A note on LM_n - algebras of fractions

FLORENTINA CHIRTEŞ

ABSTRACT. For an LM_n -algebra L and an \wedge -closed system $S \subseteq L$, in [2] I defined the LM_n algebra of fractions of L relative to S (denoted by L[S]). Also, in [4] I defined the LM_n algebra of localization of L relative to a topology \mathcal{F} on L (denoted by $L_{\mathcal{F}}$).

The aim of this paper is to prove that L[S] is an LM_n - algebra of localization of L relative to the topology $\mathcal{F}_S = \{I \in Idn(L) : I \cap S \cap C(L) \neq \emptyset\}.$

2000 Mathematics Subject Classification. 03D20, 06G30. Key words and phrases. LM_n - algebra,topology, \mathcal{F} - multiplier, multiplier, LM_n - algebra of fractions, LM_n - algebra of localization.

The concept of multiplier for distributive lattices was defined by W. H. Cornish in [7]. J. Schmid used multipliers in order to give a non-standard construction of the maximal lattice of quotients for a distributive lattice (see [12]). A direct treatment of the lattices of quotients can be found in [13]. In [9], G. Georgescu exhibited the localization lattice $L_{\mathcal{F}}$ of a distributive lattice L with respect to a topology \mathcal{F} on L mimicking the familiar construction for rings (see [11]) or monoids (see [14]). In [4] the author defines, for an LM_n -algebra L, the concept of LM_n - algebra of localization relative to a topology \mathcal{F} on L (as in the case of lattices).

Two concepts of LM_n - algebra of fractions relative to an \wedge - closed system was defined by the author in [2], [4].

1. Definitions and preliminaries

Let n be an integer, $n \ge 2$.

Definition 1.1. ([1])An *n*-valued Lukasiewicz-Moisil algebra (shortly, LM_n - algebra) is an algebra $\mathcal{L} = (L, \wedge, \vee, N, 0, 1, \{\varphi_i\}_{1 \leq i \leq n-1})$ of type $(2, 2, 1, 0, 0, \{1\}_{1 \leq i \leq n-1})$ satisfying the following conditions:

(1.1) $(L, \wedge, \vee, N, 0, 1)$ is a De Morgan algebra,

(1.2) $\varphi_1, ..., \varphi_{n-1} : L \to L$ are bounded lattice morphisms such that for every $x, y \in L$:

(1.2.1) $\varphi_i(x) \vee N\varphi_i(x) = 1$ for every i = 1, ..., n-1,

(1.2.2) $\varphi_i(x) \wedge N\varphi_i(x) = 0$ for every i = 1, ..., n-1,

(1.2.3) $\varphi_i \varphi_j(x) = \varphi_j(x)$ for every i, j = 1, ..., n - 1,

(1.2.4) $\varphi_i(Nx) = N\varphi_j(x)$ for every i, j = 1, ..., n-1 with i + j = n,

(1.2.5) $\varphi_1(x) \le \varphi_2(x) \le \dots \le \varphi_{n-1}(x),$

(1.2.6) If $\varphi_i(x) = \varphi_i(y)$ for every i = 1, ..., n - 1, then x = y.

The relation (1.2.6) is called the determination principle. As consequences of the determination principle we obtain:

(1.2.7) If $x, y \in L$, then $x \leq y$ iff $\varphi_i(x) \leq \varphi_i(y)$ for all i = 1, ..., n - 1, (1.2.8.) $\varphi_1(x) \leq x \leq \varphi_{n-1}(x)$ for all $x \in L$.

Received: December 2, 2004.

We denote an LM_n -algebra $\mathcal{L} = (L, \wedge, \vee, N, 0, 1, \{\varphi_i\}_{1 \le i \le n-1})$ by its universe L.

Remark 1.1. The endomorphisms $\{\varphi_i\}_{1 \leq i \leq n-1}$ are called chrysippian endomorphisms.

