A note on $L M_{n}$ - algebras of fractions

Florentina Chirtes

Abstract

For an $L M_{n}$-algebra L and an \wedge-closed system $S \subseteq L$, in [2] I defined the $L M_{n^{-}}$ algebra of fractions of L relative to S (denoted by $L[S]$). Also, in [4] I defined the $L M_{n}$ algebra of localization of L relative to a topology \mathcal{F} on L (denoted by $L_{\mathcal{F}}$).

The aim of this paper is to prove that $L[S]$ is an $L M_{n}$ - algebra of localization of L relative to the topology $\mathcal{F}_{S}=\{I \in \operatorname{Idn}(L): I \cap S \cap C(L) \neq \emptyset\}$.

2000 Mathematics Subject Classification. 03D20, 06G30.
Key words and phrases. $L M_{n}$ - algebra,topology, \mathcal{F} - multiplier, multiplier, $L M_{n}$ - algebra of fractions, $L M_{n}$ - algebra of localization.

The concept of multiplier for distributive lattices was defined by W. H. Cornish in [7]. J. Schmid used multipliers in order to give a non-standard construction of the maximal lattice of quotients for a distributive lattice (see [12]). A direct treatment of the lattices of quotients can be found in [13]. In [9], G. Georgescu exhibited the localization lattice $L_{\mathcal{F}}$ of a distributive lattice L with respect to a topology \mathcal{F} on L mimicking the familiar construction for rings (see [11]) or monoids (see [14]). In [4] the author defines, for an $L M_{n}$-algebra L, the concept of $L M_{n}$ - algebra of localization relative to a topology \mathcal{F} on L (as in the case of lattices).

Two concepts of $L M_{n}$ - algebra of fractions relative to an $\wedge-$ closed system was defined by the author in [2], [4].

1. Definitions and preliminaries

Let n be an integer, $n \geq 2$.
Definition 1.1. ([1])Ann-valued Lukasiewicz-Moisil algebra (shortly, $L M_{n}$-algebra) is an algebra $\mathcal{L}=\left(L, \wedge, \vee, N, 0,1,\left\{\varphi_{i}\right\}_{1 \leq i \leq n-1}\right)$ of type $\left(2,2,1,0,0,\{1\}_{1 \leq i \leq n-1}\right)$ satisfying the following conditions:
(1.1) $(L, \wedge, \vee, N, 0,1)$ is a De Morgan algebra,
(1.2) $\varphi_{1}, \ldots, \varphi_{n-1}: L \rightarrow L$ are bounded lattice morphisms such that for every $x, y \in L$:
(1.2.1) $\varphi_{i}(x) \vee N \varphi_{i}(x)=1$ for every $i=1, \ldots, n-1$,
(1.2.2) $\varphi_{i}(x) \wedge N \varphi_{i}(x)=0$ for every $i=1, \ldots, n-1$,
(1.2.3) $\varphi_{i} \varphi_{j}(x)=\varphi_{j}(x)$ for every $i, j=1, \ldots, n-1$,
(1.2.4) $\varphi_{i}(N x)=N \varphi_{j}(x)$ for every $i, j=1, \ldots, n-1$ with $i+j=n$,
(1.2.5) $\varphi_{1}(x) \leq \varphi_{2}(x) \leq \ldots \leq \varphi_{n-1}(x)$,
(1.2.6) If $\varphi_{i}(x)=\varphi_{i}(y)$ for every $i=1, \ldots, n-1$, then $x=y$.

The relation (1.2.6) is called the determination principle. As consequences of the determination principle we obtain:
(1.2.7) If $x, y \in L$, then $x \leq y$ iff $\varphi_{i}(x) \leq \varphi_{i}(y)$ for all $i=1, \ldots, n-1$,
(1.2.8.) $\varphi_{1}(x) \leq x \leq \varphi_{n-1}(x)$ for all $x \in L$.

We denote an $L M_{n}$-algebra $\mathcal{L}=\left(L, \wedge, \vee, N, 0,1,\left\{\varphi_{i}\right\}_{1 \leq i \leq n-1}\right)$ by its universe L.
Remark 1.1. The endomorphisms $\left\{\varphi_{i}\right\}_{1 \leq i \leq n-1}$ are called chrysippian endomorphisms.

