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Finite uniform approximation of zero-sum games defined on a
product of staircase-function continuous spaces

Vadim Romanuke

Abstract. A method of finite approximation of zero-sum games defined on a product of

staircase-function continuous spaces is presented. The method consists in uniformly sam-
pling the player’s pure strategy value set, solving “smaller” matrix games, each defined on

a subinterval where the pure strategy value is constant, and stacking their solutions if they
are consistent. The stack of the “smaller” matrix game solutions is an approximate solution

to the initial staircase game. The (weak) consistency, equivalent to the approximate solution

acceptability, is studied by how much the payoff and optimal situation change as the sampling
density minimally increases. The consistency is decomposed into the payoff, optimal strategy

support cardinality, optimal strategy sampling density, and support probability consistency.

The most important parts are the payoff consistency and optimal strategy support cardinality
(weak) consistency. However, it is practically reasonable to consider a relaxed payoff consis-

tency, by which the game optimal value change in an appropriate approximation may grow

at most by ε as the sampling density minimally increases. The weak consistency itself is a
relaxation to the consistency, where the minimal decrement of the sampling density is ignored.
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1. Introduction

Zero-sum (or antagonistic) games are models of processes where two sides referred
to as persons or players interact in struggling for optimizing the to-be-paid-or-pay
events. A possible action of the player is called its (pure) strategy. The strategy can
be as a simple (point) action whose duration is usually short, as well as a process
consisting of an order of simple actions (in particular, see [15, 6, 1]).

Whichever the pure strategy form is, the simplest zero-sum game is a matrix game.
Any matrix game has optimal solutions (one, a finite number, or continuum) [16, 17,
9, 8]. A more complicated zero-sum game is the antagonistic game, in which the game
kernel (payoff function) is a surface defined on a finite-dimensional compact Euclidean
subspace. A simple example of the subspace is a unit square [20, 10, 17]. Even if the
surface does not have a discontinuity, the optimal solution is not always determinable
as opposed to matrix games [16, 17, 9, 11]. Moreover, zero-sum games defined on
open (or half-open) subspaces (e. g., open square) may not have an optimal solution
at all [16]. Therefore, rendering a zero-sum game to a matrix one is a crucial task in
zero-sum-game modeling.
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Surely, a far more complicated case is a zero-sum game, in which the player’s
strategy is a function (e. g., of time). In such games, the payoff kernel is a functional
[21, 14]. This functional maps every pair of functions (pure strategies of the players)
into a real value. When each of the players possesses a finite set of such function-
strategies, the game might be rendered down to a matrix game [12, 13]. Such rendering
is impossible if the set of the player’s strategies is either infinite or, all the more,
continuous.

The paper proceeds as follows. The study motivation is briefly presented in Sec-
tion 2. Section 3 presents the objective and tasks to be fulfilled. A zero-sum game
with strategies as functions is formalized in Section 4. Staircase-function strategies
are introduced in Section 5. Section 6 describes how the pure strategy value axis is
sampled. The question of whether an approximate solution can be accepted or not is
answered in Section 7. An example is presented in Section 8. In the last two sections
the study is discussed and concluded.

2. Motivation to zero-sum game finite approximation

To render a zero-sum game with strategies as functions down to a matrix game, there
are two fundamental conditions. First, a time interval, on which the pure strategy is
defined, should be broken into a set of subintervals, on which the strategy could be
approximately considered constant. Second, the set of possible values of the player’s
function-strategy should be finite.

The first fundamental condition is the time sampling condition. It can be done
according to the rules of a system to be game-modeled, where the administrator
(manager, controller, etc.) does always define (or constrain) the form of the strategies
players will use [19, 3, 22]. Moreover, any process is interpreted static on a sufficiently
short time span. Henceforward, the time sampling condition is considered fulfilled.

The second fundamental condition cannot be imposed for no particular reason.
However, the number of factual actions of the players (in any game) is always finite.
While the players may use strategies of whichever form they want, the number of
their actions has a natural limit [7, 6, 18]. Thus, the set of function-strategies used
in a zero-sum game is finite anyway (unless the game is everlasting). Therefore, any
non-everlasting zero-sum game is played as if it is a matrix game.

The continuous game approximation is based on sampling the payoff kernel. Al-
ternatively, this is fulfilled also by sampling the sets of players’ pure strategies. A
method of approximating continuous zero-sum games is known from [12]. An ap-
proximate solution is considered acceptable if it changes minimally by changing the
sampling step minimally. Obviously, this method cannot be applied straightforwardly
to a zero-sum game with staircase-function strategies. However, a part of the game
considered on a time subinterval where the players’ strategies are constant is directly
approximated by the method. This is an aspiration and basis to develop a method
of approximately solving zero-sum games defined on a product of staircase-function
continuous spaces.
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3. Objective and tasks to be fulfilled

Issued from the impossibility of solving zero-sum games defined on a product of
staircase-function continuous spaces, the objective is to develop a method of finite
approximation of such games. For achieving the objective, the following tasks are to
be fulfilled:

1. To formalize a zero-sum game, in which the players’ strategies are functions of
time.

2. To formalize a zero-sum game, in which the players’ strategies are staircase
functions. In such a game, the set of the player’s pure strategies is a continuum of
staircase functions of time. Herein, the time can be thought of as it is discrete.

