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A note on LM, - algebras of fractions

FLORENTINA CHIRTES

ABSTRACT. For an LMp-algebra L and an A—closed system S C L, in [2] I defined the LM,-
algebra of fractions of L relative to S (denoted by L[S]). Also, in [4] I defined the LM, -
algebra of localization of L relative to a topology F on L (denoted by Lx).

The aim of this paper is to prove that L[S] is an LM, - algebra of localization of L relative
to the topology Fg = {I € Idn(L) : INSNC(L) # 0}.
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The concept of multiplier for distributive lattices was defined by W. H. Cornish in
[7]. J. Schmid used multipliers in order to give a non-standard construction of the
maximal lattice of quotients for a distributive lattice (see [12]). A direct treatment
of the lattices of quotients can be found in [13]. In [9], G. Georgescu exhibited the
localization lattice Lz of a distributive lattice L with respect to a topology F on L
mimicking the familiar construction for rings (see [11]) or monoids (see [14]). In [4]
the author defines, for an LM,,-algebra L, the concept of LM, - algebra of localization
relative to a topology F on L (as in the case of lattices).

Two concepts of LM, - algebra of fractions relative to an A— closed system was
defined by the author in [2], [4].

1. Definitions and preliminaries

Let n be an integer,n > 2.

Definition 1.1. ([1])An n—valued Lukasiewicz— Moisil algebra (shortly, LM,, - al-
gebra) is an algebra L = (L, A,V,N,0,1,{p;}i<i<n—1) of type (2,2,1,0,0, {1} 1<i<n—1)
satisfying the following conditions:
(1.1) (L,A,V,N,0,1) is a De Morgan algebra,
) ©15.es0n—1: L — L are bounded lattice morphisms such that for every x,y € L:
) wi(x) V Npi(x) =1 for everyi =1,....,n— 1,
) wi(x) ANp;(z) =0 for everyi=1,...,n—1,
1.2.3) pip;(x) = ;) for every i,j=1,...,n—1,
) wi(Nz) = Nyj;(z) for every i,j=1,...,n—1 withi+j =n,
) 1(@) < pa(x) < . < Ppa (),
) If pi(x) = wi(y) for everyi=1,...n—1, then x = y.

The relation (1.2.6) is called the determination principle. As consequences of the
determination principle we obtain:
(1.2.7) If z,y € L, then z <y iff p;(z) < @i(y) foralli =1,...,.n — 1,
(1.2.8.) ¢1(x) <z < pp_1(z) for all z € L.
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We denote an LM,,-algebra £ = (L, A,V,N,0,1,{p; }1<i<n—1) by its universe L.
Remark 1.1. The endomorphisms {; }1<i<n—1are called chrysippian endomorphisms.

Examples:

1. Let L,, = {0, ﬁ, - Z—:?, 1}.We define 2Vy = max{z,y}, zAy = min{z,y}, Nz =
1-2z (N(ﬁ) = nn_—izj) and @; : Ly —>Lmapi(n%1) =0ifi+j <nandlif
i+j>mn,fori,j=1,....,n—1.

Then (L, A,V,N,0,1,{p;}1<i<n—1) is an LM,-algebra.

2. If (B,A,V,',0,1) is a Boolean algebra, then (B,A,V,",0,1,{®;}1<i<n—1) is an
LM,-algebra, where ¢; = 1p for every 1 <i <n —1.

3. Let (B,V, A0, 1) a Boolean algebra and D(B) = {(z1,...,7,_1) € B" 112 <
. < p_1}. We define pointwise the infimum and the supremum, N(z1,...,z,-1) =
(), 1 xy) and @21, .oy Tno1) = (24, .., z;) forall i = 1, ...,n — 1.

Then (D(B),A,V,N,0,1,{p; }1<i<n—1) is an LM,-algebra.

