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A note on LMn - algebras of fractions

Florentina Chirteş

Abstract. For an LMn-algebra L and an ∧−closed system S ⊆ L, in [2] I defined the LMn-
algebra of fractions of L relative to S (denoted by L[S]). Also, in [4] I defined the LMn -
algebra of localization of L relative to a topology F on L (denoted by LF ).

The aim of this paper is to prove that L[S] is an LMn - algebra of localization of L relative
to the topology FS = {I ∈ Idn(L) : I ∩ S ∩ C(L) �= ∅}.
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The concept of multiplier for distributive lattices was defined by W. H. Cornish in
[7]. J. Schmid used multipliers in order to give a non–standard construction of the
maximal lattice of quotients for a distributive lattice (see [12]). A direct treatment
of the lattices of quotients can be found in [13]. In [9], G. Georgescu exhibited the
localization lattice LF of a distributive lattice L with respect to a topology F on L
mimicking the familiar construction for rings (see [11]) or monoids (see [14]). In [4]
the author defines, for an LMn-algebra L, the concept of LMn - algebra of localization
relative to a topology F on L (as in the case of lattices).

Two concepts of LMn - algebra of fractions relative to an ∧− closed system was
defined by the author in [2], [4].

1. Definitions and preliminaries

Let n be an integer, n ≥ 2.

Definition 1.1. ([1])An n−valued Lukasiewicz−Moisil algebra (shortly, LMn - al-
gebra) is an algebra L = (L,∧,∨, N, 0, 1, {ϕi}1≤i≤n−1) of type (2, 2, 1, 0, 0, {1}1≤i≤n−1)
satisfying the following conditions:
(1.1) (L,∧,∨, N, 0, 1) is a De Morgan algebra,
(1.2) ϕ1, ..., ϕn−1 : L→ L are bounded lattice morphisms such that for every x, y ∈ L:

(1.2.1) ϕi(x) ∨Nϕi(x) = 1 for every i = 1, ..., n− 1,
(1.2.2) ϕi(x) ∧Nϕi(x) = 0 for every i = 1, ..., n− 1,
(1.2.3) ϕiϕj(x) = ϕj(x) for every i, j = 1, ..., n− 1,
(1.2.4) ϕi(Nx) = Nϕj(x) for every i, j = 1, ..., n− 1 with i+ j = n,
(1.2.5) ϕ1(x) ≤ ϕ2(x) ≤ ... ≤ ϕn−1(x),
(1.2.6) If ϕi(x) = ϕi(y) for every i = 1, ..., n− 1, then x = y.

The relation (1.2.6) is called the determination principle. As consequences of the
determination principle we obtain:

(1.2.7) If x, y ∈ L, then x ≤ y iff ϕi(x) ≤ ϕi(y) for all i = 1, ..., n− 1,
(1.2.8.) ϕ1(x) ≤ x ≤ ϕn−1(x) for all x ∈ L.
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We denote an LMn-algebra L = (L,∧,∨, N, 0, 1, {ϕi}1≤i≤n−1) by its universe L.

Remark 1.1. The endomorphisms {ϕi}1≤i≤n−1are called chrysippian endomorphisms.

Examples:
1. Let Ln = {0, 1

n−1 , ...,
n−2
n−1 , 1}.We define x∨y = max{x, y}, x∧y = min{x, y}, Nx =

1 − x (N( j
n−1 ) =

n−1−j
n−1 ) and ϕi : Ln → Ln, ϕi( j

n−1 ) = 0 if i + j < n and 1 if
i+ j ≥ n, for i, j = 1, ..., n− 1.
Then (Ln,∧,∨, N, 0, 1, {ϕi}1≤i≤n−1) is an LMn-algebra.

2. If (B,∧,∨,′ , 0, 1) is a Boolean algebra, then (B,∧,∨,′ , 0, 1, {ϕi}1≤i≤n−1) is an
LMn-algebra, where ϕi = 1B for every 1 ≤ i ≤ n− 1.