3. To state conditions of sampling the set of possible values of the player’s pure
strategy so that the game be defined on a product of staircase-function finite spaces.

4. To state conditions of the appropriate finite approximation.
5. To discuss applicability and significance of the method for the game theory,

whereupon an unbiased conclusion is to be made.

4. A zero-sum game with strategies as functions

A zero-sum game, in which the player’s pure strategy is a function of time, can be
defined as follows. Let each of the players use time-varying strategies defined almost
everywhere on interval [t1; t2] by t2 > t1. Denote a strategy of the first player by
x (t) and a strategy of the second player by y (t). These functions are presumed to be
bounded, i. e.

amin 6 x (t) 6 amax by amin < amax (1)

and

bmin 6 y (t) 6 bmax by bmin < bmax. (2)

Besides, the square of the function-strategy is presumed to be Lebesgue-integrable.
Thus, the sets of the players’ pure strategies are

X = {x (t) , t ∈ [t1; t2] , t1 < t2 : amin 6 x (t) 6 amax by amin < amax} ⊂
⊂ L2 [t1; t2] (3)

and

Y = {y (t) , t ∈ [t1; t2] , t1 < t2 : bmin 6 y (t) 6 bmax by bmin < bmax} ⊂
⊂ L2 [t1; t2] , (4)

respectively. Each of sets (3) and (4) is a rectangular functional space of functions of
time.

The first player’s payoff in situation {x (t) , y (t)} is K (x (t) , y (t)). The payoff is
presumed to be an integral functional:

K (x (t) , y (t)) =

∫
[t1; t2]

f (x (t) , y (t) , t) dµ (t) (5)

with a function

f (x (t) , y (t) , t) (6)
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of x (t) and y (t) explicitly including t. Therefore, the continuous zero-sum game〈
{X, Y } , K (x (t) , y (t))

〉
(7)

is defined on product
X × Y ⊂ L2 [t1; t2]× L2 [t1; t2] (8)

of rectangular functional spaces (3) and (4) of players’ pure strategies. In practi-
cal reality, zero-sum game (7) with strategies as functions is presumed to be played
discretely through time interval [t1; t2]. Then a function-strategy becomes staircase.

5. A zero-sum game with staircase-function strategies

Denote by N the number of subintervals at which the player’s pure strategy is con-
stant, where N ∈ N\ {1}. Then the player’s pure strategy is a staircase function

having only N different values. If
{
τ (i)
}N−1
i=1

are time points at which the staircase-
function strategy changes its value, where

t1 = τ (0) < τ (1) < τ (2) < . . . < τ (N−1) < τ (N) = t2, (9)

then

xi = x
(
τ (i)
)

by i = 0, N (10)

are the values of the first player’s strategy, and

yi = y
(
τ (i)
)

by i = 0, N (11)

are the values of the second player’s strategy. Points
{
τ (i)
}N
i=0

are not necessarily to
be equidistant.

The staircase-function strategies are right-continuous:

lim
ε>0
ε→0

x
(
τ (i) + ε

)
= x

(
τ (i)
)

(12)

and

lim
ε>0
ε→0

y
(
τ (i) + ε

)
= y

(
τ (i)
)

(13)

for i = 1, N − 1, whereas

lim
ε>0
ε→0

x
(
τ (i) − ε

)
6= x

(
τ (i)
)

(14)

and

lim
ε>0
ε→0

y
(
τ (i) − ε

)
6= y

(
τ (i)
)

(15)

for i = 1, N − 1. As an exception,

lim
ε>0
ε→0

x
(
τ (N) − ε

)
= x

(
τ (N)

)
(16)

and

lim
ε>0
ε→0

y
(
τ (N) − ε

)
= y

(
τ (N)

)
, (17)

so
xN−1 = xN and yN−1 = yN .
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Constant values (10) and (11) by (9) mean that game (7) can be thought of as it
is a succession of N continuous zero-sum games〈

{[amin; amax] , [bmin; bmax]} , K (αi, βi)
〉

(18)

defined on product

[amin; amax]× [bmin; bmax]

by

αi = x (t) ∈ [amin; amax] and βi = y (t) ∈ [bmin; bmax]

∀ t ∈
[
τ (i−1); τ (i)

)
for i = 1, N − 1 and ∀ t ∈

[
τ (N−1); τ (N)

]
, (19)

where the factual payoff in situation {αi, βi} is

K (αi, βi) =

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t) ∀ i = 1, N − 1 (20)

and

K (αN , βN ) =

∫
[τ(N−1); τ(N)]

f (αN , βN , t) dµ (t). (21)

So, let such game (7) be called staircase. A pure-strategy situation in staircase game

(7) is a succession of N situations
{
{αi, βi}

}N
i=1

in games (18).