In the rest of this paper, by L we denote an LM,-algebra.
We denote by C(L) the set of all complemented elements of L and we call it the
center of Lj; it is easy to see that (C(L),V,A, N,0,1) is a Boolean algebra.

Lemma 1.1. ([1])Let L be an LM, -algebra. The following are equivalent:
(i) e C(L),

(ii) there arei € {1,....,n— 1} and = € L such that e = ¢;(x),

(1i) there isi € {1,....,n — 1} such that e = p;(e),

(iv) e =;(e) for everyi=1,...n —1,

(v) @i(e) = @j(e) for everyi,j=1,...,n—1.

Remark 1.2. If x € L, then p;(z) € C(L) for everyi=1,....,n — 1.

Lemma 1.2. ([1])Let L be an LM, -algebra. The following are equivalent:
(1) e € C(L),

(i) N ee€ C(L),

(7ii) e N Ne =0,

(iv) eV Ne = 1.

Lemma 1.3. If L is an LM, -algebra, then for every x € L, x A ¢1(Nz) = 0 which

is equivalent to x AN Np,_1(x) = 0.

Proof. For every x € L we have z < ¢,_1(x), so

e ANe1(Nz) =2 ANpp_1(2) < on_1(x) AN Np,—1(x) =0 (by(1.2.2)),
hence z A 1 (Nx) = 0. O

Theorem 1.1. ([1]) For an LM, -algebra L (with 0 # 1), the following are equivalent:
(i) C(L) ={0,1},

(#4) L is a chain,
(131) L is subdirectly irreducible.

Corollary 1.1. ([1]) Every chain which is an LM, -algebra is finite.

Definition 1.2. ([1])Let L and L' be LM,-algebras. A function f : L — L' is a
morphism of LM, -algebras iff it satisfies the following conditions, for every x,y € L :

(@) fzVy) = flx)V fy),



22 F. CHIRTES

(1) flxzny)=fl@)Afy),
(i) f(0)=0,f(1) =1,
(1v) f(pi(z)) = @i(f(x)) for everyi=1,...n—1.
Remark 1.3. It follows (from 1.2.4 and 1.2.6) that
f(Nz) = Nf(z)
for every x € L.
We denote by LM, the category of LM,-algebras.

Definition 1.3. ([1]) Let L an LM, -algebra. We say that a nonempty subset I C L
in an n — ideal if I is an ideal of the lattice L and if x € I, then p,—1(x) € I.

Remark 1.4. From (1.2.5) we deduce that if I C L is an n-ideal and x € I, then
vi(z) € I for everyie {1,...,n—1}.

We denote by Idn(L) the set of all n — ideals of the LM,,- algebra L.
If X C L is a nonempty set, we denote by < X > the n-ideal generated by X. We
have that (see [1]):

< X >={y € L: there exist p > 1 and 1, ...,z, € X such that y < @n,l(‘\z; x;)}.

=1
In particular, for a € L, < a >={z € L : v < ¢,_1(a)} and if a € C(L), then
<a>={zxeL:z<a}=/a.
Let I be an n-ideal and = € L. We denote by (I:a2)={y € L:x ANy € I}.

Lemma 1.4. The set (I : x) is an n-ideal.

Proof. Let y1,y2 € (I : ). Then z Ayy, 2 Ays € I, hence z A (y1 V y2) = (x Ay1) V
(x ANy2) € I, that is, y1 Vya € (I : x).

Ify; € (I :2z) and yo < yp, then x Ay; € I and x Ays < x Ay, hence z Ays € I,
that is, yo € (I : x).

Ify € (I:x)then x Ay € I, hence ¢n,—1(x) A on—1(y) = @n_1(x Ay) € I. But
TAPn—1(Y) < n—1() A pn_1(y), so £ A pn_1(y) € I, that is, pp_1(y) € { : z). O

Definition 1.4. ([1]) A congruence on an LM,-algebra L is an equivalence relation
on L compatible with the operations N\,V, N, @;, for everyi=1,....,n — 1.