Examples:

- 1. Let $L_n = \{0, \frac{1}{n-1}, ..., \frac{n-2}{n-1}, 1\}$. We define $x \lor y = \max\{x, y\}, x \land y = \min\{x, y\}, Nx = 1 x \ (N(\frac{j}{n-1}) = \frac{n-1-j}{n-1}) \text{ and } \varphi_i : L_n \to L_n, \varphi_i(\frac{j}{n-1}) = 0 \text{ if } i+j < n \text{ and } 1 \text{ if } i+j \ge n, \text{ for } i, j = 1, ..., n-1.$
- Then $(L_n, \wedge, \vee, N, 0, 1, \{\varphi_i\}_{1 \le i \le n-1})$ is an LM_n -algebra.
- 2. If $(B, \wedge, \vee, ', 0, 1)$ is a Boolean algebra, then $(B, \wedge, \vee, ', 0, 1, \{\varphi_i\}_{1 \le i \le n-1})$ is an LM_n -algebra, where $\varphi_i = 1_B$ for every $1 \le i \le n-1$.
- 3. Let $(B, \lor, \land, ', 0, 1)$ a Boolean algebra and $D(B) = \{(x_1, ..., x_{n-1}) \in B^{n-1} : x_1 \leq ... \leq x_{n-1}\}$. We define pointwise the infimum and the supremum, $N(x_1, ..., x_{n-1}) = (x'_{n-1}, ..., x'_1)$ and $\varphi_i(x_1, ..., x_{n-1}) = (x_i, ..., x_i)$ for all i = 1, ..., n-1. Then $(D(B), \land, \lor, N, 0, 1, \{\varphi_i\}_{1 \leq i \leq n-1})$ is an LM_n -algebra.

In the rest of this paper, by L we denote an LM_n -algebra.

We denote by C(L) the set of all *complemented elements* of L and we call it the center of L; it is easy to see that $(C(L), \lor, \land, N, 0, 1)$ is a Boolean algebra.

Lemma 1.1. ([1])Let L be an LM_n -algebra. The following are equivalent: (i) $e \in C(L)$,

- (ii) there are $i \in \{1, ..., n-1\}$ and $x \in L$ such that $e = \varphi_i(x)$,
- (iii) there is $i \in \{1, ..., n-1\}$ such that $e = \varphi_i(e)$,
- (*iv*) $e = \varphi_i(e)$ for every i = 1, ..., n 1,
- (v) $\varphi_i(e) = \varphi_j(e)$ for every i, j = 1, ..., n 1.

Remark 1.2. If $x \in L$, then $\varphi_i(x) \in C(L)$ for every i = 1, ..., n - 1.

Lemma 1.2. ([1])Let L be an LM_n -algebra. The following are equivalent:

 $\begin{array}{ll} (i) \ e \in C(L), \\ (ii) \ N \ e \in C(L), \\ (iii) \ e \wedge Ne = 0, \\ (iv) \ e \vee Ne = 1. \end{array}$

Lemma 1.3. If L is an LM_n -algebra, then for every $x \in L$, $x \wedge \varphi_1(Nx) = 0$ which is equivalent to $x \wedge N\varphi_{n-1}(x) = 0$.

Proof. For every $x \in L$ we have $x \leq \varphi_{n-1}(x)$, so

$$x \wedge \varphi_1(Nx) = x \wedge N\varphi_{n-1}(x) \leq \varphi_{n-1}(x) \wedge N\varphi_{n-1}(x) = 0 \text{ (by(1.2.2))},$$

hence $x \wedge \varphi_1(Nx) = 0.$

Theorem 1.1. ([1]) For an LM_n -algebra L (with $0 \neq 1$), the following are equivalent:

- (*i*) $C(L) = \{0, 1\},\$
- (ii) L is a chain,
- *(iii)* L is subdirectly irreducible.

Corollary 1.1. ([1]) Every chain which is an LM_n -algebra is finite.

Definition 1.2. ([1])Let L and L' be LM_n -algebras. A function $f : L \to L'$ is a morphism of LM_n -algebras iff it satisfies the following conditions, for every $x, y \in L$: (i) $f(x \lor y) = f(x) \lor f(y)$, F. CHIRTEŞ

(*ii*) $f(x \land y) = f(x) \land f(y),$ (*iii*) f(0) = 0, f(1) = 1,(*iv*) $f(\varphi_i(x)) = \varphi_i(f(x))$ for every i = 1, ..., n - 1.

Remark 1.3. It follows (from 1.2.4 and 1.2.6) that

$$f(Nx) = Nf(x)$$

for every $x \in L$.

We denote by \mathbf{LM}_n the category of LM_n -algebras.