Theorem 1. In a pure-strategy situation of staircase game (7), represented as a
succession of N games (18), functional (5) is re-written as a subinterval-wise sum

K (x (t) , y (t)) =

N∑
i=1

K (αi, βi) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t) +

∫
[τ(N−1); τ(N)]

f (αN , βN , t) dµ (t). (22)

Proof. Situation {αi, βi} is tied to half-subinterval
[
τ (i−1); τ (i)

)
by i = 1, N − 1

and to subinterval
[
τ (N−1); τ (N)

]
by i = N . Function (6) in this situation is some

function of time t. Denote this function by ψi (t). For situation {αi, βi} function

ψi (t) = 0 ∀ t /∈
[
τ (i−1); τ (i)

)
, (23)

and for situation {αN , βN} function

ψN (t) = 0 ∀ t /∈
[
τ (N−1); τ (N)

]
. (24)

Therefore,

f (x (t) , y (t) , t) =

N∑
i=1

ψi (t) (25)
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in a pure-strategy situation {x (t) , y (t)} of staircase game (7), by using (23) and
(24). Consequently,

K (x (t) , y (t)) =
∫

[t1; t2]

f (x (t) , y (t) , t) dµ (t) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

ψi (t) dµ (t) +

∫
[τ(N−1); τ(N)]

ψN (t) dµ (t) =

=

N−1∑
i=1

∫
[τ(i−1); τ(i))

f (αi, βi, t) dµ (t) +

∫
[τ(N−1); τ(N)]

f (αN , βN , t) dµ (t) =

=

N∑
i=1

K (αi, βi) (26)

in a pure-strategy situation {x (t) , y (t)} of staircase game (7). �

In fact, Theorem 1 does not provide a method of solving the staircase game. Nev-
ertheless, it provides a fundamental decomposition of the game. This decomposition
allows considering each game (18) separately.

6. Sampling along the pure strategy value axis

In game (18), the first player has its set [amin; amax] of pure strategies, and the second
player’s pure strategy set is [bmin; bmax]. Let these sets be sampled uniformly with a
step determined by an integer S, S ∈ N. So,

A (S) =
{
a(s)
}S+1

s=1
=

{
amin +

s− 1

S
· (amax − amin)

}S+1

s=1

⊂ [amin; amax] (27)

is a sampled pure strategy set of the first player, and

B (S) =
{
b(s)
}S+1

s=1
=

{
bmin +

s− 1

S
· (bmax − bmin)

}S+1

s=1

⊂ [bmin; bmax] (28)

is a sampled pure strategy set of the second player. The roughest sampling is by
S = 1, when

A (1) =
{
a(1), a(2)

}
= {amin, amax}

and

B (1) =
{
b(1), b(2)

}
= {bmin, bmax} .

With the sampling by (27) and (28), the succession of N continuous games (18)
by (9)–(17) and (19) becomes a succession of N matrix (S + 1)× (S + 1) games〈{{

a(m)
}S+1

m=1
,
{
b(j)
}S+1

j=1

}
, Ki (S)

〉
(29)

with payoff matrices

Ki (S) = [kimj (S)](S+1)×(S+1) (30)
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whose elements are

kimj (S) =

∫
[τ(i−1); τ(i))

f
(
a(m), b(j), t

)
dµ (t) for i = 1, N − 1 (31)

and

kNmj (S) =

∫
[τ(N−1); τ(N)]

f
(
a(m), b(j), t

)
dµ (t). (32)

So, if integer S for game (7) by (19) is somehow selected, the staircase game is
represented as a succession of N matrix (S + 1)× (S + 1) games.

By sampling (27) and (28) the staircase game becomes defined on product A (S)×
B (S), which becomes a product of staircase-function finite spaces by running through
all i = 1, N . Thus the game might be rendered to a matrix game in order to obtain
a staircase solution. However, there is a much easier way to solve a finite staircase
game.

Theorem 2. Game (7) on product (8) by conditions (1)–(5) made a finite staircase
game by (19) and sampling (27), (28) is always solved as a stack of successive optimal
solutions of N matrix games (29) by (30)–(32).