Proposition 1.1. ([1])For an equivalence relation p on an LM,-algebra L, the fol-
lowing conditions are equivalent:

(1) p is a congruence on L,

(2) p is compatible with A\,V, @;, for every i =1,....,n — 1.

2. Topologies on an LM,,-algebra

Definition 2.1. ([9]) A non-empty set F of n-ideals of L will be called a topology on
L if the following properties hold:

(Th) If I € F,xz € L then (I :z) € F,

(Tz) If I1,1Is € Idn(L), I € F and (I : ) € F for all x € I, then I; € F.

Lemma 2.1. ([9]) If F is a topology on L, then:

(1) If I € F and I is an n-ideal such that Iy C I, then Iz € F,
(’LZ) [f L, I, e F, then Iy NIy € F,
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(itg) (FU{0},L) is a topological space.

Definition 2.2. ([2]) A nonempty subset S C L is called A— closed system in L if
1eS and xz,y € S impliesx Ny € S.

For any A— closed system S of L we set
Fs={I€ldn(L): INSNC(L) # 0}.
Proposition 2.1. Fg is a topology on L .

Proof. Let I € Fg and x € L. Then INSNC(L) # 0, so, because I C (I : x), we
have that (I : ) NSNC(L) # 0, that is, (I : z) € Fgs.

Let I1,I5 € Idn(L) such that Iy € Fg and (1 : z) € Fg for every x € I>. But
I, € Fg implies that there exists g € Io NS N C(L), hence (7 : zg) € Fg, that is,
(I : ko) N SN C(L) # 0. Then, there exists yo € (I : ©o) N.SNC(L), so g Ayo €
IlﬂSﬁC(L), that is, I; € Fg. U

Definition 2.3. The topology Fs is called the topology associated with the A— closed
system S.

3. F-multipliers and localization LM, -algebra

We recall the construction of LM, -algebra of localization of L relative to a topology
F.

We consider the relation 07 of L
(x,y) € 07 iff there exists I € F such that e Ax =e Ay for every e € I.
Lemma 3.1. ([4]) 0F is a congruence on L.

We shall denote by z/0% the congruence class of an element x € L, by L/0z the
quotient MV-algebra and by

pr:L— L/0F
the canonical morphism of LM ,-algebras. We denote the chrysippian endomorphisms
of L/0F by ¥, and we have g,(z/0r ) = ¢;(x)/0F for every x € L (i =1,...,n—1).

Proposition 3.1. ([4]) For a € L,a/0x € C(L/0F) iff there exists I € F and
i € {l,....,n —1} such that e A p;(a) = e Aa for every e € 1. So, if a € C(L), then
a/0r € C(L/OF).

Definition 3.1. Let F be a topology on L. By an F -multiplier on L we mean a map
f:I— L/0g, where I € F, which verifies the following condition:
(3.1) f(enz)=-e/0r A f(x), for everye € L and x € I.

By dom(f) € Idn(L) we denote the domain of f; if dom(f) = L, we called f total.

If F = {L}, then 05 is the identity congruence of L and an F— multiplier is a
total multiplier of L in the sense defined in [3].

The maps 0,1 : L — L/0f defined by 0(z) = 0/07 and 1(z) = x/0x for every
x € L are multipliers in the sense of Definition 3.1 (see [3] for the case of multipliers).

Also, fora € Land I € F, fo : I — L/0F defined by f,(z) = a/0rANx/0F for every
x € I, is an F— multiplier (see [3] for the case of multipliers of L). If dom(f,) = L,
we denote f, by f, : clearly, fo = 0.
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We shall denote by M (I, L/0x) the set of all the F— multipliers having the domain
IcFand
M(L/0F) =U M(I,L/0F).
IeF

If I1,I, € F, I C Iy, we have a canonical mapping
@11, - M(IQ,L/G]—') — ]\4(,[17 L/@]:)
defined by
(p11712(f) = f|11 for f S M(127L/0-7:)
Let us consider the directed system of sets
({M(I,L/0F)} ier, {on L} neF ncn)
and denote by Lz the inductive limit (in the category of sets):

Te?