Definition 1.3. ([1]) Let L an LM_n -algebra. We say that a nonempty subset $I \subseteq L$ in an n-ideal if I is an ideal of the lattice L and if $x \in I$, then $\varphi_{n-1}(x) \in I$.

Remark 1.4. From (1.2.5) we deduce that if $I \subseteq L$ is an n-ideal and $x \in I$, then $\varphi_i(x) \in I$ for every $i \in \{1, ..., n-1\}$.

We denote by Idn(L) the set of all n - ideals of the LM_n - algebra L.

If $X \subseteq L$ is a nonempty set, we denote by $\langle X \rangle$ the n-ideal generated by X. We have that (see [1]):

$$\langle X \rangle = \{ y \in L : \text{there exist } p \ge 1 \text{ and } x_1, \dots, x_p \in X \text{ such that } y \le \varphi_{n-1}(\bigvee_i x_i) \}.$$

n

In particular, for $a \in L$, $\langle a \rangle = \{x \in L : x \leq \varphi_{n-1}(a)\}$ and if $a \in C(L)$, then $\langle a \rangle = \{x \in L : x \leq a\} = (a]$.

Let I be an n-ideal and $x \in L$. We denote by $(I : x) = \{y \in L : x \land y \in I\}$.

Lemma 1.4. The set (I : x) is an n-ideal.

Proof. Let $y_1, y_2 \in (I:x)$. Then $x \wedge y_1, x \wedge y_2 \in I$, hence $x \wedge (y_1 \vee y_2) = (x \wedge y_1) \vee (x \wedge y_2) \in I$, that is, $y_1 \vee y_2 \in (I:x)$.

If $y_1 \in (I:x)$ and $y_2 \leq y_1$, then $x \wedge y_1 \in I$ and $x \wedge y_2 \leq x \wedge y_1$, hence $x \wedge y_2 \in I$, that is, $y_2 \in (I:x)$.

If $y \in (I:x)$ then $x \wedge y \in I$, hence $\varphi_{n-1}(x) \wedge \varphi_{n-1}(y) = \varphi_{n-1}(x \wedge y) \in I$. But $x \wedge \varphi_{n-1}(y) \leq \varphi_{n-1}(x) \wedge \varphi_{n-1}(y)$, so $x \wedge \varphi_{n-1}(y) \in I$, that is, $\varphi_{n-1}(y) \in (I:x)$. \Box

Definition 1.4. ([1]) A congruence on an LM_n -algebra L is an equivalence relation on L compatible with the operations $\land, \lor, N, \varphi_i$, for every i = 1, ..., n - 1.

Proposition 1.1. ([1]) For an equivalence relation ρ on an LM_n -algebra L, the following conditions are equivalent:

(1) ρ is a congruence on L,

(2) ρ is compatible with \wedge, \vee, φ_i , for every i = 1, ..., n - 1.

2. Topologies on an LM_n -algebra

Definition 2.1. ([9]) A non-empty set \mathcal{F} of n-ideals of L will be called a topology on L if the following properties hold:

 (T_1) If $I \in \mathcal{F}$, $x \in L$ then $(I : x) \in \mathcal{F}$,

 (T_2) If $I_1, I_2 \in Idn(L)$, $I_2 \in \mathcal{F}$ and $(I_1 : x) \in \mathcal{F}$ for all $x \in I_2$, then $I_1 \in \mathcal{F}$.

Lemma 2.1. ([9]) If \mathcal{F} is a topology on L, then:

(i) If $I_1 \in \mathcal{F}$ and I_2 is an n-ideal such that $I_1 \subseteq I_2$, then $I_2 \in \mathcal{F}$,

(*ii*) If $I_1, I_2 \in \mathcal{F}$, then $I_1 \cap I_2 \in \mathcal{F}$,

22

(*iii*) $(\mathcal{F} \cup \{\emptyset\}, L)$ is a topological space.

Definition 2.2. ([2]) A nonempty subset $S \subseteq L$ is called $\wedge -$ closed system in L if $1 \in S$ and $x, y \in S$ implies $x \wedge y \in S$.

For any \wedge - closed system S of L we set

$$\mathcal{F}_S = \{ I \in Idn(L) : I \cap S \cap C(L) \neq \emptyset \}.$$

Proposition 2.1. \mathcal{F}_S is a topology on L.