Proof. A matrix game is always solved, either in pure or mixed strategies. Denote by

Pi (S) =
[
p
(m)
i (S)

]
1×(S+1)

and

Qi (S) =
[
q
(j)
i (S)

]
1×(S+1)

the mixed strategies of the first and second players, respectively, in matrix game (29).
The respective sets of mixed strategies of the first and second players are

P =

{
Pi (S) ∈ RS+1 : p

(m)
i (S) > 0,

S+1∑
m=1

p
(m)
i (S) = 1

}
(33)

and

Q =

Qi (S) ∈ RS+1 : q
(j)
i (S) > 0,

S+1∑
j=1

q
(j)
i (S) = 1

 , (34)

so

Pi (S) ∈ P, Qi (S) ∈ Q,

and {Pi (S) , Qi (S)} is a situation in this game. Let{
{P∗i (S) , Q∗i (S)}

}N
i=1

=

{{[
p
(m)∗
i (S)

]
1×(S+1)

,
[
q
(j)∗
i (S)

]
1×(S+1)

}}N
i=1

(35)
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be a set of optimal solutions of N games (29) by (30)–(32). Then

max
Pi(S)∈P

min
Qi(S)∈Q

Pi (S) ·Ki (S) · [Qi (S)]
T

=

= max
Pi(S)∈P

min
Qi(S)∈Q

S+1∑
m=1

S+1∑
j=1

kimj (S) p
(m)
i (S) q

(j)
i (S) =

= max
Pi(S)∈P

min
Qi(S)∈Q

S+1∑
m=1

S+1∑
j=1

p
(m)
i (S) q

(j)
i (S)

∫
[τ(i−1); τ(i))

f
(
a(m), b(j), t

)
dµ (t) =

=

S+1∑
m=1

S+1∑
j=1

p
(m)∗
i (S) q

(j)∗
i (S)

∫
[τ(i−1); τ(i))

f
(
a(m), b(j), t

)
dµ (t) =

= P∗i (S) ·Ki (S) · [Q∗i (S)]
T

= v∗i (S) =

= min
Qi(S)∈Q

max
Pi(S)∈P

S+1∑
m=1

S+1∑
j=1

p
(m)
i (S) q

(j)
i (S)

∫
[τ(i−1); τ(i))

f
(
a(m), b(j), t

)
dµ (t) =

= min
Qi(S)∈Q

max
Pi(S)∈P

S+1∑
m=1

S+1∑
j=1

kimj (S) p
(m)
i (S) q

(j)
i (S) =

= min
Qi(S)∈Q

max
Pi(S)∈P

Pi (S) ·Ki (S) · [Qi (S)]
T ∀ i = 1, N − 1 (36)

and

max
PN (S)∈P

min
QN (S)∈Q

PN (S) ·KN (S) · [QN (S)]
T

=

= max
PN (S)∈P

min
QN (S)∈Q

S+1∑
m=1

S+1∑
j=1

kNmj (S) p
(m)
N (S) q

(j)
N (S) =

= max
PN (S)∈P

min
QN (S)∈Q

S+1∑
m=1

S+1∑
j=1

p
(m)
N (S) q

(j)
N (S)

∫
[τ(N−1); τ(N)]

f
(
a(m), b(j), t

)
dµ (t) =

=

S+1∑
m=1

S+1∑
j=1

p
(m)∗
N (S) q

(j)∗
N (S)

∫
[τ(N−1); τ(N)]

f
(
a(m), b(j), t

)
dµ (t) =

= P∗N (S) ·KN (S) · [Q∗N (S)]
T

= v∗N (S) =

= min
QN (S)∈Q

max
PN (S)∈P

S+1∑
m=1

S+1∑
j=1

p
(m)
N (S) q

(j)
N (S)

∫
[τ(N−1); τ(N)]

f
(
a(m), b(j), t

)
dµ (t) =

= min
QN (S)∈Q

max
PN (S)∈P

S+1∑
m=1

S+1∑
j=1

kNmj (S) p
(m)
N (S) q

(j)
N (S) =

= min
QN (S)∈Q

max
PN (S)∈P

PN (S) ·KN (S) · [QN (S)]
T
. (37)
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Using Theorem 1 allows to conclude that

max
x(t)∈X

min
y(t)∈Y

K (x (t) , y (t)) =

=
N−1∑
i=1

 max
Pi(S)∈P

min
Qi(S)∈Q

S+1∑
m=1

S+1∑
j=1

p
(m)
i (S) q

(j)
i (S)

∫
[τ(i−1); τ(i))

f
(
a(m), b(j), t

)
dµ (t)

+

+ max
PN (S)∈P

min
QN (S)∈Q

S+1∑
m=1

S+1∑
j=1

p
(m)
N (S) q

(j)
N (S)