3. Let (B,∨,∧,′ , 0, 1) a Boolean algebra and D(B) = {(x1, ..., xn−1) ∈ Bn−1 : x1 ≤
... ≤ xn−1}.We define pointwise the infimum and the supremum, N(x1, ..., xn−1) =
(x

′
n−1, ..., x

′
1) and ϕi(x1, ..., xn−1) = (xi, ..., xi) for all i = 1, ..., n− 1.

Then (D(B),∧,∨, N, 0, 1, {ϕi}1≤i≤n−1) is an LMn-algebra.

In the rest of this paper, by L we denote an LMn-algebra.
We denote by C(L) the set of all complemented elements of L and we call it the

center of L; it is easy to see that (C(L),∨,∧, N, 0, 1) is a Boolean algebra.

Lemma 1.1. ([1])Let L be an LMn-algebra.The following are equivalent:
(i) e ∈ C(L),
(ii) there are i ∈ {1, ..., n− 1} and x ∈ L such that e = ϕi(x),
(iii) there is i ∈ {1, ..., n− 1} such that e = ϕi(e),
(iv) e = ϕi(e) for every i = 1, ..., n− 1,
(v) ϕi(e) = ϕj(e) for every i, j = 1, ..., n− 1.

Remark 1.2. If x ∈ L, then ϕi(x) ∈ C(L) for every i = 1, ..., n− 1.

Lemma 1.2. ([1])Let L be an LMn-algebra.The following are equivalent:

(i) e ∈ C(L),
(ii) N e ∈ C(L),
(iii) e ∧Ne = 0,
(iv) e ∨Ne = 1.

Lemma 1.3. If L is an LMn-algebra, then for every x ∈ L, x ∧ ϕ1(Nx) = 0 which
is equivalent to x ∧Nϕn−1(x) = 0.

Proof. For every x ∈ L we have x ≤ ϕn−1(x), so

x ∧ ϕ1(Nx) = x ∧Nϕn−1(x) ≤ ϕn−1(x) ∧Nϕn−1(x) = 0 (by(1.2.2)),
hence x ∧ ϕ1(Nx) = 0. �

Theorem 1.1. ([1]) For an LMn-algebra L (with 0 �= 1), the following are equivalent:

(i) C(L) = {0, 1},
(ii) L is a chain,
(iii) L is subdirectly irreducible.

Corollary 1.1. ([1]) Every chain which is an LMn-algebra is finite.

Definition 1.2. ([1])Let L and L
′
be LMn-algebras. A function f : L → L

′
is a

morphism of LMn-algebras iff it satisfies the following conditions, for every x, y ∈ L :
(i) f(x ∨ y) = f(x) ∨ f(y),
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(ii) f(x ∧ y) = f(x) ∧ f(y),
(iii) f(0) = 0, f(1) = 1,
(iv) f(ϕi(x)) = ϕi(f(x)) for every i = 1, ..., n− 1.

Remark 1.3. It follows (from 1.2.4 and 1.2.6) that

f(Nx) = Nf(x)

for every x ∈ L.
We denote by LMn the category of LMn-algebras.

Definition 1.3. ([1]) Let L an LMn-algebra. We say that a nonempty subset I ⊆ L
in an n− ideal if I is an ideal of the lattice L and if x ∈ I, then ϕn−1(x) ∈ I.
Remark 1.4. From (1.2.5) we deduce that if I ⊆ L is an n-ideal and x ∈ I, then
ϕi(x) ∈ I for every i ∈ {1, ..., n− 1}.

We denote by Idn(L) the set of all n− ideals of the LMn- algebra L.
If X ⊆ L is a nonempty set, we denote by < X > the n-ideal generated by X. We

have that (see [1]):

< X >= {y ∈ L : there exist p ≥ 1 and x1, ..., xp ∈ X such that y ≤ ϕn−1(
p∨

i=1
xi)}.

In particular, for a ∈ L, < a >= {x ∈ L : x ≤ ϕn−1(a)} and if a ∈ C(L), then
< a >= {x ∈ L : x ≤ a} = (a].