Proof. Let $I \in \mathcal{F}_S$ and $x \in L$. Then $I \cap S \cap C(L) \neq \emptyset$, so, because $I \subseteq (I : x)$, we have that $(I : x) \cap S \cap C(L) \neq \emptyset$, that is, $(I : x) \in \mathcal{F}_S$.

Let $I_1, I_2 \in Idn(L)$ such that $I_2 \in \mathcal{F}_S$ and $(I_1 : x) \in \mathcal{F}_S$ for every $x \in I_2$. But $I_2 \in \mathcal{F}_S$ implies that there exists $x_0 \in I_2 \cap S \cap C(L)$, hence $(I_1 : x_0) \in \mathcal{F}_S$, that is, $(I_1 : x_0) \cap S \cap C(L) \neq \emptyset$. Then, there exists $y_0 \in (I_1 : x_0) \cap S \cap C(L)$, so $x_0 \wedge y_0 \in I_1 \cap S \cap C(L)$, that is, $I_1 \in \mathcal{F}_S$.

Definition 2.3. The topology \mathcal{F}_S is called the topology associated with the \wedge - closed system S.

3. \mathcal{F} -multipliers and localization LM_n -algebra

We recall the construction of LM_n -algebra of localization of L relative to a topology \mathcal{F} .

We consider the relation $\theta_{\mathcal{F}}$ of L

 $(x, y) \in \theta_{\mathcal{F}}$ iff there exists $I \in \mathcal{F}$ such that $e \wedge x = e \wedge y$ for every $e \in I$.

Lemma 3.1. ([4]) $\theta_{\mathcal{F}}$ is a congruence on L.

We shall denote by $x/\theta_{\mathcal{F}}$ the congruence class of an element $x \in L$, by $L/\theta_{\mathcal{F}}$ the quotient MV-algebra and by

$$p_{\mathcal{F}}: L \to L/\theta_{\mathcal{F}}$$

the canonical morphism of LM_n -algebras. We denote the chrysippian endomorphisms of $L/\theta_{\mathcal{F}}$ by $\overline{\varphi}_i$ and we have $\overline{\varphi}_i(x/\theta_{\mathcal{F}}) = \varphi_i(x)/\theta_{\mathcal{F}}$ for every $x \in L$ (i = 1, ..., n - 1).

Proposition 3.1. ([4]) For $a \in L, a/\theta_{\mathcal{F}} \in C(L/\theta_{\mathcal{F}})$ iff there exists $I \in \mathcal{F}$ and $i \in \{1, ..., n-1\}$ such that $e \wedge \varphi_i(a) = e \wedge a$ for every $e \in I$. So, if $a \in C(L)$, then $a/\theta_{\mathcal{F}} \in C(L/\theta_{\mathcal{F}})$.

Definition 3.1. Let \mathcal{F} be a topology on L. By an \mathcal{F} -multiplier on L we mean a map $f: I \to L/\theta_{\mathcal{F}}$, where $I \in \mathcal{F}$, which verifies the following condition: (3.1) $f(e \wedge x) = e/\theta_{\mathcal{F}} \wedge f(x)$, for every $e \in L$ and $x \in I$.

By $dom(f) \in Idn(L)$ we denote the domain of f; if dom(f) = L, we called f total. If $\mathcal{F} = \{L\}$, then $\theta_{\mathcal{F}}$ is the identity congruence of L and an \mathcal{F} - multiplier is a total multiplier of L in the sense defined in [3].

The maps $\mathbf{0}, \mathbf{1} : L \to L/\theta_{\mathcal{F}}$ defined by $\mathbf{0}(x) = 0/\theta_{\mathcal{F}}$ and $\mathbf{1}(x) = x/\theta_{\mathcal{F}}$ for every $x \in L$ are multipliers in the sense of Definition 3.1 (see [3] for the case of multipliers).

Also, for $a \in L$ and $I \in \mathcal{F}$, $f_a : I \to L/\theta_{\mathcal{F}}$ defined by $f_a(x) = a/\theta_{\mathcal{F}} \wedge x/\theta_{\mathcal{F}}$ for every $x \in I$, is an \mathcal{F} - multiplier (see [3] for the case of multipliers of L). If $dom(f_a) = L$, we denote f_a by $\overline{f_a}$; clearly, $\overline{f_0} = \mathbf{0}$.