Examples:

1. Let $L_{n}=\left\{0, \frac{1}{n-1}, \ldots, \frac{n-2}{n-1}, 1\right\}$. We define $x \vee y=\max \{x, y\}, x \wedge y=\min \{x, y\}, N x=$ $1-x\left(N\left(\frac{j}{n-1}\right)=\frac{n-1-j}{n-1}\right)$ and $\varphi_{i}: L_{n} \rightarrow L_{n}, \varphi_{i}\left(\frac{j}{n-1}\right)=0$ if $i+j<n$ and 1 if $i+j \geq n$, for $i, j=1, \ldots, n-1$.
Then $\left(L_{n}, \wedge, \vee, N, 0,1,\left\{\varphi_{i}\right\}_{1 \leq i \leq n-1}\right)$ is an $L M_{n}$-algebra.
2. If $\left(B, \wedge, \vee,^{\prime}, 0,1\right)$ is a Boolean algebra, then $\left(B, \wedge, \vee,^{\prime}, 0,1,\left\{\varphi_{i}\right\}_{1 \leq i \leq n-1}\right)$ is an $L M_{n}$-algebra, where $\varphi_{i}=1_{B}$ for every $1 \leq i \leq n-1$.
3. Let $\left(B, \vee, \wedge,^{\prime}, 0,1\right)$ a Boolean algebra and $D(B)=\left\{\left(x_{1}, \ldots, x_{n-1}\right) \in B^{n-1}: x_{1} \leq\right.$ $\left.\ldots \leq x_{n-1}\right\}$. We define pointwise the infimum and the supremum, $N\left(x_{1}, \ldots, x_{n-1}\right)=$ $\left(x_{n-1}^{\prime}, \ldots, x_{1}^{\prime}\right)$ and $\varphi_{i}\left(x_{1}, \ldots, x_{n-1}\right)=\left(x_{i}, \ldots, x_{i}\right)$ for all $i=1, \ldots, n-1$.
Then $\left(D(B), \wedge, \vee, N, 0,1,\left\{\varphi_{i}\right\}_{1 \leq i \leq n-1}\right)$ is an $L M_{n}$-algebra.
In the rest of this paper, by L we denote an $L M_{n}$-algebra.
We denote by $C(L)$ the set of all complemented elements of L and we call it the center of L; it is easy to see that $(C(L), \vee, \wedge, N, 0,1)$ is a Boolean algebra.

Lemma 1.1. ([1])Let L be an $L M_{n}$-algebra. The following are equivalent:
(i) $e \in C(L)$,
(ii) there are $i \in\{1, \ldots, n-1\}$ and $x \in L$ such that $e=\varphi_{i}(x)$,
(iii) there is $i \in\{1, \ldots, n-1\}$ such that $e=\varphi_{i}(e)$,
(iv) $e=\varphi_{i}(e)$ for every $i=1, \ldots, n-1$,
(v) $\varphi_{i}(e)=\varphi_{j}(e)$ for every $i, j=1, \ldots, n-1$.

Remark 1.2. If $x \in L$, then $\varphi_{i}(x) \in C(L)$ for every $i=1, \ldots, n-1$.
Lemma 1.2. ([1])Let L be an $L M_{n}$-algebra. The following are equivalent:
(i) $e \in C(L)$,
(ii) $N e \in C(L)$,
(iii) $e \wedge N e=0$,
(iv) $e \vee N e=1$.

Lemma 1.3. If L is an $L M_{n}$-algebra, then for every $x \in L, x \wedge \varphi_{1}(N x)=0$ which is equivalent to $x \wedge N \varphi_{n-1}(x)=0$.
Proof. For every $x \in L$ we have $x \leq \varphi_{n-1}(x)$, so

$$
x \wedge \varphi_{1}(N x)=x \wedge N \varphi_{n-1}(x) \leq \varphi_{n-1}(x) \wedge N \varphi_{n-1}(x)=0(\operatorname{by}(1.2 .2))
$$

hence $x \wedge \varphi_{1}(N x)=0$.
Theorem 1.1. ([1]) For an $L M_{n}$-algebra L (with $0 \neq 1$), the following are equivalent:
(i) $C(L)=\{0,1\}$,
(ii) L is a chain,
(iii) L is subdirectly irreducible.

Corollary 1.1. ([1]) Every chain which is an $L M_{n}$-algebra is finite.
Definition 1.2. ([1])Let L and L^{\prime} be $L M_{n}$-algebras. A function $f: L \rightarrow L^{\prime}$ is a morphism of $L M_{n}$-algebras iff it satisfies the following conditions, for every $x, y \in L$:
(i) $f(x \vee y)=f(x) \vee f(y)$,
(ii) $f(x \wedge y)=f(x) \wedge f(y)$,
(iii) $f(0)=0, f(1)=1$,
(iv) $f\left(\varphi_{i}(x)\right)=\varphi_{i}(f(x))$ for every $i=1, \ldots, n-1$.

Remark 1.3. It follows (from 1.2.4 and 1.2.6) that

$$
f(N x)=N f(x)
$$

for every $x \in L$.
We denote by $\mathbf{L M}_{n}$ the category of $L M_{n}$-algebras.
Definition 1.3. ([1]) Let L an $L M_{n}$-algebra. We say that a nonempty subset $I \subseteq L$ in an n-ideal if I is an ideal of the lattice L and if $x \in I$, then $\varphi_{n-1}(x) \in I$.
Remark 1.4. From (1.2.5) we deduce that if $I \subseteq L$ is an n-ideal and $x \in I$, then $\varphi_{i}(x) \in I$ for every $i \in\{1, \ldots, n-1\}$.

