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Fuzzy L-partitions generated by fuzzy L-sets

Lavinia Ciungu

Abstract. A fuzzy subset of a set M is qualified by means of its membership function ϕ :

M → {0, 1}. If the interval [0, 1] is substituted by a lattice L, the fuzzy subset is called
L-fuzzy subset. In [1] there are studied the partitions of fuzzy subsets and there are presented
some methods to find this kind of partitions. In this paper we generalize these results for the
partitions of L-fuzzy subsets.
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1. Preliminaries

Let M be a set and L a lattice. A function ϕ : M → L is called fuzzy
L-subset of M . We will consider that a boolean subset of a set is given by
its characteristic function ϕ : M → {0, 1}. Consider (L,∧,∨, 0, 1) a complete
distributive lattice and (−)′ : (L,∧,∨, 0, 1) → (L,∨,∧, 1, 0) an involutive an-
tiisomorphism such that (x′)′ = x, (x ∧ y)′ = x′ ∨ y′, (x ∨ y)′ = x′ ∧ y′ for any
x, y in L. Suppose that there exists an element x0 in L such that x0 = x′0 and
for any x in L x ≤ x0 or x ≥ x0.

Example 1.1. Let (L,∨,∧, 0, 1) and (L′,∧,∨, 0′ = 1, 1′ = 0) be the dual
lattice. Denote by α : L → L′ the application taking any x ∈ L to x from
L′. Put K = L

⊔
L′ and define < on K by x < y iff (x, y ∈ L, x < y) or

(x, y ∈ L′, x <L′ y) or (x ∈ L, y ∈ L′). For x, y ∈ K define x ∨ y to be
x ∨L y if x, y ∈ L, x ∨L′ y if x, y ∈ L′ or y(x) if x ∈ L, y ∈ L′(y ∈ L, x ∈ L′).
The ∧ of K is defined similarly. For x ∈ K put x′ = α(x) if x ∈ L and
x′ = α−1(x) if x ∈ L′. Then (K,∨,∧, 0, 1′) becomes a lattice with an involutive
antiisomorphism which has the above described properties. Now consider the
equivalence relation on K that identifies 1 ∈ L and 0′ ∈ L′, that is x ∼ y
iff x = y or {x, y} = {1, 0′}. Then the factor set K/ ∼ becomes a lattice
with the inherited <,∨,∧ and (−)′. In particular, we may consider the lattice
([0, 1],∨ = sup,∧ = inf) with x′ = 1 − x, ∀ x and x0 = 1

2 .

Theorem 1.1. The following are equivalent for a lattice K:
(i) There is an element x0 ∈ K such that x ≤ x0 or x0 ≤ x, ∀x ∈ K and
x0 = x′0.
(ii) K is isomorphic to a lattice of the kind described in Example 1.1.

Received : October 29, 2004.

28



FUZZY L-PARTITIONS GENERATED BY FUZZY L-SETS 29

Proof. (ii)⇒(i) It is easy to see that in K/ ∼ from Example 1.1 the element
x0 =the class of 1 and 0′ has x0 = x′0 and x ≤ x0 or x ≥ x0, ∀x ∈ K/ ∼.
(i)⇒(ii) Denote (L = [0, x0],∨,∧, 0, x0), (L′ = [x0, 1],∧,∨, 1, x0) and f : L →
L′ the application given by f(x) = x′. It is easy to see that f is well defined
and it is an isomorphism of latices, showing that L′ is the dual of L and that K
is isomorphic to the lattice K associated to L and L′ described in the example
above. �

Definition 1.1. Let M be a set and ϕ a fuzzy subset of M . A family of fuzzy
subsets (νi) that satisfies the following conditions:
1) νi ≤ ν ′j , ∀i 
= j

2) ϕ ∧ (sup
i
νi)′ ≤ (ϕ ∧ (sup

i
νi)′)′

3) sup
i
νi ≤ ϕ

is called a partition of ϕ.

In case ϕ = 1M , we say that (νi) is a complete partition.