For any F— multiplier f : I — L/0x we shall denote by (I, f) the equivalence class
of fin Lr.

Remark 3.1. We recall that if f; : I; — L/0r , i = 1,2, are F-multipliers, then

—

(I, f1) = (Ig/,\fg) (in Lz ) iff there exists I € F , I C Iy NIy such that fi; = for.
Definition 3.2. If I, I, € Idn(L) and f; € M(I;,L/0x),i = 1,2 we define

finfo, iV fo: NIy — L)0F
by

(finfo)(@) = fi(z)A fao2),

(fiv)(@) = fila)V fa(2),

for every x € 1N Is.

L —

Let (I, ) A (T f2) = (10 NV fu A fo) and (I, 1) V (B fo) = (L0 Iy fi V fo).
Definition 3.3. If I € Idn(L) and f € M(I,L/0F) we define f*:1 — L/0x by
[ (@) =x/07 NN(f(on-1(x)))

for any x € 1.

—_—

Let (I, f)* = (I, f*).
Lemma 3.2. ([4]) If I, 1> € Idn(L) and f; € M(I;, L/0F),i = 1,2, then
finhfo, frV foe M(Iy N 1o, L/OF).

Remark 3.2. ([4]) For x € L we have 0*(x) = /07 A N(0/0F) = x/0Fr N1/0F =
x/0F, that is, 0* = 1, and similarly 1* = 0.

Lemma 3.3. ([4]) If I € Idn(L) and f € M(I,L/0F), then f* € M(I,L/0F).
Definition 3.4. For I € Idn(L) andi=1,...,n — 1 we define
@i : M(I,L/0F) — M(I, L/0F)

by
Gi()(@) = /07 N i(f(pn-1(2))) =2/0F N 0i(f(Pn-1(x)))/0F,
for every f € M(I,L/0%) and x € I.
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Lemma 3.4. ([4]) If I € Idn(L), f € M(I,L/0f), then ¢;(f) € M(I,L/0x) for all
1=1,..,n—1

—

Let o7 : Ly — Ly defined by o7 (T, f)) = (I, 3: ()i = 1,..,n — 1.
Proposition 3.2. ([4]) (Lz,A,V,*,0,1,07,....,07 ) is an LM, -algebra.

Definition 3.5. The LM, -algebra Lz will be called the localization LM, — algebra
of L with respect to the topology F.

We recall now the construction of LM, -algebra of fractions relative to S from [2].
If S C L is an A—closed system of L, we consider the following congruence on L :

(x,y) € Og iff there exists e € SN C(L) such that z Ae =y Ae.

The quotient LM,-algebra L[S] = L/0g is called in [2] the LM,-algebra of fractions
of L relative to the A—closed system S. For x € L by z/S denotes the congruence
class of x relative to 0g.

Theorem 3.1. If Fg is the topology associated with the A—closed system S C L, then
the LMy, -algebra Lz, is isomorphic in LM, with L[S].

Proof. Let z,y € L. If (x,y) € 0, then there exists I € Fg (hence INSNC(L) # 0)
such that zAe = yAe for any e € I. Since INSNC(L) # 0 there exists eg € INSNC(L)
such that x A eg = y A e, that is, (z,y) € 0g. So, O£, C 0s.

If (z,y) € Og, there exists eg € SN C(L) such that 2 A ey = y A ep. If we set
Ip=<ey>={xe€L:x<ep} = (en], then Iy € Idn(L). Since ey € Iy, we have that
eop € IpNSNC(L), hence [yNSNC(L) # 0, that is, Iy € Fs. For every e € I, e < eg,
then e = eAeg, so xAe=xzA(eNey) = (xheg)Ne = (yNeg)Ae=yA(eNeg) =yAe,
hence (z,y) € 0z, that is, g C 0,. Therefore 0z, = 0s.