Let I be an n-ideal and x ∈ L. We denote by (I : x) = {y ∈ L : x ∧ y ∈ I}.
Lemma 1.4. The set (I : x) is an n-ideal.

Proof. Let y1, y2 ∈ (I : x). Then x ∧ y1, x ∧ y2 ∈ I, hence x ∧ (y1 ∨ y2) = (x ∧ y1) ∨
(x ∧ y2) ∈ I, that is, y1 ∨ y2 ∈ (I : x).

If y1 ∈ (I : x) and y2 ≤ y1, then x ∧ y1 ∈ I and x ∧ y2 ≤ x ∧ y1, hence x ∧ y2 ∈ I,
that is, y2 ∈ (I : x).

If y ∈ (I : x) then x ∧ y ∈ I, hence ϕn−1(x) ∧ ϕn−1(y) = ϕn−1(x ∧ y) ∈ I. But
x ∧ ϕn−1(y) ≤ ϕn−1(x) ∧ ϕn−1(y), so x ∧ ϕn−1(y) ∈ I, that is, ϕn−1(y) ∈ (I : x). �

Definition 1.4. ([1]) A congruence on an LMn-algebra L is an equivalence relation
on L compatible with the operations ∧,∨, N, ϕi, for every i = 1, ..., n− 1.

Proposition 1.1. ([1])For an equivalence relation ρ on an LMn-algebra L, the fol-
lowing conditions are equivalent:
(1) ρ is a congruence on L,
(2) ρ is compatible with ∧,∨, ϕi, for every i = 1, ..., n− 1.

2. Topologies on an LMn-algebra

Definition 2.1. ([9]) A non-empty set F of n-ideals of L will be called a topology on
L if the following properties hold:
(T1) If I ∈ F , x ∈ L then (I : x) ∈ F ,
(T2) If I1, I2 ∈ Idn(L), I2 ∈ F and (I1 : x) ∈ F for all x ∈ I2, then I1 ∈ F .

Lemma 2.1. ([9]) If F is a topology on L, then:

(i) If I1 ∈ F and I2 is an n-ideal such that I1 ⊆ I2, then I2 ∈ F ,
(ii) If I1, I2 ∈ F , then I1 ∩ I2 ∈ F ,
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(iii) (F ∪ {∅}, L) is a topological space.

Definition 2.2. ([2]) A nonempty subset S ⊆ L is called ∧− closed system in L if
1 ∈ S and x, y ∈ S implies x ∧ y ∈ S.

For any ∧− closed system S of L we set

FS = {I ∈ Idn(L) : I ∩ S ∩ C(L) �= ∅}.
Proposition 2.1. FS is a topology on L .

Proof. Let I ∈ FS and x ∈ L. Then I ∩ S ∩ C(L) �= ∅, so, because I ⊆ (I : x), we
have that (I : x) ∩ S ∩ C(L) �= ∅, that is, (I : x) ∈ FS .

Let I1, I2 ∈ Idn(L) such that I2 ∈ FS and (I1 : x) ∈ FS for every x ∈ I2. But
I2 ∈ FS implies that there exists x0 ∈ I2 ∩ S ∩ C(L), hence (I1 : x0) ∈ FS , that is,
(I1 : x0) ∩ S ∩ C(L) �= ∅. Then, there exists y0 ∈ (I1 : x0) ∩ S ∩ C(L), so x0 ∧ y0 ∈
I1 ∩ S ∩ C(L), that is, I1 ∈ FS . �

Definition 2.3. The topology FS is called the topology associated with the ∧− closed
system S.

3. F-multipliers and localization LMn-algebra

We recall the construction of LMn-algebra of localization of L relative to a topology
F .

We consider the relation θF of L

(x, y) ∈ θF iff there exists I ∈ F such that e ∧ x = e ∧ y for every e ∈ I.
Lemma 3.1. ([4]) θF is a congruence on L.