We denote by $\operatorname{Idn}(L)$ the set of all n-ideals of the $L M_{n^{-}}$algebra L.
If $X \subseteq L$ is a nonempty set, we denote by $\langle X\rangle$ the n-ideal generated by X. We have that (see [1]):

In particular, for $a \in L,<a>=\left\{x \in L: x \leq \varphi_{n-1}(a)\right\}$ and if $a \in C(L)$, then $<a\rangle=\{x \in L: x \leq a\}=(a]$.

Let I be an n-ideal and $x \in L$. We denote by $(I: x)=\{y \in L: x \wedge y \in I\}$.
Lemma 1.4. The set $(I: x)$ is an n-ideal.
Proof. Let $y_{1}, y_{2} \in(I: x)$. Then $x \wedge y_{1}, x \wedge y_{2} \in I$, hence $x \wedge\left(y_{1} \vee y_{2}\right)=\left(x \wedge y_{1}\right) \vee$ $\left(x \wedge y_{2}\right) \in I$, that is, $y_{1} \vee y_{2} \in(I: x)$.

If $y_{1} \in(I: x)$ and $y_{2} \leq y_{1}$, then $x \wedge y_{1} \in I$ and $x \wedge y_{2} \leq x \wedge y_{1}$, hence $x \wedge y_{2} \in I$, that is, $y_{2} \in(I: x)$.

If $y \in(I: x)$ then $x \wedge y \in I$, hence $\varphi_{n-1}(x) \wedge \varphi_{n-1}(y)=\varphi_{n-1}(x \wedge y) \in I$. But $x \wedge \varphi_{n-1}(y) \leq \varphi_{n-1}(x) \wedge \varphi_{n-1}(y)$, so $x \wedge \varphi_{n-1}(y) \in I$, that is, $\varphi_{n-1}(y) \in(I: x)$.

Definition 1.4. ([1]) A congruence on an $L M_{n}$-algebra L is an equivalence relation on L compatible with the operations $\wedge, \vee, N, \varphi_{i}$, for every $i=1, \ldots, n-1$.

Proposition 1.1. ([1])For an equivalence relation ρ on an $L M_{n}$-algebra L, the following conditions are equivalent:
(1) ρ is a congruence on L,
(2) ρ is compatible with $\wedge, \vee, \varphi_{i}$, for every $i=1, \ldots, n-1$.

2. Topologies on an LM_{n}-algebra

Definition 2.1. ([9]) A non-empty set \mathcal{F} of n-ideals of L will be called a topology on L if the following properties hold:
$\left(T_{1}\right)$ If $I \in \mathcal{F}, x \in L$ then $(I: x) \in \mathcal{F}$,
$\left(T_{2}\right)$ If $I_{1}, I_{2} \in \operatorname{Idn}(L), I_{2} \in \mathcal{F}$ and $\left(I_{1}: x\right) \in \mathcal{F}$ for all $x \in I_{2}$, then $I_{1} \in \mathcal{F}$.
Lemma 2.1. ([9]) If \mathcal{F} is a topology on L, then:
(i) If $I_{1} \in \mathcal{F}$ and I_{2} is an n-ideal such that $I_{1} \subseteq I_{2}$, then $I_{2} \in \mathcal{F}$,
(ii) If $I_{1}, I_{2} \in \mathcal{F}$, then $I_{1} \cap I_{2} \in \mathcal{F}$,
(iii) $(\mathcal{F} \cup\{\emptyset\}, L)$ is a topological space.

Definition 2.2. ([2]) A nonempty subset $S \subseteq L$ is called $\wedge-$ closed system in L if $1 \in S$ and $x, y \in S$ implies $x \wedge y \in S$.

For any $\wedge-$ closed system S of L we set

$$
\mathcal{F}_{S}=\{I \in I d n(L): I \cap S \cap C(L) \neq \emptyset\} .
$$

Proposition 2.1. \mathcal{F}_{S} is a topology on L.
Proof. Let $I \in \mathcal{F}_{S}$ and $x \in L$. Then $I \cap S \cap C(L) \neq \emptyset$, so, because $I \subseteq(I: x)$, we have that $(I: x) \cap S \cap C(L) \neq \emptyset$, that is, $(I: x) \in \mathcal{F}_{S}$.

Let $I_{1}, I_{2} \in \operatorname{Idn}(L)$ such that $I_{2} \in \mathcal{F}_{S}$ and $\left(I_{1}: x\right) \in \mathcal{F}_{S}$ for every $x \in I_{2}$. But $I_{2} \in \mathcal{F}_{S}$ implies that there exists $x_{0} \in I_{2} \cap S \cap C(L)$, hence $\left(I_{1}: x_{0}\right) \in \mathcal{F}_{S}$, that is, $\left(I_{1}: x_{0}\right) \cap S \cap C(L) \neq \emptyset$. Then, there exists $y_{0} \in\left(I_{1}: x_{0}\right) \cap S \cap C(L)$, so $x_{0} \wedge y_{0} \in$ $I_{1} \cap S \cap C(L)$, that is, $I_{1} \in \mathcal{F}_{S}$.