Remark 1.1. In the case of boolean sets, the complement morphism satisfies
x ∧ x′ = 0; x ∨ x′ = 1. In the case of nonboolean sets these properties are
not necessary verified, but the assumption of the existence of such element x0

proves to be useful in some situations, as the above stated conditions for the
boolean case are replaced by the weaker ones: x ∧ x′ ≤ x0, x ∨ x′ ≥ x0, as we
can see by a simple computation.
Looking at the case of boolean subsets of sets, we have the following restate-
ments:
1’)A ⊆ CB is equivalent to A ∩B = ∅, where CA is the complement of A.
2’)A ⊆ CA is equivalent to A = ∅.
3’)If A,B ⊆ X then A ⊇ CB is equivalent to A ∪B = X
These conditions suggest we can use x ≤ x′ (or equivalently, x ≤ x0) instead
of x = 0 and x ≤ y′ instead of x ∧ y = 0 (or x ≥ y′ instead of x ∨ y = 1)
in the case of nonboolean sets. Moreover, any subset A of a set X is given
by a function ϕ : X → {0, 1}, so it is in particular a fuzzy L subset of X,
where L = ({0, 1

2 , 1}, <) and x0 = 1
2 , allowing us to obtain the classical case

of subsets of a set (and then of classical partitions) as a particular case of this
theory.

Theorem 1.2. The family (νi) is a complete partition if and only if it satisfies
the following conditions:
1) νi ≤ ν ′j , ∀i 
= j

2) sup
i
νi ≥ (sup

i
νi)′

Proof. Condition 1) is verified by hypothesis.
Condition 3) is obvious for ϕ = 1L

For condition 2) we substitute ϕ with 1L and we obtain:
(sup

i
νi)′ ≤ ((sup

i
νi)′)′ = sup

i
νi

which is true by hypothesis. �
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Remark 1.2. For some results we will work with countable families of fuzzy
subsets, that is, sequences of fuzzy subsets, as we need this assumption for
inductive constructions.

Theorem 1.3. Let (ϕn)n be a sequence of fuzzy subsets of M . Assuming that
sup

n
ϕn > (sup

n
ϕn)′, the sequence (νn) defined bellow is a complete partition:

νn =

{
ϕ1, if n = 1
ϕn ∧ (sup

k<n
νk)′, if n > 1

Proof. •νn ≤ ν ′m, ∀n 
= m:
It is enough to prove this for n < m, as for m > n, νn ≤ ν ′m ⇔ (νn)′ ≥ (ν ′m)′ ⇔
νm ≤ ν ′n, where m > n. We have ν ′m = (ϕm ∧ (

∨
k<m

νk)′)′ = ϕ′
m ∨ (

∨
k<m

νk)′′ =

ϕ′
m ∨ ν1 ∨ ν2 ∨ · · · ∨ νm−1 ≥ νn because n ∈ {1, 2, . . . ,m− 1}.

•(∨
n
νn)′ ≤ ∨

n
νn:

We have that x′ ≤ x ⇔ x ≥ x0, so we will prove that
∨
n
νn ≥ x0. Suppose

that
∨
n
νn < x0. Then we have that

∨
k<n

νk ≤ x0 ∀n, which is equivalent to

(
∨

k<n

νk)′ ≥ x0 ∀n. Then νn = ϕn ∧ (
∨

k<n

νk)′ ≥ ϕn ∧ x0 ∀n and then

∨
n

νn ≥
∨
n

(ϕn ∧ x0)

= (
∨
n

ϕn) ∧ x0 ≥ x0 ∧ x0 = x0 (because (
∨
n

ϕn)′ ≤
∨
n

ϕn ⇒
∨
n

ϕn ≥ x0)

which constitutes a contradiction with
∨
n
νn < x0. �

2. Some properties of partitions

Theorem 2.1. Let (ϕ1, ϕ2) be a pair of fuzzy subsets such that ϕ2 ≤ ϕ1 and
(νi) a partition of ϕ1. Then the family (ϕ2 ∧ νi) is a partition of ϕ2.

Proof. In order for (ϕ2∧νi) to be a partition of ϕ2, it has to fulfill the conditions
from Definition 1.1
From ϕ2 ∧ ν1 ≤ ν1 ≤ ν ′k ≤ (ϕ2 ∧ νk)′, ∀k 
= 1 it follows that (ϕ2 ∧ νi) satisfies
condition 1).
Using the properties of the above defined lattice L and of its elements we prove
condition 2):

ϕ2 ∧ (sup
i

(ϕ2 ∧ νi))′ = ϕ2 ∧ (ϕ2 ∧ sup
i
νi)′ = ϕ2 ∧ (ϕ′

2 ∨ (sup
i
νi)′)