∫
[τ(N−1); τ(N)]

f
(
a(m), b(j), t

)
dµ (t) =

=

N−1∑
i=1

S+1∑
m=1

S+1∑
j=1

p
(m)∗
i (S) q

(j)∗
i (S)

∫
[τ(i−1); τ(i))

f
(
a(m), b(j), t

)
dµ (t) +

+

S+1∑
m=1

S+1∑
j=1

p
(m)∗
N (S) q

(j)∗
N (S)

∫
[τ(N−1); τ(N)]

f
(
a(m), b(j), t

)
dµ (t) =

=

N−1∑
i=1

P∗i (S) ·Ki (S) · [Q∗i (S)]
T

+ P∗N (S) ·KN (S) · [Q∗N (S)]
T

=

=

N−1∑
i=1

v∗i (S) + v∗N (S) =

=
N−1∑
i=1

 min
Qi(S)∈Q

max
Pi(S)∈P

S+1∑
m=1

S+1∑
j=1

p
(m)
i (S) q

(j)
i (S)

∫
[τ(i−1); τ(i))

f
(
a(m), b(j), t

)
dµ (t)

+

+ min
QN (S)∈Q

max
PN (S)∈P

S+1∑
m=1

S+1∑
q=1

p
(m)
N (S) q

(j)
N (S)

∫
[τ(N−1); τ(N)]

f
(
a(m), b(j), t

)
dµ (t) =

= min
y(t)∈Y

max
x(t)∈X

K (x (t) , y (t)) (38)

and, therefore, the stack of successive solutions (35) is an optimal solution in game
(7) by (19) sampled by (27), (28). �

Obviously, the solutions of the (S + 1) × (S + 1) matrix games are independent.
They are solved in parallel, without caring of the succession. If all N matrix games are
solved in pure strategies, then stacking their solutions is fulfilled trivially. When there
is at least an equilibrium in mixed strategies for a subinterval, the stacking is fulfilled
as well implying that the resulting pure-mixed-strategy solution of staircase game (7)
is realized successively, subinterval by subinterval, spending the same amount of time
to implement both pure strategy and mixed strategy solutions [6, 1].
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7. Approximate solution consistency

The conditions of the appropriate finite approximation are stated by using the known
method of obtaining the approximate solution of continuous antagonistic games on
unit multidimensional cube with uniform sampling [13]. There are five items of the
conditions. The requirement of the smooth sampling of the payoff kernel is inappli-
cable here [14].

An easy-to-find condition of the finite approximation appropriateness is the game
optimal value change:

|v∗i (S)− v∗i (S + 1)| 6 |v∗i (S − 1)− v∗i (S)| for i = 1, N. (39)

Condition (39) means that, as the sampling density minimally increases, the game
optimal value change in an appropriate approximation should not grow.

The next condition is the change of the optimal strategy support cardinality. De-
note the supports of the optimal strategies of the players by

supp P∗i (S) = {mu}Ui(S)
u=1 ⊂ {m}

S+1
m=1 (40)

by the respective support probabilities{
p
(mu)∗
i (S)

}Ui(S)

u=1
(41)

and

supp Q∗i (S) = {jw}Wi(S)
w=1 ⊂ {j}S+1

j=1 (42)

by the respective support probabilities{
q
(jw)∗
i (S)

}Wi(S)

w=1
. (43)

Then inequalities

Ui (S + 1) > Ui (S) for i = 1, N (44)

and

Wi (S + 1) >Wi (S) for i = 1, N (45)

require that, by minimally increasing the sampling density, the cardinalities of the
supports not decrease.

The third item is the support index distance. As the sampling density minimally
increases, the maximal gap between the support indices should not increase. Let
mu (S) and jw (S) be the respective support indices corresponding to integer S on a
subinterval by (19). Then inequalities

max
u=1, Ui(S+1)−1

[mu+1 (S + 1)−mu (S + 1)] 6

6 max
u=1, Ui(S)−1

[mu+1 (S)−mu (S)] for i = 1, N (46)

and

max
w=1, Wi(S+1)−1

[jw+1 (S + 1)− jw (S + 1)] 6

6 max
w=1, Wi(S)−1

[jw+1 (S)− jw (S)] for i = 1, N (47)

are required.
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Denote by h1 (i; m, S) a polyline whose vertices are probabilities
{
p
(m)∗
i (S)

}S+1

m=1
,

and denote by h2 (i; j, S) a polyline whose vertices are probabilities
{
q
(j)∗
i (S)

}S+1

j=1
.