We shall denote by x/θF the congruence class of an element x ∈ L, by L/θF the
quotient MV -algebra and by

pF : L→ L/θF
the canonical morphism of LMn-algebras. We denote the chrysippian endomorphisms
of L/θF by ϕi and we have ϕi(x/θF ) = ϕi(x)/θF for every x ∈ L (i = 1, ..., n− 1).

Proposition 3.1. ([4]) For a ∈ L, a/θF ∈ C(L/θF ) iff there exists I ∈ F and
i ∈ {1, ..., n − 1} such that e ∧ ϕi(a) = e ∧ a for every e ∈ I. So, if a ∈ C(L), then
a/θF ∈ C(L/θF ).
Definition 3.1. Let F be a topology on L. By an F -multiplier on L we mean a map
f : I → L/θF , where I ∈ F , which verifies the following condition:
(3.1) f(e ∧ x) = e/θF ∧ f(x), for every e ∈ L and x ∈ I.

By dom(f) ∈ Idn(L) we denote the domain of f ; if dom(f) = L, we called f total.
If F = {L}, then θF is the identity congruence of L and an F− multiplier is a

total multiplier of L in the sense defined in [3].
The maps 0,1 : L → L/θF defined by 0(x) = 0/θF and 1(x) = x/θF for every

x ∈ L are multipliers in the sense of Definition 3.1 (see [3] for the case of multipliers).
Also, for a ∈ L and I ∈ F , fa : I → L/θF defined by fa(x) = a/θF ∧x/θF for every

x ∈ I, is an F− multiplier (see [3] for the case of multipliers of L). If dom(fa) = L,
we denote fa by fa ; clearly, f0 = 0.
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We shall denote byM(I, L/θF ) the set of all the F− multipliers having the domain
I ∈ F and

M(L/θF ) = ∪
I∈F

M(I, L/θF ).

If I1, I2 ∈ F , I1 ⊆ I2, we have a canonical mapping

ϕI1,I2 :M(I2, L/θF ) →M(I1, L/θF )

defined by
ϕI1,I2(f) = f|I1 for f ∈M(I2, L/θF ).

Let us consider the directed system of sets

〈{M(I, L/θF )}I∈F , {ϕI1,I2}I1,I2∈F,I1⊆I2〉
and denote by LF the inductive limit (in the category of sets):

LF =lim−−→
I∈F

M(I, L/θF ).

For any F− multiplier f : I → L/θF we shall denote by (̂I, f) the equivalence class
of f in LF .

Remark 3.1. We recall that if fi : Ii → L/θF , i = 1, 2, are F-multipliers, then
(̂I1, f1) = (̂I2, f2) (in LF) iff there exists I ∈ F , I ⊆ I1 ∩ I2 such that f1|I = f2|I .

Definition 3.2. If I1, I2 ∈ Idn(L) and fi ∈M(Ii, L/θF ), i = 1, 2 we define

f1 ∧ f2, f1 ∨ f2 : I1 ∩ I2 → L/θF
by

(f1 ∧ f2)(x) = f1(x) ∧ f2(x),
(f1 ∨ f2)(x) = f1(x) ∨ f2(x),

for every x ∈ I1∩ I2.

Let ̂(I1, f1) ∧ ̂(I2, f2) = ̂(I1 ∩ I2, f1 ∧ f2) and ̂(I1, f1) ∨ ̂(I2, f2) = ̂(I1 ∩ I2, f1 ∨ f2).
Definition 3.3. If I ∈ Idn(L) and f ∈M(I, L/θF ) we define f∗ : I → L/θF by

f∗(x) = x/θF ∧N(f(ϕn−1(x)))

for any x ∈ I.
Let (̂I, f)∗ = (̂I, f∗).

Lemma 3.2. ([4]) If I1, I2 ∈ Idn(L) and fi ∈M(Ii, L/θF ), i = 1, 2, then

f1 ∧ f2, f1 ∨ f2 ∈M(I1 ∩ I2, L/θF ).
Remark 3.2. ([4]) For x ∈ L we have 0∗(x) = x/θF ∧ N(0/θF ) = x/θF ∧ 1/θF =
x/θF , that is, 0∗ = 1, and similarly 1∗ = 0.

