . . 1


.

Let dpk be (p+ 1)× (1)matrix

dpk =


(z1)

n+p+1−k

(z2)
n+p+1−k

...

(zp+1)
n+p+1−k


.
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and V p
k,j be the (p+ 1)×(p+ 1) matrix obtained from V p by replacing the jth column

of V p by dpk.

Theorem 2.5. Let
(
CF

p

)n
=
[
cF,p.n
k,j

]
, then

cF,p.n
k,j =

detV p
k,j

detV p

for n ≥ p and p ≥ 2.

Proof. Since the eigenvalues of the complex-type Fibonacci p-matrix CF
p are distinct,

CF
p is diagonalizable. Let Dp = diag (z1, z2, . . . , zp+1), then we may write CF

p V
p =

V pDp. Since the matrix V p is invertible, we obtain the equation (V p)
−1
CF

p V
p = Dp.

Then, CF
p is similar to Dp; so,

(
CF

p

)n
V p = V p (Dp)

n
. Hence we have the following

linear system of equations:
cF,p.n
k,1 (z1)

p
+ cF,p.n

k,2 (z1)
p−1

+ · · ·+ cF,p.n
k,p+1 = (z1)

n+p+1−k

cF,p.n
k,1 (z2)

p
+ cF,p.n

k,2 (z2)
p−−1

+ · · ·+ cF,p.n
k,p+1 = (z2)

n+p+1−k

...

cF,p.n
k,1 (zp+1)

p
+ cF,p.n

k,2 (zp+1)
p−1

+ · · ·+ cF,p.n
k,p+1 = (zp+1)

n+p+1−k
.

Then for each k, j = 1, 2, . . . , p+ 1, we conclude that

cF,p.n
k,j =

detV p
k,j

detV p
.

�

From this result we immediately deduce:

Corollary 2.6. Let F ∗p,i (n) be the nth element of a complex-type Fibonacci p-number
for n ≥ p such that p ≥ 2, then

F ∗p,i (n) =
detV p

p+1,1

detV p

and

F ∗p,i (n) =
detV p

1,2

i · detV p

=
detV p

2,3

i · detV p

= · · ·

=
detV p

p,p+1

i · detV p
.

Let U (u1, u2, . . . , um) be a m×m companion matrix as follows:

U (u1, u2, . . . , um) =


u1 u2 · · · um
1 0 0
...

. . .
...

0 · · · 1 0


.
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Theorem 2.7. (Chen and Louck [3]) The (k, j) entry c
(n)
k,j (c1, c2, . . . , cv) in the matrix

Cn (c1, c2, . . . , cv) is given by the following formula:

c
(n)
k,j (u1, u2, . . . , um) =

∑
(k1,k2,...,km)

kj + kj+1 + · · ·+ km
k1 + k2 + · · ·+ km

×
(
k1 + · · ·+ km
k1, . . . , km

)
uk1
1 · · ·ukm

m

(3)
where the summation is over nonnegative integers satisfying k1 + 2k2 + · · ·+mkm =

n− k + j,
(
k1+···+km

k1,...,km

)
= (k1+···+km)!

k1!···km! is a multinomial coefficient, and the coefficients

in (3) are defined to be 1 if n = k − j.

Here we investigate a combinatorial representations for complex-type Fibonacci
p-numbers.

Corollary 2.8. i.

F ∗p,i (n) =
∑

(k1,k2,...,kp+1)

(
k1 + · · ·+ kp+1

k1, . . . , kp+1

)(
ip+1

)k1
(i)

kp+1

where the summation is over nonnegative integers satisfying k1+2k2+· · ·+(p+ 1) kp+1 =
n− p.
ii.

F ∗p,i (n) =
1

i

∑
(k1,k2,...,kp+1)

k2 + k3 + · · ·+ kp+1

k1 + k2 + · · ·+ kp+1
×
(
k1 + · · ·+ kp+1

k1, . . . , kp+1

)(
ip+1

)k1
(i)

kp+1

=
1

i

∑
(k1,k2,...,kp+1)

k3 + k4 + · · ·+ kp+1

k1 + k2 + · · ·+ kp+1
×
(
k1 + · · ·+ kp+1

k1, . . . , kp+1

)(
ip+1

)k1
(i)

kp+1

= · · ·

=
1

i

∑
(k1,k2,...,kp+1)

kp+1

k1 + k2 + · · ·+ kp+1
×
(
k1 + · · ·+ kp+1

k1, . . . , kp+1

)(
ip+1

)k1
(i)

kp+1

where the summation is over nonnegative integers satisfying t1+2t2+· · ·+(p+ 1) kp+1 =
n+ 1.

Proof. If we take m = p + 1, k = p + 1 and j = 1, for case i. and k = α − 1, j = α
such that 2 ≤ α ≤ p + 1, for case ii. in Theorem2.7, then the proof is immediately
seen from (2). �

Now we will be concerned the exponential representation of the complex-type Fi-
bonacci p-numbers. Using direct calculation, we obtained the generating function of
F ∗p,i (n) as shows:

gp,i (x) =
xp

1− ip+1x− ixp+1
.

Theorem 2.9. An exponential representation of complex-type Fibonacci p-numbers
is given as follows:

gp,i (x) = xp exp

(∑ xk

k

(
ip+1 + ixp

)k)
.
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Proof. Since

ln gp,i (x) = ln
xp

1− ip+1x− ixp+1

= lnxp − ln
(
1− ip+1x− ixp+1

)
and

− ln
(
1− ip+1x− ixp+1

)
= −

[
−x
(
ip+1 + ixp

)
− 1

2
x2
(
ip+1 + ixp

)2 − · · ·
− 1

n
xn
(
ip+1 + ixp

)n − · · · ] ,

It is clear that

ln
gp,i (x)

xp
= exp

(∑ xk

k

(
ip+1 + ixp

)k)
.

Thus we have the conclusion. �

Let the sums of the complex-type Fibonacci p-numbers from 0 to n be denoted by
Sn , that is,

Sn =

n∑
k=0

F ∗p,i (k)

and let Mp be the following (p+ 2)× (p+ 2) matrix:

Mp =


1 0 · · · 0
1
0 CF

p
...
0


.

If we use induction on n, then we obtain

(Mp)
n

=


1 0 · · · 0

Sn+p−1
Sn+p−2

(
CF

p

)n
...

Sn−1


.

3. Conclusion

This paper has opened up properties of a new sequence, especially those which gen-
eralize well-known identities for the second-order sequences. In the last corollary 2.8,
reference was made to combinatorial representations for these complex-type Fibonacci
p-numbers. By way of conclusion for the interested reader, we note two avenues of
types of further related future development by analogy with ordinary Fibonacci num-
bers extended for the arbitrary order situations.
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