We shall denote by $M(I, L/\theta_{\mathcal{F}})$ the set of all the \mathcal{F} - multipliers having the domain $I \in \mathcal{F}$ and

$$M(L/\theta_{\mathcal{F}}) = \bigcup_{I \in \mathcal{F}} M(I, L/\theta_{\mathcal{F}}).$$

If $I_1, I_2 \in \mathcal{F}$, $I_1 \subseteq I_2$, we have a canonical mapping

$$\varphi_{I_1,I_2}: M(I_2, L/\theta_{\mathcal{F}}) \to M(I_1, L/\theta_{\mathcal{F}})$$

defined by

$$\varphi_{I_1,I_2}(f) = f_{|I_1|} \text{ for } f \in M(I_2, L/\theta_{\mathcal{F}})$$

Let us consider the directed system of sets

$$\langle \{ M(I, L/\theta_{\mathcal{F}}) \}_{I \in \mathcal{F}}, \{ \varphi_{I_1, I_2} \}_{I_1, I_2 \in \mathcal{F}, I_1 \subseteq I_2} \rangle$$

and denote by $L_{\mathcal{F}}$ the inductive limit (in the category of sets):

$$L_{\mathcal{F}} = \lim_{\overrightarrow{I \in \mathcal{F}}} M(I, L/\theta_{\mathcal{F}})$$

For any \mathcal{F} - multiplier $f: I \to L/\theta_{\mathcal{F}}$ we shall denote by $\widehat{(I, f)}$ the equivalence class of f in $L_{\mathcal{F}}$.

Remark 3.1. We recall that if $f_i : I_i \to L/\theta_F$, i = 1, 2, are \mathcal{F} -multipliers, then $\widehat{(I_1, f_1)} = \widehat{(I_2, f_2)}$ (in L_F) iff there exists $I \in \mathcal{F}$, $I \subseteq I_1 \cap I_2$ such that $f_{1|I} = f_{2|I}$. **Definition 3.2.** If $I_1, I_2 \in Idn(L)$ and $f_i \in M(I_i, L/\theta_F), i = 1, 2$ we define

$$f_1 \wedge f_2, f_1 \vee f_2 : I_1 \cap I_2 \to L/\theta_{\mathcal{F}}$$

by

$$\begin{array}{rcl} (f_1 \wedge f_2)(x) & = & f_1(x) \wedge f_2(x), \\ (f_1 \vee f_2)(x) & = & f_1(x) \vee f_2(x), \end{array}$$

for every $x \in I_1 \cap I_2$.

Let $(\widehat{I_1, f_1}) \land (\widehat{I_2, f_2}) = (I_1 \cap \widehat{I_2, f_1} \land f_2)$ and $(\widehat{I_1, f_1}) \lor (\widehat{I_2, f_2}) = (I_1 \cap \widehat{I_2, f_1} \lor f_2).$ **Definition 3.3.** If $I \in Idn(L)$ and $f \in M(I, L/\theta_{\mathcal{F}})$ we define $f^* : I \to L/\theta_{\mathcal{F}}$ by $f^*(x) = x/\theta_{\mathcal{F}} \land N(f(\varphi_{n-1}(x)))$

for any $x \in I$.

Let $(\widehat{I,f})^* = \widehat{(I,f^*)}$.

Lemma 3.2. ([4]) If $I_1, I_2 \in Idn(L)$ and $f_i \in M(I_i, L/\theta_{\mathcal{F}}), i = 1, 2$, then $f_1 \wedge f_2, f_1 \vee f_2 \in M(I_1 \cap I_2, L/\theta_{\mathcal{F}}).$

Remark 3.2. ([4]) For $x \in L$ we have $\mathbf{0}^*(x) = x/\theta_{\mathcal{F}} \wedge N(0/\theta_{\mathcal{F}}) = x/\theta_{\mathcal{F}} \wedge 1/\theta_{\mathcal{F}} = x/\theta_{\mathcal{F}}$, that is, $\mathbf{0}^* = \mathbf{1}$, and similarly $\mathbf{1}^* = \mathbf{0}$.

Lemma 3.3. ([4]) If $I \in Idn(L)$ and $f \in M(I, L/\theta_{\mathcal{F}})$, then $f^* \in M(I, L/\theta_{\mathcal{F}})$.