Definition 2.3. The topology \mathcal{F}_{S} is called the topology associated with the $\wedge-$ closed system S.

3. \mathcal{F}-multipliers and localization LM_{n}-algebra

We recall the construction of $L M_{n}$-algebra of localization of L relative to a topology \mathcal{F}.

We consider the relation $\theta_{\mathcal{F}}$ of L
$(x, y) \in \theta_{\mathcal{F}}$ iff there exists $I \in \mathcal{F}$ such that $e \wedge x=e \wedge y$ for every $e \in I$.
Lemma 3.1. ([4]) $\theta_{\mathcal{F}}$ is a congruence on L.
We shall denote by $x / \theta_{\mathcal{F}}$ the congruence class of an element $x \in L$, by $L / \theta_{\mathcal{F}}$ the quotient $M V$-algebra and by

$$
p_{\mathcal{F}}: L \rightarrow L / \theta_{\mathcal{F}}
$$

the canonical morphism of $L M_{n}$-algebras. We denote the chrysippian endomorphisms of $L / \theta_{\mathcal{F}}$ by $\bar{\varphi}_{i}$ and we have $\bar{\varphi}_{i}\left(x / \theta_{\mathcal{F}}\right)=\varphi_{i}(x) / \theta_{\mathcal{F}}$ for every $x \in L(i=1, \ldots, n-1)$.

Proposition 3.1. ([4]) For $a \in L, a / \theta_{\mathcal{F}} \in C\left(L / \theta_{\mathcal{F}}\right)$ iff there exists $I \in \mathcal{F}$ and $i \in\{1, \ldots, n-1\}$ such that $e \wedge \varphi_{i}(a)=e \wedge a$ for every $e \in I$. So, if $a \in C(L)$, then $a / \theta_{\mathcal{F}} \in C\left(L / \theta_{\mathcal{F}}\right)$.
Definition 3.1. Let \mathcal{F} be a topology on L. By an \mathcal{F}-multiplier on L we mean a map $f: I \rightarrow L / \theta_{\mathcal{F}}$, where $I \in \mathcal{F}$, which verifies the following condition:
(3.1) $f(e \wedge x)=e / \theta_{\mathcal{F}} \wedge f(x)$, for every $e \in L$ and $x \in I$.

By $\operatorname{dom}(f) \in \operatorname{Idn}(L)$ we denote the domain of f; if $\operatorname{dom}(f)=L$, we called f total. If $\mathcal{F}=\{L\}$, then $\theta_{\mathcal{F}}$ is the identity congruence of L and an \mathcal{F} - multiplier is a total multiplier of L in the sense defined in [3].

The maps $\mathbf{0}, \mathbf{1}: L \rightarrow L / \theta_{\mathcal{F}}$ defined by $\mathbf{0}(x)=0 / \theta_{\mathcal{F}}$ and $\mathbf{1}(x)=x / \theta_{\mathcal{F}}$ for every $x \in L$ are multipliers in the sense of Definition 3.1 (see [3] for the case of multipliers).

Also, for $a \in L$ and $I \in \mathcal{F}, f_{a}: I \rightarrow L / \theta_{\mathcal{F}}$ defined by $f_{a}(x)=a / \theta_{\mathcal{F}} \wedge x / \theta_{\mathcal{F}}$ for every $x \in I$, is an \mathcal{F} - multiplier (see [3] for the case of multipliers of L). If $\operatorname{dom}\left(f_{a}\right)=L$, we denote f_{a} by $\overline{f_{a}}$; clearly, $\overline{f_{0}}=\mathbf{0}$.

We shall denote by $M\left(I, L / \theta_{\mathcal{F}}\right)$ the set of all the \mathcal{F} - multipliers having the domain $I \in \mathcal{F}$ and

$$
M\left(L / \theta_{\mathcal{F}}\right)=\underset{I \in \mathcal{F}}{\cup} M\left(I, L / \theta_{\mathcal{F}}\right)
$$

If $I_{1}, I_{2} \in \mathcal{F}, I_{1} \subseteq I_{2}$, we have a canonical mapping

$$
\varphi_{I_{1}, I_{2}}: M\left(I_{2}, L / \theta_{\mathcal{F}}\right) \rightarrow M\left(I_{1}, L / \theta_{\mathcal{F}}\right)
$$

defined by

$$
\varphi_{I_{1}, I_{2}}(f)=f_{\mid I_{1}} \text { for } f \in M\left(I_{2}, L / \theta_{\mathcal{F}}\right)
$$

Let us consider the directed system of sets

$$
\left\langle\left\{M\left(I, L / \theta_{\mathcal{F}}\right)\right\}_{I \in \mathcal{F}},\left\{\varphi_{I_{1}, I_{2}}\right\}_{I_{1}, I_{2} \in \mathcal{F}, I_{1} \subseteq I_{2}}\right\rangle
$$

and denote by $L_{\mathcal{F}}$ the inductive limit (in the category of sets):

$$
L_{\mathcal{F}}=\lim _{I \in \overrightarrow{\mathcal{F}}} M\left(I, L / \theta_{\mathcal{F}}\right)
$$

For any \mathcal{F} - multiplier $f: I \rightarrow L / \theta_{\mathcal{F}}$ we shall denote by $\widehat{(I, f)}$ the equivalence class of f in $L_{\mathcal{F}}$.