Then L/0r, = L/0s = L[S], hence an Fg—multiplier can be considered in this
case (see Definition 3.1) as a mapping f : I — L[S] (I € Fs) having the property
flenz)=¢e/SA f(z) for every x € I and e € L.

We recall (see [2], Remark 2.1) that if s € SN C(L), then s/S = 1.

If (Il/,\fl)7 (IQ/,\fg € Lrg =lim M(I, L[S]) and (Il/,\fl) = (IQ/,\fQ) then there exists
IeF

I € Fs such that I C I1 NIy and fy; = for. Since I, 11,12 € Fg, there exists
eecINSNC(L),e; € 1 NSNC(L) and e3 € I; NS N C(L). We shall prove that
fi(er) = fa(ez). If we denote €/ = eAejAes, then €' € INSNC(L) and e’ < eq, e5. Since
ex Ne' =egAe’ €1 then fi(ex Ae') = faea Ae€'), hence fi(er) Ae'/S = fa(ea) ANe'/S,
so fi(e1) N1 = fa(e2) A1, that is, fi(e1) = f2(e2). In a similar way, we can show that
f1(s1) = fa(s2) for any s1,s2 € INSNC(L).

In accordance with these considerations we can define the mapping:

a: Lgs =lim M(I,L[S]) — L[S]
IeF

by putting

where s € INSNC(L).

We have «(0) = a(m) =0(s)=0/S=0and a(1) = a((L,1)) = 1(s) = s/S =
1 for every s € SNC(L).
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—

Also, for every (I;, f;) € Lrs,i = 1,2 we have:

a((h/I) A m)) = a((l mﬁ/\ f2)) = (fi A f2)(s) = f1(s) A fa(s)
= o((li, /) Na((Ta, f2)),
and
oz((h/-,z) Vv (12/72)) = o((ly mﬂ\/ f2))=(f1V f2)(s) = fi(s) V fa(s)

—_—

= oI, /1) Va((l2, f2))
withse L NILbNSN C(L)
If(I,f)eLry and s € INSNC(L), for every i =1,...,n — 1 we have

AT (@) = ALE() =F()s) = (5/5) AB(flpn1(5)) = LA @i(f(s))

= @i(f(s)) = @ilal(L, )))-

Therefore, this mapping is a morphism of LM,,-algebras.
We shall prove that « is injective and surjective. To prove the injectivity of a

—_— e

let (I, f1), (I2, f2) € Lgg such that a((I1, f1)) = a((I2, f2)). Then for any e; €
L NSNC(L), e € LNSNC(L) we have fi(e1) = fa(e2). If fi(e1) = x/S and
falea) = y/S with z,y € L, since /S = y/S, there exists e € SN C(L) such that
rANe=yANe.

If we consider ¢/ =eAe; Aeg € 1 NI, NSNC(L), we have x Ae’ =y Ae' and
e/ < ejy,es. It follows that fi(e') = fi(e' Aer) = fi(er) A(€/S)=xz/SAN1=2a/S =
y/S =y/S A1 = faea) A(e'/S) = falea Ne') = fa(e'). If we denote I =< e >=
(¢/](since e’ € C(L)), then we obtain that I € Fs , I C Iy NIy and fy); = fa7, hence

(Il/,\fl) = (12/,\]“2), that is, « is injective.

To prove the surjectivity of a, let a/S € L[S] and f, : L — L[S] defined by
falx) =a/SAx/S = (aNz)/S for every z € L. -

It is easy to see that f, is an Fg—multiplier and a((L, f.)) = fu(s) = (a A 5)/S =
a/SNs/S=a/SN1=a/S, where s € SNC(L). So « is surjective.

Therefore, « is an isomorphism of LM ,-algebras. O
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