Definition 3.4. For $I \in Idn(L)$ and i = 1, ..., n - 1 we define

$$\tilde{\varphi}_i: M(I, L/\theta_{\mathcal{F}}) \to M(I, L/\theta_{\mathcal{F}})$$

by

$$\tilde{\varphi}_i(f)(x) = x/\theta_{\mathcal{F}} \wedge \bar{\varphi}_i(f(\varphi_{n-1}(x))) = x/\theta_{\mathcal{F}} \wedge \varphi_i(f(\varphi_{n-1}(x)))/\theta_{\mathcal{F}},$$

for every $f \in M(I, L/\theta_{\mathcal{F}})$ and $x \in I$.

24

Lemma 3.4. ([4]) If $I \in Idn(L)$, $f \in M(I, L/\theta_{\mathcal{F}})$, then $\tilde{\varphi}_i(f) \in M(I, L/\theta_{\mathcal{F}})$ for all i = 1, ..., n - 1.

Let
$$\varphi_i^{\mathcal{F}}: L_{\mathcal{F}} \to L_{\mathcal{F}}$$
 defined by $\varphi_i^{\mathcal{F}}(\widehat{(I,f)}) = (\widehat{I,\varphi_i(f)}), i = 1, ..., n-1.$

Proposition 3.2. ([4]) $(L_{\mathcal{F}}, \wedge, \vee, *, \mathbf{0}, \mathbf{1}, \varphi_1^{\mathcal{F}}, ..., \varphi_{n-1}^{\mathcal{F}})$ is an LM_n -algebra.

Definition 3.5. The LM_n -algebra $L_{\mathcal{F}}$ will be called the localization LM_n – algebra of L with respect to the topology \mathcal{F} .

We recall now the construction of LM_n -algebra of fractions relative to S from [2]. If $S \subseteq L$ is an \wedge -closed system of L, we consider the following congruence on L :

 $(x, y) \in \theta_S$ iff there exists $e \in S \cap C(L)$ such that $x \wedge e = y \wedge e$.

The quotient LM_n -algebra $L[S] = L/\theta_S$ is called in [2] the LM_n -algebra of fractions of L relative to the \wedge -closed system S. For $x \in L$ by x/S denotes the congruence class of x relative to θ_S .

Theorem 3.1. If \mathcal{F}_S is the topology associated with the \wedge -closed system $S \subseteq L$, then the LM_n -algebra $L_{\mathcal{F}_S}$ is isomorphic in LM_n with L[S].

Proof. Let $x, y \in L$. If $(x, y) \in \theta_{\mathcal{F}_S}$ then there exists $I \in \mathcal{F}_S$ (hence $I \cap S \cap C(L) \neq \emptyset$) such that $x \wedge e = y \wedge e$ for any $e \in I$. Since $I \cap S \cap C(L) \neq \emptyset$ there exists $e_0 \in I \cap S \cap C(L)$ such that $x \wedge e_0 = y \wedge e_0$, that is, $(x, y) \in \theta_S$. So, $\theta_{\mathcal{F}_S} \subseteq \theta_S$.

If $(x, y) \in \theta_S$, there exists $e_0 \in S \cap C(L)$ such that $x \wedge e_0 = y \wedge e_0$. If we set $I_0 = \langle e_0 \rangle = \{x \in L : x \leq e_0\} = (e_0]$, then $I_0 \in Idn(L)$. Since $e_0 \in I_0$, we have that $e_0 \in I_0 \cap S \cap C(L)$, hence $I_0 \cap S \cap C(L) \neq \emptyset$, that is, $I_0 \in \mathcal{F}_S$. For every $e \in I_0$, $e \leq e_0$, then $e = e \wedge e_0$, so $x \wedge e = x \wedge (e \wedge e_0) = (x \wedge e_0) \wedge e = (y \wedge e_0) \wedge e = y \wedge (e \wedge e_0) = y \wedge e$, hence $(x, y) \in \theta_{\mathcal{F}_S}$, that is, $\theta_S \subseteq \theta_{\mathcal{F}_S}$. Therefore $\theta_{\mathcal{F}_S} = \theta_S$.

Then $L/\theta_{\mathcal{F}_S} = L/\theta_S = L[S]$, hence an \mathcal{F}_S -multiplier can be considered in this case (see Definition 3.1) as a mapping $f: I \to L[S]$ $(I \in \mathcal{F}_S)$ having the property $f(e \wedge x) = e/S \wedge f(x)$ for every $x \in I$ and $e \in L$.