Remark 3.1. We recall that if $f_{i}: I_{i} \rightarrow L / \theta_{\mathcal{F}}, i=1,2$, are \mathcal{F}-multipliers, then $\left.\widehat{\left(I_{1}, f_{1}\right)}\right)=\widehat{\left(I_{2}, f_{2}\right)}$ (in $\left.L_{\mathcal{F}}\right)$ iff there exists $I \in \mathcal{F}, I \subseteq I_{1} \cap I_{2}$ such that $f_{1 \mid I}=f_{2 \mid I}$.
Definition 3.2. If $I_{1}, I_{2} \in \operatorname{Idn}(L)$ and $f_{i} \in M\left(I_{i}, L / \theta_{\mathcal{F}}\right), i=1,2$ we define

$$
f_{1} \wedge f_{2}, f_{1} \vee f_{2}: I_{1} \cap I_{2} \rightarrow L / \theta_{\mathcal{F}}
$$

by

$$
\begin{aligned}
& \left(f_{1} \wedge f_{2}\right)(x)=f_{1}(x) \wedge f_{2}(x) \\
& \left(f_{1} \vee f_{2}\right)(x)=f_{1}(x) \vee f_{2}(x)
\end{aligned}
$$

for every $x \in I_{1} \cap I_{2}$.
Let $\left(\widehat{I_{1}, f_{1}}\right) \wedge\left(\widehat{I_{2}, f_{2}}\right)=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \wedge f_{2}\right)$ and $\widehat{\left(I_{1}, f_{1}\right)} \vee\left(\widehat{I_{2}, f_{2}}\right)=\left(I_{1} \cap \widehat{I_{2}, f_{1}} \vee f_{2}\right)$.
Definition 3.3. If $I \in \operatorname{Idn}(L)$ and $f \in M\left(I, L / \theta_{\mathcal{F}}\right)$ we define $f^{*}: I \rightarrow L / \theta_{\mathcal{F}}$ by

$$
f^{*}(x)=x / \theta_{\mathcal{F}} \wedge N\left(f\left(\varphi_{n-1}(x)\right)\right)
$$

for any $x \in I$.
Let $\left.\widehat{(I, f)^{*}}=\widehat{\left(I, f^{*}\right.}\right)$.
Lemma 3.2. ([4]) If $I_{1}, I_{2} \in \operatorname{Idn}(L)$ and $f_{i} \in M\left(I_{i}, L / \theta_{\mathcal{F}}\right), i=1,2$, then

$$
f_{1} \wedge f_{2}, f_{1} \vee f_{2} \in M\left(I_{1} \cap I_{2}, L / \theta_{\mathcal{F}}\right)
$$

Remark 3.2. ([4]) For $x \in L$ we have $\mathbf{0}^{*}(x)=x / \theta_{\mathcal{F}} \wedge N\left(0 / \theta_{\mathcal{F}}\right)=x / \theta_{\mathcal{F}} \wedge 1 / \theta_{\mathcal{F}}=$ $x / \theta_{\mathcal{F}}$, that is, $\mathbf{0}^{*}=\mathbf{1}$, and similarly $\mathbf{1}^{*}=\mathbf{0}$.
Lemma 3.3. ([4]) If $I \in \operatorname{Idn}(L)$ and $f \in M\left(I, L / \theta_{\mathcal{F}}\right)$, then $f^{*} \in M\left(I, L / \theta_{\mathcal{F}}\right)$.
Definition 3.4. For $I \in \operatorname{Idn}(L)$ and $i=1, \ldots, n-1$ we define

$$
\tilde{\varphi}_{i}: M\left(I, L / \theta_{\mathcal{F}}\right) \rightarrow M\left(I, L / \theta_{\mathcal{F}}\right)
$$

by

$$
\tilde{\varphi}_{i}(f)(x)=x / \theta_{\mathcal{F}} \wedge \bar{\varphi}_{i}\left(f\left(\varphi_{n-1}(x)\right)\right)=x / \theta_{\mathcal{F}} \wedge \varphi_{i}\left(f\left(\varphi_{n-1}(x)\right)\right) / \theta_{\mathcal{F}}
$$

for every $f \in M\left(I, L / \theta_{\mathcal{F}}\right)$ and $x \in I$.