= (ϕ2 ∧ ϕ′
2) ∨ (ϕ2 ∧ (sup

i
νi)′) ≤ x0 ∨ (ϕ1 ∧ (sup

i
νi)′) ≤ x0 ∨ x0 = x0

Remark 1.1 implies that

ϕ2 ∧ (sup
i
ϕ2 ∧ νi)′ ≤ (ϕ2 ∧ (sup

i
ϕ2 ∧ νi)′)′
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which leads to the fact that condition 2) is satisfied.
Condition 3) is verified because:

sup
i
ϕ2 ∧ νi ≤ ϕ2

We conclude that (ϕ2 ∧ νi) is a partition of ϕ2 and the theorem is proved. �

Theorem 2.2. If the family (νi) is a complete partition, then the family (ϕ∧
νi) is a partition of ϕ, for any fuzzy subset ϕ.

Proof. It follows easily from Theorem 2.1 for ϕ = 1L. �

Theorem 2.3. Let (ν ′k) be a family that satisfies the conditions:
1) ν ′i ≤ νj , ∀i 
= j
2) sup

k
ν ′k ≤ ϕ

3) sup
i
νi ≤ sup

k
ν ′k, where (νi) is a partition of ϕ.

Then (ν ′k) is also a partition of ϕ.

Proof. It is very clear from the hypothesis that (ν′k) already satisfies conditions
1) and 3). It only remains to show condition 2).
We have

ϕ ∧ (sup
k
ν ′k)

′ ≤ ϕ ∧ (sup
n
νn)′

Consequently (ν ′k) is a partition of ϕ. �

3. Examples of partitions

The following lemma is similar to a result in [2].

Lemma 3.1. Let (ϕn) be an increasing sequence of fuzzy subsets and let (νn)
be defined as follows:

νn =
{
ϕ1, if n = 1
ϕn ∧ (ϕn−1)′, if n > 1 (1)

Then (νn) satisfies the condition:

(sup
k≤n

νk)′ = sup
k<n

(ϕk ∧ ϕ′
k) ∨ ϕ′

n, ∀n > 2

Lemma 3.2. Let (ϕn) be an increasing sequence of fuzzy subsets such that:

ϕ ∧ (sup
n
ϕn)′ ≤ (ϕ ∧ (sup

n
ϕn)′)′

Then the sequence defined in (1) satisfies the following condition:

ϕ ∧ (sup
n
νn)′ ≤ (ϕ ∧ (sup

n
νn)′)′
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Proof. By basic computation we have

ϕ ∧ (sup
n
νn)′ = ϕ ∧ (sup

n
sup
k≤n

νk)′ = ϕ ∧ inf
n

(sup
k≤n

νk)′

= ϕ ∧ inf
n≥2

(sup
k≤n

νk)′ = ϕ ∧ inf
n≥2

(sup
k<n

ϕk ∧ ϕ′
k ∨ ϕ′

n)

≤ ϕ ∧ inf
n≥2

(x0 ∨ ϕ′
n) = (ϕ ∧ x0) ∨ (ϕ ∧ inf

n≥2
ϕ′

n)

= (ϕ ∧ x0) ∨ (ϕ ∧ (sup
n≥2

ϕn)′) = (ϕ ∧ x0) ∨ (ϕ ∧ (sup
n
ϕn)′)

Using Remark 1.1 repeatedly we have

ϕ ∧ (sup
n
ϕn)′ ≤ (ϕ ∧ (sup

n
ϕn)′)′

which is equivalent to ϕ ∧ (sup
n
ϕn)′ ≤ x0.

We obtain ϕ ∧ (sup
n
νn)′ ≤ (ϕ ∧ x0) ∨ x0 = x0 and then

ϕ ∧ (sup
n
νn)′ ≤ (ϕ ∧ (sup

n
νn)′)′

and this ends the proof of Lemma 3.2 �

Lemma 3.3. Let (ϕn) be a sequence such that:

ϕ ∧ (sup
n
ϕn)′ ≤ (ϕ ∧ (sup

n
ϕn)′)′.

Then the sequence

νn =

{
ϕ1, if n=1
ϕn ∧ (sup

k<n
ϕk), if n > 1 (2)

satisfies the condition:

ϕ ∧ (sup
n
νn)′ ≤ (ϕ ∧ (sup

n
νn)′)′.