We recall (see [2], Remark 2.1) that if $s \in S \cap C(L)$, then s/S = 1.

If $\widehat{(I_1, f_1)}, \widehat{(I_2, f_2)} \in L_{\mathcal{F}_S} = \lim_{I \in \mathcal{F}} M(I, L[S])$ and $\widehat{(I_1, f_1)} = \widehat{(I_2, f_2)}$ then there exists

 $I \in \mathcal{F}_S$ such that $I \subseteq I_1 \cap I_2$ and $f_{1|I} = f_{2|I}$. Since $I, I_1, I_2 \in \mathcal{F}_S$, there exists $e \in I \cap S \cap C(L), e_1 \in I_1 \cap S \cap C(L)$ and $e_2 \in I_2 \cap S \cap C(L)$. We shall prove that $f_1(e_1) = f_2(e_2)$. If we denote $e' = e \wedge e_1 \wedge e_2$, then $e' \in I \cap S \cap C(L)$ and $e' \leq e_1, e_2$. Since $e_1 \wedge e' = e_2 \wedge e' \in I$ then $f_1(e_1 \wedge e') = f_2(e_2 \wedge e')$, hence $f_1(e_1) \wedge e'/S = f_2(e_2) \wedge e'/S$, so $f_1(e_1) \wedge \mathbf{1} = f_2(e_2) \wedge \mathbf{1}$, that is, $f_1(e_1) = f_2(e_2)$. In a similar way, we can show that $f_1(s_1) = f_2(s_2)$ for any $s_1, s_2 \in I \cap S \cap C(L)$.

In accordance with these considerations we can define the mapping:

$$\alpha: L_{\mathcal{F}_S} = \lim_{\overrightarrow{I \in \mathcal{F}}} M(I, L[S]) \to L[S]$$

by putting

$$\alpha(\widehat{(I,f)}) = f(s) \in L[S],$$

where $s \in I \cap S \cap C(L)$.

We have $\alpha(\mathbf{0}) = \alpha(\widehat{(L,\mathbf{0})}) = \mathbf{0}(s) = 0/S = \mathbf{0}$ and $\alpha(\mathbf{1}) = \alpha(\widehat{(L,\mathbf{1})}) = \mathbf{1}(s) = s/S = \mathbf{1}$ for every $s \in S \cap C(L)$.

Also, for every $\widehat{(I_i, f_i)} \in L_{\mathcal{F}_S}, i = 1, 2$ we have:

$$\begin{aligned} \alpha(\widehat{(I_1,f_1)}\wedge\widehat{(I_2,f_2)}) &= & \alpha((I_1\cap\widehat{I_2,f_1}\wedge f_2)) = (f_1\wedge f_2)(s) = f_1(s)\wedge f_2(s) \\ &= & \alpha(\widehat{(I_1,f_1)})\wedge\alpha(\widehat{(I_2,f_2)}), \end{aligned}$$

and

$$\alpha(\widehat{(I_1, f_1)} \lor \widehat{(I_2, f_2)}) = \alpha((I_1 \cap \widehat{I_2, f_1} \lor f_2)) = (f_1 \lor f_2)(s) = f_1(s) \lor f_2(s)$$

= $\alpha(\widehat{(I_1, f_1)}) \lor \alpha(\widehat{(I_2, f_2)})$

with $s \in I_1 \cap I_2 \cap S \cap C(L)$.

If
$$(I, f) \in L_{\mathcal{F}_S}$$
 and $s \in I \cap S \cap C(L)$, for every $i = 1, ..., n - 1$ we have
 $\alpha(\varphi_i^{\mathcal{F}}(\widehat{(I, f)})) = \alpha((\widehat{I, \varphi_i(f)})) = \widehat{\varphi_i}(f)(s) = (s/S) \wedge \overline{\varphi_i}(f(\varphi_{n-1}(s))) = \mathbf{1} \wedge \overline{\varphi_i}(f(s))$

$$= \overline{\varphi_i}(f(s)) = \overline{\varphi_i}(\alpha(\widehat{(I, f)})).$$

Therefore, this mapping is a morphism of LM_n -algebras.