Lemma 3.4. ([4]) If $I \in \operatorname{Idn}(L), f \in M\left(I, L / \theta_{\mathcal{F}}\right)$, then $\tilde{\varphi}_{i}(f) \in M\left(I, L / \theta_{\mathcal{F}}\right)$ for all $i=1, \ldots, n-1$.

Let $\varphi_{i}^{\mathcal{F}}: L_{\mathcal{F}} \rightarrow L_{\mathcal{F}}$ defined by $\varphi_{i}^{\mathcal{F}}(\widehat{(I, f)})=\left(\widehat{I, \tilde{\varphi}_{i}(f)}\right), i=1, \ldots, n-1$.
Proposition 3.2. ([4]) $\left(L_{\mathcal{F}}, \wedge, \vee,{ }^{*}, \mathbf{0}, \mathbf{1}, \varphi_{1}^{\mathcal{F}}, \ldots, \varphi_{n-1}^{\mathcal{F}}\right)$ is an $L M_{n}$-algebra.
Definition 3.5. The $L M_{n}$-algebra $L_{\mathcal{F}}$ will be called the localization $L M_{n}$ - algebra of L with respect to the topology \mathcal{F}.

We recall now the construction of $L M_{n}$-algebra of fractions relative to S from [2]. If $S \subseteq L$ is an $\wedge-$ closed system of L, we consider the following congruence on L :

$$
(x, y) \in \theta_{S} \text { iff there exists } e \in S \cap C(L) \text { such that } x \wedge e=y \wedge e
$$

The quotient $L M_{n}$-algebra $L[S]=L / \theta_{S}$ is called in [2] the $L M_{n}$-algebra of fractions of L relative to the \wedge-closed system S. For $x \in L$ by x / S denotes the congruence class of x relative to θ_{S}.

Theorem 3.1. If \mathcal{F}_{S} is the topology associated with the \wedge-closed system $S \subseteq L$, then the $L M_{n}$-algebra $L_{\mathcal{F}_{S}}$ is isomorphic in $\boldsymbol{L} \boldsymbol{M}_{n}$ with $L[S]$.

Proof. Let $x, y \in L$. If $(x, y) \in \theta_{\mathcal{F}_{S}}$ then there exists $I \in \mathcal{F}_{S}$ (hence $\left.I \cap S \cap C(L) \neq \emptyset\right)$ such that $x \wedge e=y \wedge e$ for any $e \in I$. Since $I \cap S \cap C(L) \neq \emptyset$ there exists $e_{0} \in I \cap S \cap C(L)$ such that $x \wedge e_{0}=y \wedge e_{0}$, that is, $(x, y) \in \theta_{S}$. So, $\theta_{\mathcal{F}_{S}} \subseteq \theta_{S}$.

If $(x, y) \in \theta_{S}$, there exists $e_{0} \in S \cap C(L)$ such that $x \wedge e_{0}=y \wedge e_{0}$. If we set $I_{0}=<e_{0}>=\left\{x \in L: x \leq e_{0}\right\}=\left(e_{0}\right]$, then $I_{0} \in \operatorname{Idn}(L)$. Since $e_{0} \in I_{0}$, we have that $e_{0} \in I_{0} \cap S \cap C(L)$, hence $I_{0} \cap S \cap C(L) \neq \emptyset$, that is, $I_{0} \in \mathcal{F}_{S}$. For every $e \in I_{0}, e \leq e_{0}$, then $e=e \wedge e_{0}$, so $x \wedge e=x \wedge\left(e \wedge e_{0}\right)=\left(x \wedge e_{0}\right) \wedge e=\left(y \wedge e_{0}\right) \wedge e=y \wedge\left(e \wedge e_{0}\right)=y \wedge e$, hence $(x, y) \in \theta_{\mathcal{F}_{S}}$, that is, $\theta_{S} \subseteq \theta_{\mathcal{F}_{S}}$. Therefore $\theta_{\mathcal{F}_{S}}=\theta_{S}$.

Then $L / \theta_{\mathcal{F}_{S}}=L / \theta_{S}=L[S]$, hence an \mathcal{F}_{S}-multiplier can be considered in this case (see Definition 3.1) as a mapping $f: I \rightarrow L[S]\left(I \in \mathcal{F}_{S}\right)$ having the property $f(e \wedge x)=e / S \wedge f(x)$ for every $x \in I$ and $e \in L$.