Then, by minimally increasing the sampling density, the “neighboring” polylines
should not be farther from each other, i. e.

max
[0; 1]
|h1 (i; m, S)− h1 (i; m, S + 1)| 6

6 max
[0; 1]
|h1 (i; m, S − 1)− h1 (i; m, S)| for i = 1, N (48)

and

max
[0; 1]
|h2 (i; j, S)− h2 (i; j, S + 1)| 6

6 max
[0; 1]
|h2 (i; j, S − 1)− h2 (i; j, S)| for i = 1, N (49)

along with

‖h1 (i; m, S)− h1 (i; m, S + 1)‖ 6
6 ‖h1 (i; m, S − 1)− h1 (i; m, S)‖ in L2 [0; 1] for i = 1, N (50)

and

‖h2 (i; j, S)− h2 (i; j, S + 1)‖ 6
6 ‖h2 (i; j, S − 1)− h2 (i; j, S)‖ in L2 [0; 1] for i = 1, N. (51)

If inequalities (39), (44)–(51) hold for some i, then matrix game (29), assigned
to the subinterval between τ (i−1) and τ (i), has a weakly consistent approximate so-
lution to the corresponding continuous game (18) by (19). On this basis, the weak
consistency of an approximate solution to a staircase game (7) is formulated.

Definition 1. The stack of successive solutions (35) is called a weakly S-consistent
approximate solution of game (7) on product (8) by conditions (1)–(5) and (19) if
inequalities (39), (44)–(51) hold.

Obviously, requirements (44)–(47) can be supplemented (strengthened) by consid-
ering a minimal decrement of the sampling density. Then inequalities

Ui (S) > Ui (S − 1) for i = 1, N (52)

and

Wi (S) >Wi (S − 1) for i = 1, N (53)

and

max
u=1, Ui(S)−1

[mu+1 (S)−mu (S)] 6

6 max
u=1, Ui(S−1)−1

[mu+1 (S − 1)−mu (S − 1)] for i = 1, N (54)

and

max
w=1, Wi(S)−1

[jw+1 (S)− jw (S)] 6

6 max
w=1, Wi(S−1)−1

[jw+1 (S − 1)− jw (S − 1)] for i = 1, N (55)
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are required.

Definition 2. The stack of successive solutions (35) is called an S-consistent approxi-
mate solution of game (7) on product (8) by conditions (1)–(5) and (19) if inequalities
(39), (44)–(55) hold.

The approximate solution consistency clearly proposes a better approximation than
the weak consistency. To ascertain whether the stack of successive solutions (35) is
weakly consistent or not, the three bunches of N matrix games (29) should be solved,
where the sampling density is defined by integers S − 1, S, S + 1. Nevertheless, the
consistency meant by some sampling density integer S does not guarantee that both
the players will select such sampling density. Moreover, it is hard to find a continuous
zero-sum game, for which a consistent approximate solution could be determined at
appropriately small S. Hence, the following definitions are more relevant for the
approximation.

Definition 3. An approximate solution (35) is called payoff-S-consistent if inequal-
ities (39) hold.

Definition 4. An approximate solution (35) is called weakly support-cardinality-S-
consistent if inequalities (44) and (45) hold.

Definition 5. An approximate solution (35) is called support-cardinality-S-consistent
if inequalities (44), (45), (52), (53) hold.

Definition 6. An approximate solution (35) is called weakly sampling-density-S-
consistent if inequalities (46) and (47) hold.

Definition 7. An approximate solution (35) is called sampling-density-S-consistent
if inequalities (46), (47), (54), (55) hold.

Definition 8. An approximate solution (35) is called probability-S-consistent if in-
equalities (48)–(51) hold.

The weak consistency notion by Definition 1 may be thought of as it is decomposed
by Definitions 3, 4, 6, 8. Thus, the consistency notion by Definition 2 is decomposed
into Definitions 3, 5, 7, 8. Even if an approximate solution is not weakly consistent, it
may be, e. g., payoff-consistent. This can be sufficient to accept it as an appropriate
approximate solution.

8. A visual exemplification

To visually exemplify how a zero-sum staircase game is approximated by using the
approximate solution consistency, consider a case in which t ∈ [0; 4.5π], the set of
pure strategies of the first player is

X = {x (t) , t ∈ [0; 4.5π] : 10 6 x (t) 6 14} ⊂ L2 [0; 4.5π] (56)

and the set of pure strategies of the second player is

Y = {y (t) , t ∈ [0; 4.5π] : 23 6 y (t) 6 25} ⊂ L2 [0; 4.5π] . (57)

The payoff functional is

K (x (t) , y (t)) =

∫
[0; 4.5π]

[
sin (0.4xt) sin

(
0.3yt− π

7

)]
dµ (t). (58)
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Each of the players is allowed to change its pure strategy value at time points{
τ (i)
}8

i=1
= {0.5πi}8i=1 .