Lemma 3.3. ([4]) If I ∈ Idn(L) and f ∈M(I, L/θF ), then f∗ ∈M(I, L/θF ).

Definition 3.4. For I ∈ Idn(L) and i = 1, ..., n− 1 we define

ϕ̃i :M(I, L/θF ) →M(I, L/θF )

by
ϕ̃i(f)(x) = x/θF ∧ ϕ̄i(f(ϕn−1(x))) =x/θF ∧ ϕi(f(ϕn−1(x)))/θF ,

for every f ∈M(I, L/θF ) and x ∈ I.
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Lemma 3.4. ([4]) If I ∈ Idn(L), f ∈ M(I, L/θF ), then ϕ̃i(f) ∈ M(I, L/θF ) for all
i = 1, ..., n− 1.

Let ϕF
i : LF → LF defined by ϕF

i ((̂I, f)) = ̂(I, ϕ̃i(f)), i = 1, ..., n− 1.

Proposition 3.2. ([4]) (LF ,∧,∨,∗ ,0,1,ϕF
1 , ..., ϕ

F
n−1) is an LMn-algebra.

Definition 3.5. The LMn-algebra LF will be called the localization LMn − algebra
of L with respect to the topology F .

We recall now the construction of LMn-algebra of fractions relative to S from [2].
If S ⊆ L is an ∧−closed system of L, we consider the following congruence on L :

(x, y) ∈ θS iff there exists e ∈ S ∩ C(L) such that x ∧ e = y ∧ e.
The quotient LMn-algebra L[S] = L/θS is called in [2] the LMn-algebra of fractions

of L relative to the ∧−closed system S. For x ∈ L by x/S denotes the congruence
class of x relative to θS .

Theorem 3.1. If FS is the topology associated with the ∧−closed system S ⊆ L, then
the LMn-algebra LFS

is isomorphic in LMn with L[S].

Proof. Let x, y ∈ L. If (x, y) ∈ θFS
then there exists I ∈ FS (hence I ∩S ∩C(L) �= ∅)

such that x∧e = y∧e for any e ∈ I. Since I∩S∩C(L) �= ∅ there exists e0 ∈ I∩S∩C(L)
such that x ∧ e0 = y ∧ e0, that is, (x, y) ∈ θS . So, θFS

⊆ θS .
If (x, y) ∈ θS , there exists e0 ∈ S ∩ C(L) such that x ∧ e0 = y ∧ e0. If we set

I0 =< e0 >= {x ∈ L : x ≤ e0} = (e0], then I0 ∈ Idn(L). Since e0 ∈ I0, we have that
e0 ∈ I0∩S∩C(L), hence I0∩S∩C(L) �= ∅, that is, I0 ∈ FS . For every e ∈ I0, e ≤ e0,
then e = e∧e0, so x∧e = x∧ (e∧e0) = (x∧e0)∧e = (y∧e0)∧e = y∧ (e∧e0) = y∧e,
hence (x, y) ∈ θFS

, that is, θS ⊆ θFS
. Therefore θFS

= θS .
Then L/θFS

= L/θS = L[S], hence an FS−multiplier can be considered in this
case (see Definition 3.1) as a mapping f : I → L[S] (I ∈ FS) having the property
f(e ∧ x) = e/S ∧ f(x) for every x ∈ I and e ∈ L.

We recall (see [2], Remark 2.1) that if s ∈ S ∩ C(L), then s/S = 1.
If (̂I1, f1), (̂I2, f2) ∈ LFS

=lim−−→
I∈F

M(I, L[S]) and (̂I1, f1) = (̂I2, f2) then there exists

I ∈ FS such that I ⊆ I1 ∩ I2 and f1|I = f2|I . Since I, I1, I2 ∈ FS , there exists
e ∈ I ∩ S ∩ C(L), e1 ∈ I1 ∩ S ∩ C(L) and e2 ∈ I2 ∩ S ∩ C(L). We shall prove that
f1(e1) = f2(e2). If we denote e′ = e∧e1∧e2, then e′ ∈ I∩S∩C(L) and e′ ≤ e1, e2. Since
e1 ∧ e′ = e2 ∧ e′ ∈ I then f1(e1 ∧ e′) = f2(e2 ∧ e′), hence f1(e1)∧ e′/S = f2(e2)∧ e′/S,
so f1(e1)∧1 = f2(e2)∧1, that is, f1(e1) = f2(e2). In a similar way, we can show that
f1(s1) = f2(s2) for any s1, s2 ∈ I ∩ S ∩ C(L).