We recall (see [2], Remark 2.1) that if $s \in S \cap C(L)$, then $s / S=\mathbf{1}$.
If $\left.\left.\widehat{\left(I_{1}, f_{1}\right.}\right), \widehat{\left(I_{2}, f_{2}\right.}\right) \in L_{\mathcal{F}_{S}}=\lim _{\widehat{I \in \mathcal{F}}} M(I, L[S])$ and $\widehat{\left(I_{1}, f_{1}\right)}=\widehat{\left(I_{2}, f_{2}\right)}$ then there exists $I \in \mathcal{F}_{S}$ such that $I \subseteq I_{1} \cap I_{2}$ and $f_{1 \mid I}=f_{2 \mid I}$. Since $I, I_{1}, I_{2} \in \mathcal{F}_{S}$, there exists $e \in I \cap S \cap C(L), e_{1} \in I_{1} \cap S \cap C(L)$ and $e_{2} \in I_{2} \cap S \cap C(L)$. We shall prove that $f_{1}\left(e_{1}\right)=f_{2}\left(e_{2}\right)$. If we denote $e^{\prime}=e \wedge e_{1} \wedge e_{2}$, then $e^{\prime} \in I \cap S \cap C(L)$ and $e^{\prime} \leq e_{1}, e_{2}$. Since $e_{1} \wedge e^{\prime}=e_{2} \wedge e^{\prime} \in I$ then $f_{1}\left(e_{1} \wedge e^{\prime}\right)=f_{2}\left(e_{2} \wedge e^{\prime}\right)$, hence $f_{1}\left(e_{1}\right) \wedge e^{\prime} / S=f_{2}\left(e_{2}\right) \wedge e^{\prime} / S$, so $f_{1}\left(e_{1}\right) \wedge \mathbf{1}=f_{2}\left(e_{2}\right) \wedge \mathbf{1}$, that is, $f_{1}\left(e_{1}\right)=f_{2}\left(e_{2}\right)$. In a similar way, we can show that $f_{1}\left(s_{1}\right)=f_{2}\left(s_{2}\right)$ for any $s_{1}, s_{2} \in I \cap S \cap C(L)$.

In accordance with these considerations we can define the mapping:

$$
\alpha: L_{\mathcal{F}_{S}}=\underset{I \in \mathcal{F}}{ } M(I, L[S]) \rightarrow L[S]
$$

by putting

$$
\alpha(\widehat{(I, f)})=f(s) \in L[S]
$$

where $s \in I \cap S \cap C(L)$.
We have $\alpha(\mathbf{0})=\alpha(\widehat{(L, \mathbf{0})})=\mathbf{0}(s)=0 / S=\mathbf{0}$ and $\alpha(\mathbf{1})=\alpha(\widehat{(L, \mathbf{1})})=\mathbf{1}(s)=s / S=$ 1 for every $s \in S \cap C(L)$.

Also, for every $\widehat{\left(I_{i}, f_{i}\right)} \in L_{\mathcal{F}_{S}}, i=1,2$ we have:

$$
\begin{aligned}
\left.\left.\alpha\left(\widehat{\left(I_{1}, f_{1}\right.}\right) \wedge \widehat{\left(I_{2}, f_{2}\right.}\right)\right) & =\alpha\left(\left(I_{1} \cap \widehat{I_{2}, f_{1}} \wedge f_{2}\right)\right)=\left(f_{1} \wedge f_{2}\right)(s)=f_{1}(s) \wedge f_{2}(s) \\
& \left.=\alpha\left(\widehat{\left(I_{1}, f_{1}\right.}\right)\right) \wedge \alpha\left(\widehat{\left(I_{2}, f_{2}\right)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\left.\left.\alpha\left(\widehat{\left(I_{1}, f_{1}\right.}\right) \vee \widehat{\left(I_{2}, f_{2}\right.}\right)\right) & =\alpha\left(\left(I_{1} \cap \widehat{I_{2}, f_{1}} \vee f_{2}\right)\right)=\left(f_{1} \vee f_{2}\right)(s)=f_{1}(s) \vee f_{2}(s) \\
& \left.=\alpha\left(\widehat{\left(I_{1}, f_{1}\right.}\right)\right) \vee \alpha\left(\widehat{\left(I_{2}, f_{2}\right)}\right)
\end{aligned}
$$

with $s \in I_{1} \cap I_{2} \cap S \cap C(L)$.
If $\widehat{(I, f)} \in L_{\mathcal{F}_{S}}$ and $s \in I \cap S \cap C(L)$, for every $i=1, \ldots, n-1$ we have

$$
\begin{aligned}
\alpha\left(\varphi_{i}^{\mathcal{F}}(\widehat{(I, f))})\right. & =\alpha\left(\left(\widehat{\widetilde{\varphi}_{i}(f)}\right)\right)=\widetilde{\varphi}_{i}(f)(s)=(s / S) \wedge \bar{\varphi}_{i}\left(f\left(\varphi_{n-1}(s)\right)\right)=\mathbf{1} \wedge \bar{\varphi}_{i}(f(s)) \\
& =\bar{\varphi}_{i}(f(s))=\bar{\varphi}_{i}(\alpha(\widehat{(I, f)}))
\end{aligned}
$$

Therefore, this mapping is a morphism of $L M_{n}$-algebras.
We shall prove that α is injective and surjective. To prove the injectivity of α let $\left.\left.\widehat{\left(I_{1}, f_{1}\right.}\right), \widehat{\left(I_{2}, f_{2}\right.}\right) \in L_{\mathcal{F}_{S}}$ such that $\alpha\left(\widehat{\left(I_{1}, f_{1}\right)}\right)=\alpha\left(\widehat{\left(I_{2}, f_{2}\right)}\right)$. Then for any $e_{1} \in$ $I_{1} \cap S \cap C(L), e_{2} \in I_{2} \cap S \cap C(L)$ we have $f_{1}\left(e_{1}\right)=f_{2}\left(e_{2}\right)$. If $f_{1}\left(e_{1}\right)=x / S$ and $f_{2}\left(e_{2}\right)=y / S$ with $x, y \in L$, since $x / S=y / S$, there exists $e \in S \cap C(L)$ such that $x \wedge e=y \wedge e$.