So, the player possesses 9-subinterval staircase function-strategies defined on interval
[0; 4.5π]. Hence, the zero-sum staircase game is represented as a succession of 9
zero-sum games (18). For these games, with the sampling by (27) and (28), the pure
strategy set of the first player is

A (S) =
{
a(s)
}S+1

s=1
=

{
10 +

4s− 4

S

}S+1

s=1

⊂ [10; 14] (59)

and

B (S) =
{
b(s)
}S+1

s=1
=

{
23 +

2s− 2

S

}S+1

s=1

⊂ [23; 25] (60)

is the pure strategy set of the second player, making thus 9 matrix games〈{{
a(m)

}S+1

m=1
,
{
b(j)
}S+1

j=1

}
, Ki (S)

〉
=

=

〈{{
10 +

4m− 4

S

}S+1

m=1

,

{
23 +

2j − 2

S

}S+1

j=1

}
, Ki (S)

〉
for i = 1, 9. (61)

In games (61), there are 9 payoff matrices (30) whose elements are

kimj (S) =

∫
[0.5·(i−1)π; 0.5πi)

[
sin
(

0.4a(m)t
)

sin
(

0.3b(j)t− π

7

)]
dµ (t)

for i = 1, 8 (62)

and

k9mj (S) =

∫
[4π; 4.5π]

[
sin
(

0.4a(m)t
)

sin
(

0.3b(j)t− π

7

)]
dµ (t). (63)

The payoff kernel on each subinterval of{{
[0.5 · (i− 1)π; 0.5πi)

}8

i=1
, [4π; 4.5π]

}
(64)

is shown in Figure 1 for S = 100.
A peculiarity of this staircase game is that the players’ optimal strategies on subin-

terval [0; 0.5π) are pure and unchanging at any S:

x∗ (t) = 14 = a(S+1) and y∗ (t) = 25 = b(S+1) ∀ t ∈ [0; 0.5π) . (65)

At S = 1, the players still have pure optimal strategies, apart from (65), on subinter-
vals (Figure 2)

[0.5π; π) , [π; 1.5π) , [2.5π; 3π) , [3π; 3.5π) , [3.5π; 4π) , (66)

whereas they have mixed optimal strategies (the first player mixes a(1) = 10 and
a(2) = 14, the second mixes b(1) = 23 and b(2) = 25) on subintervals

[1.5π; 2π) , [2π; 2.5π) , [4π; 4.5π] . (67)
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Figure 1. The 9 payoff kernels on subintervals (64) for S = 100
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Figure 2. Subinterval-wise optimal strategies of the first (left) and
second (right) players by S = 1, 10
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At S = 2, along with (65), there are only mixed optimal strategies (shown as thin
lines) on (66) and (67): both the players mix already three pure strategies (a(1) = 10,
a(2) = 12, a(3) = 14, and b(1) = 23, b(2) = 24, b(3) = 25) on subintervals

[1.5π; 2π) , [3.5π; 4π) , [4π; 4.5π] .

At S = 3, along with (65), there springs up another optimal situation in pure strategies

x∗ (t) = 10 = a(1) and y∗ (t) = 23 = b(1) ∀ t ∈ [3.5π; 4π) .

Besides, a mixed optimal situation of four pure strategies exists on [2π; 2.5π). At
S > 4, apart from (65), there are no pure optimal strategies. At fewer S, the first
player’s payoff v∗i (S) (at the end of the i-th subinterval) and the payoff cumulative
sum

v(h)∗ (S) =

h∑
i=1

v∗i (S) by h = 1, 9 (68)

are also unstable (Figure 3). Note that, according to (68), v(9)∗ (S) is the optimal
value in this staircase game.
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Figure 3. The first player’s payoffs at the end of every subinterval
(dots) and their cumulative sum (circles) by S = 1, 10

As the sampling density is further increased, mixed optimal strategies on subin-
tervals (66) and (67) become more “condensed” (Figure 4). Moreover, the payoffs
“condense” also (Figure 5): the subinterval payoffs run into a distinct polyline, and
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their cumulative sum runs into a polyline as well. A peculiarity of the second player’s
mixed optimal strategies consists in that pure strategies b(1) = 23 and b(S+1) = 25 on
subintervals (66) and (67) are always selected with some probabilities

q
(1)∗
i (S) > 0 and q

(S+1)∗
i (S) > 0,

where i = 2, 9. This peculiarity exists starting from S = 7.
Figure 6 shows how the “condensed” subinterval-wise optimal strategies look like

by S = 91, 100. In fact, this is a visual approximation of how the optimal solution
in the staircase game looks like. The stacks in Figure 6 do not significantly change
by S > 100. The first player’s payoffs {v∗i (S)}9i=1 and the their cumulative sum (68)
appear to be two quite distinct polylines (Figure 7). Strategies in Figure 4 (or even
strategies in Figure 2) can be mnemonically thought of as they converge to strategies
in Figure 6. Similarly, polylines in Figure 5 (or even polylines in Figure 3) can be
thought of as they converge to polylines in Figure 7.
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Figure 4. Subinterval-wise optimal strategies of the first (left) and
second (right) players by S = 11, 20