Proof. We define

ψn =

{
0L, if n=1
sup
k<n

ϕk, if n > 1 (3)

We can easily see that ψn is increasing and

ϕ ∧ (sup
n
ψn)′ ≤ (ϕ ∧ (sup

n
ψn)′)′.

Using the fact that νn = ϕn ∧ ψ′
n and Lemma 3.2 we obtain:

ϕ ∧ (sup
n
νn)′ = ϕ ∧ (sup

n
( sup
m≤n

νm)) = ϕ ∧ (sup
n

( sup
m≤n

(ϕm ∧ ψ′
m)))′

≤ ϕ ∧ (sup
n

( sup
m≤n

(ϕm ∧ ψ′
n)))′ = ϕ ∧ (sup

n
(ψn+1 ∧ ψ′

n))′ ≤ x0.

Thus (ϕn) satisfies the required condition. �
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Theorem 3.1. Suppose that the sequence (ϕn) satisfies the properties:
1)ϕ ∧ (sup

n
ϕn)′ ≤ (ϕ ∧ (sup

n
ϕ′

n))′

2)sup
n
ϕn ≤ ϕ.

Then the sequence (νn) defined in (2) is a partition of ϕ.

Proof. It is straightforward to check condition 1) from Definition 1.1 because:

νn = ϕn ∧ (sup
l<n

ϕl)′ ≤ (sup
l<n

ϕl)′ ≤ ϕ′
k ≤ ν ′k.

Condition 2) is satisfied from the hypothesis.
Condition 3) also follows immediately from the fact that
νn ≤ ϕn and then sup

n
νn ≤ sup

n
ϕn ≤ ϕ.

In conclusion, for any n, (νn) is a partition of ϕ. �

In case when νn is increasing, the sequences (ϕn) defined in (1) and in (2)
respectively coincide and this makes the proof of the following result:

Theorem 3.2. If the sequence (ϕn) is increasing and satisfies:
1) ϕ ∧ (sup

n
ϕn)′ ≤ (ϕ ∧ (sup

n
ϕn)′)′

2) sup
n
ϕn ≤ ϕ

then the sequence (νn) given by (1) is a partition of ϕ.

Theorem 3.3. Let (ϕn) be a sequence that satisfies the following conditions:
1) ϕ ∧ (sup

n
ϕn)′ ≤ (ϕ ∧ (sup

n
ϕn)′)′

2) sup
n
ϕn ≤ ϕ.

Then the sequence (νn) defined bellow is a partition of ϕ:

νn =

{
ϕ1, if n=1
ϕn ∧ (sup

k<n
νk)′, if n > 1 (4)

Proof. Using Theorem 2.2 , it follows that (νn) satisfies condition 1) of Defi-
nition 1.1.
By Theorems 2.3 and 3.2 and the following computation, we obtain condition
2):

sup
n
νn = ϕ1 ∨ sup

n≥2
(ϕn ∧ (sup

k<n
νk)′) ≥ ϕ1 ∨ sup

n≥2
(ϕn ∧ (sup

k<n
ϕk)′)

Finally, condition 3) follows as νn ≤ ϕn, which implies sup
n
νn ≤ ϕ. �

Theorem 3.4. Let (ϕk), k = 1, n, n ≥ 2 be an increasing sequence. Then
(ϕk+1 ∧ ϕ′

k), k = 1, n− 1 is a partition of ϕn ∧ ϕ′
1.

Proof. Theorem 3.2 implies that ϕk+1 ∧ ϕ′
k ≤ (ϕj+1 ∧ ϕ′

j)
′, thus condition

1) from Definition 1.1 is proved.
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Using Lemma 3.1 we obtain 2):

ϕn ∧ ϕ′
1 ∧ (sup

k
(ϕk+1 ∧ ϕ′

k))
′ = ϕn ∧ ϕ′

1 ∧ (sup
k<n

ϕk+1 ∧ ϕ′
k)

′

= ϕn ∧ (ϕ1 ∨ sup
k<n

(ϕk+1 ∧ ϕ′
k))

′ = ϕn ∧ (sup
k<n

(ϕn ∧ ϕ′
k) ∨ ϕ′

n

≤ ϕn ∧ (x0 ∨ ϕ′
n) = (ϕn ∧ x0) ∨ (ϕn ∧ ϕ′

n) ≤ x0

For 3) it is enough to see that sup
n

(ϕk+1∧ϕ′
k) = sup

k<n
(ϕk+1∧ϕ′

k) ≤ ϕn∧ϕ′
1. �
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