We shall prove that α is injective and surjective. To prove the injectivity of α let $\widehat{(I_1, f_1)}, \widehat{(I_2, f_2)} \in L_{\mathcal{F}_S}$ such that $\alpha(\widehat{(I_1, f_1)}) = \alpha(\widehat{(I_2, f_2)})$. Then for any $e_1 \in I_1 \cap S \cap C(L)$, $e_2 \in I_2 \cap S \cap C(L)$ we have $f_1(e_1) = f_2(e_2)$. If $f_1(e_1) = x/S$ and $f_2(e_2) = y/S$ with $x, y \in L$, since x/S = y/S, there exists $e \in S \cap C(L)$ such that $x \wedge e = y \wedge e$.

If we consider $e' = e \wedge e_1 \wedge e_2 \in I_1 \cap I_2 \cap S \cap C(L)$, we have $x \wedge e' = y \wedge e'$ and $e' \leq e_1, e_2$. It follows that $f_1(e') = f_1(e' \wedge e_1) = f_1(e_1) \wedge (e'/S) = x/S \wedge \mathbf{1} = x/S = y/S = y/S \wedge \mathbf{1} = f_2(e_2) \wedge (e'/S) = f_2(e_2 \wedge e') = f_2(e')$. If we denote $I = \langle e' \rangle = (e'](\text{since } e' \in C(L))$, then we obtain that $I \in \mathcal{F}_S$, $I \subseteq I_1 \cap I_2$ and $f_{1|I} = f_{2|I}$, hence $(I_1, f_1) = (I_2, f_2)$, that is, α is injective.

To prove the surjectivity of α , let $a/S \in L[S]$ and $\bar{f}_a : L \to L[S]$ defined by $\bar{f}_a(x) = a/S \wedge x/S = (a \wedge x)/S$ for every $x \in L$.

It is easy to see that \bar{f}_a is an \mathcal{F}_S -multiplier and $\alpha((L, \bar{f}_a)) = \bar{f}_a(s) = (a \wedge s)/S = a/S \wedge s/S = a/S \wedge \mathbf{1} = a/S$, where $s \in S \cap C(L)$. So α is surjective.

Therefore, α is an isomorphism of LM_n -algebras.

References

- V. Boicescu, A. Filipoiu, G. Georgescu, S. Rudeanu, Lukasiewicz-Moisil Algebras, North Holland, 1991.
- [2] F. Chirteş, LM_n-algebra of fractions relative to an ∧-closed system, Analele Universității din Craiova, Seria Matematica-Informatica, XXX(2), 1-6 (2003).
- [3] D. Buşneag, F. Chirteş, LM_n -algebra of fractions and maximal LM_n -algebra of fractions, to appear in *Discrette Mathematics*.
- [4] F. Chirteş, Localization of LM_n-algebras, Central European Journal of Mathematics, 3(1), 105-124 (2005).
- [5] R. Cignoli, Algebras de Moisil, Notas de Logica Matematica, 27, Instituto de Matematica, Universidad del Sur, Bahia Blanca, 1970.
- [6] R. Cignoli, An algebraic approch to elementary theory based on n-valued Lukasiewicz logics, Z. Math Logic u. Grund. Math., 30, 87-96 (1984).
- [7] W.H. Cornish, The multiplier extension of a distributive lattice, Journal of Algebra, 32, 339-355 (1974).
- [8] G. Georgescu, C. Vraciu, On the Characterisation of Centred Lukasiewicz Algebras, Journal of Algebra, 16(4), 486-495 (1970).
- [9] G.Georgescu, F-multipliers and localizations of distributive lattices, Algebra Universalis, 21, 181-197 (1985).
- [10] J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, 1966.

26

- [11] N. Popescu, Abelian categories with applications to rings and modules, Academic Press, New York, 1973.
- [12] J. Schmid, Multipliers on distributive lattices and rings of quotients, Houston Journal of Mathematics, 6(3), (1980).
- [13] J. Schmid, Distributive lattices and rings of quotients, Coll. Math. Societatis Janos Bolyai, 33, Szeged, Hungary, 1980.
- [14] B. Strenström, Platnes and localization over monoids, Math. Nachrichten, 48, 315-334 (1971).

(Florentina Chirteş) DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CRAIOVA,

AL. I. CUZA STREET, 13, CRAIOVA RO-200585, ROMANIA, TEL/FAX: 40-251412673 $E\text{-mail}\ address:\ \texttt{chirtes@central.ucv.ro}$