In accordance with these considerations we can define the mapping:

α : LFS
=lim−−→

I∈F
M(I, L[S]) → L[S]

by putting

α((̂I, f)) = f(s) ∈ L[S],
where s ∈ I ∩ S ∩ C(L).

We have α(0) = α((̂L,0)) = 0(s) = 0/S = 0 and α(1) = α((̂L,1)) = 1(s) = s/S =
1 for every s ∈ S ∩ C(L).
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Also, for every (̂Ii, fi) ∈ LFS
, i = 1, 2 we have:

α((̂I1, f1) ∧ (̂I2, f2)) = α( ̂(I1 ∩ I2, f1 ∧ f2)) = (f1 ∧ f2)(s) = f1(s) ∧ f2(s)
= α((̂I1, f1)) ∧ α((̂I2, f2)),

and

α((̂I1, f1) ∨ (̂I2, f2)) = α( ̂(I1 ∩ I2, f1 ∨ f2)) = (f1 ∨ f2)(s) = f1(s) ∨ f2(s)
= α((̂I1, f1)) ∨ α((̂I2, f2))

with s ∈ I1 ∩ I2 ∩ S ∩ C(L).
If (̂I, f) ∈ LFS

and s ∈ I ∩ S ∩ C(L), for every i = 1, ..., n− 1 we have

α(ϕF
i ((̂I, f))) = α( ̂(I, ϕ̃i(f))) = ϕ̃i(f)(s) = (s/S) ∧ ϕi(f(ϕn−1(s))) = 1 ∧ ϕ̄i(f(s))

= ϕ̄i(f(s)) = ϕ̄i(α((̂I, f))).

Therefore, this mapping is a morphism of LMn-algebras.
We shall prove that α is injective and surjective. To prove the injectivity of α

let (̂I1, f1), (̂I2, f2) ∈ LFS
such that α((̂I1, f1)) = α((̂I2, f2)). Then for any e1 ∈

I1 ∩ S ∩ C(L), e2 ∈ I2 ∩ S ∩ C(L) we have f1(e1) = f2(e2). If f1(e1) = x/S and
f2(e2) = y/S with x, y ∈ L, since x/S = y/S, there exists e ∈ S ∩ C(L) such that
x ∧ e = y ∧ e.

If we consider e′ = e ∧ e1 ∧ e2 ∈ I1 ∩ I2 ∩ S ∩ C(L), we have x ∧ e′ = y ∧ e′ and
e′ ≤ e1, e2. It follows that f1(e′) = f1(e′ ∧ e1) = f1(e1) ∧ (e′/S) = x/S ∧ 1 = x/S =
y/S = y/S ∧ 1 = f2(e2) ∧ (e′/S) = f2(e2 ∧ e′) = f2(e′). If we denote I =< e′ >=
(e′](since e′ ∈ C(L)), then we obtain that I ∈ FS , I ⊆ I1 ∩ I2 and f1|I = f2|I , hence

(̂I1, f1) = (̂I2, f2), that is, α is injective.
To prove the surjectivity of α, let a/S ∈ L[S] and f̄a : L → L[S] defined by

f̄a(x) = a/S ∧ x/S = (a ∧ x)/S for every x ∈ L.
It is easy to see that f̄a is an FS−multiplier and α((̂L, f̄a)) = f̄a(s) = (a ∧ s)/S =

a/S ∧ s/S = a/S ∧ 1 = a/S, where s ∈ S ∩ C(L). So α is surjective.
Therefore, α is an isomorphism of LMn-algebras. �
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