If we consider $e^{\prime}=e \wedge e_{1} \wedge e_{2} \in I_{1} \cap I_{2} \cap S \cap C(L)$, we have $x \wedge e^{\prime}=y \wedge e^{\prime}$ and $e^{\prime} \leq e_{1}, e_{2}$. It follows that $f_{1}\left(e^{\prime}\right)=f_{1}\left(e^{\prime} \wedge e_{1}\right)=f_{1}\left(e_{1}\right) \wedge\left(e^{\prime} / S\right)=x / S \wedge \mathbf{1}=x / S=$ $y / S=y / S \wedge \mathbf{1}=f_{2}\left(e_{2}\right) \wedge\left(e^{\prime} / S\right)=f_{2}\left(e_{2} \wedge e^{\prime}\right)=f_{2}\left(e^{\prime}\right)$. If we denote $I=<e^{\prime}>=$ ($\left.e^{\prime}\right]$ (since $\left.e^{\prime} \in C(L)\right)$, then we obtain that $I \in \mathcal{F}_{S}, I \subseteq I_{1} \cap I_{2}$ and $f_{1 \mid I}=f_{2 \mid I}$, hence $\widehat{\left(I_{1}, f_{1}\right)}=\widehat{\left(I_{2}, f_{2}\right)}$, that is, α is injective.

To prove the surjectivity of α, let $a / S \in L[S]$ and $\bar{f}_{a}: L \rightarrow L[S]$ defined by $\bar{f}_{a}(x)=a / S \wedge x / S=(a \wedge x) / S$ for every $x \in L$.

It is easy to see that \bar{f}_{a} is an \mathcal{F}_{S}-multiplier and $\left.\alpha\left(\widehat{\left(L, \bar{f}_{a}\right.}\right)\right)=\bar{f}_{a}(s)=(a \wedge s) / S=$ $a / S \wedge s / S=a / S \wedge \mathbf{1}=a / S$, where $s \in S \cap C(L)$. So α is surjective.

Therefore, α is an isomorphism of $L M_{n}$-algebras.

References

[1] V. Boicescu, A. Filipoiu, G. Georgescu, S. Rudeanu, Lukasiewicz-Moisil Algebras, North Holland, 1991.
[2] F. Chirteş, $L M_{n}$-algebra of fractions relative to an \wedge-closed system, Analele Universităţii din Craiova, Seria Matematica-Informatica, XXX(2), 1-6 (2003).
[3] D. Buşneag, F. Chirteş, $L M_{n}$-algebra of fractions and maximal $L M_{n}$-algebra of fractions, to appear in Discrette Mathematics.
[4] F. Chirteş, Localization of $L M_{n}$-algebras, Central European Journal of Mathematics, 3(1), 105-124 (2005).
[5] R. Cignoli, Algebras de Moisil, Notas de Logica Matematica, 27, Instituto de Matematica, Universidad del Sur, Bahia Blanca, 1970.
[6] R. Cignoli, An algebraic approch to elementary theory based on n-valued Lukasiewicz logics, Z. Math Logic u. Grund. Math., 30, 87-96 (1984).
[7] W.H. Cornish, The multiplier extension of a distributive lattice, Journal of Algebra, 32, 339-355 (1974).
[8] G. Georgescu, C. Vraciu, On the Characterisation of Centred Lukasiewicz Algebras, Journal of Algebra, 16(4), 486-495 (1970).
[9] G.Georgescu, F-multipliers and localizations of distributive lattices, Algebra Universalis, 21, 181-197 (1985).
[10] J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, 1966.
[11] N. Popescu, Abelian categories with applications to rings and modules, Academic Press, New York, 1973.
[12] J. Schmid, Multipliers on distributive lattices and rings of quotients, Houston Journal of Mathematics, 6(3), (1980).
[13] J. Schmid, Distributive lattices and rings of quotients, Coll. Math. Societatis Janos Bolyai, 33, Szeged, Hungary, 1980.
[14] B. Strenström, Platnes and localization over monoids, Math. Nachrichten, 48, 315-334 (1971).
(Florentina Chirteş) Department of Mathematics, University of Craiova,
Al. I. Cuza street, 13, Craiova RO-200585, Romania, Tel/Fax: 40-251412673
E-mail address: chirtes@central.ucv.ro