Although Figure 7 presents a “condensed” polyline of payoff cumulative sum (68)
which is clearly increasing, it is worth noting that the cumulative sum of the player’s
payoffs does not have to be non-decreasing (let alone increasing). For instance, if the
first player’s payoff at t = 4.5π had been slightly less (than it factually is), the resulting
optimal value in this staircase game would have been less than the cumulative sum
at subinterval [3.5π; 4π), i. e.

v(9)∗ (S) < v(8)∗ (S) .

As it appears from Figure 5 (where the payoff polylines are already sufficiently
“condensed” it is sufficient to approximate this staircase game even by S = 11.
Amazingly enough, there are no payoff-S-consistent solutions even at greater S. This
means that, as the sampling density minimally increases, the game optimal value
change grows, where condition (39) is violated for some i. Obviously, this growth is
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Figure 5. The first player’s payoffs at the end of every subinterval
(dots) and their cumulative sum (circles) by S = 11, 20

very small. Therefore, it is useful and practically reasonable to consider the payoff
consistency adding a relaxation to (39).

Definition 9. An approximate solution (35) is called ε-payoff-S-consistent if inequal-
ities

|v∗i (S)− v∗i (S + 1)| − ε 6 |v∗i (S − 1)− v∗i (S)|
by some ε > 0 for i = 1, N (69)

hold.

Thus, the approximate solution is ε-payoff-14-consistent for

ε = 0.03 · v∗i (14) at i = 1, 9.

Moreover, it is ε-payoff-S-consistent for

ε = 0.03 · v∗i (S) at i = 1, 9

by

S ∈
{

14, 150
}
\ {15, 23} .

In addition, the approximate solution is support-cardinality-S-consistent by

S ∈ {13, 14, 16, 17, . . .} .



FINITE APPROXIMATION OF ZERO-SUM GAMES IN STAIRCASE-FUNCTION SPACES 287

 !

 !"#

 !"$

 !"%

 !"&

  

  "#

  "$

  "%

  "&

 #

 #"#

 #"$

 #"%

 #"&

 '

 '"#

 '"$

 '"%

 '"&

 $

! !"(    "( # #"( ' '"( $ $"( 
#'

#'" 

#'"#

#'"'

#'"$

#'"(

#'"%

#'")

#'"&

#'"*

#$

#$" 

#$"#

#$"'

#$"$

#$"(

#$"%

#$")

#$"&

#$"*

#(

! !"(    "( # #"( ' '"( $ $"( t

Figure 6. Subinterval-wise optimal strategies of the first (left) and
second (right) players by S = 91, 100

But again, if an inequality in (44), (45), (52), (53) is violated, the support cardinality
decreases just by 1 (by minimally increasing the sampling density). So, a similar
relaxation to that in Definition 9 might be constructed for the support cardinality
consistency. Then Definitions 4 and 5 are “relaxed”. Definitions 6, 7, 8 might be
“relaxed” in a similar way.

9. Discussion

Solving the sampled staircase game straightforwardly, without considering each “smaller”
matrix game separately, is usually intractable. For instance, by sampling the exempli-
fied game, where each of the players uses 9-subinterval staircase function-strategies,
with S = 14, the resulting 159 × 159 matrix game cannot be solved in a reasonable
time span. Therefore, solving “smaller” matrix games separately and then stacking
their solutions is a far more efficient way to obtain an approximate solution of the ini-
tial staircase game. In a pessimistic case, the applicability of this way may be limited
to the “smaller” matrix game size. The computation time has an exponentially-
increasing dependence on the size of the square matrix. Surely, solving matrix games,
in which a player has a few hundred pure strategies, may be time-consuming.

One can notice that if time t is not explicitly included into the function under the
integral in (5), then the payoff value depends only on the length of the subinterval.
If the length does not change, every subinterval has the same matrix game. The
triviality of the equal-length-subinterval solution is explained by a standstill of the
players’ strategies. Time variable t explicitly included into (5) means that something
is going on or changes within the process as time goes by (and the players develop
their actions).

The (weak) consistency of an approximate solution is a criterion of its acceptability.
However, a (weakly) consistent approximate solution may not exist at appropriately
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Figure 7. The first player’s payoffs at the end of every subinterval
(dots) and their cumulative sum (circles) by S = 91, 100

small (tractable) S. So, the consistency decomposition into parts by Definitions 3–
8 and particularly isolating an ε-payoff consistency by Definition 9 is justified and
practically applicable. There are still many open questions, though. First, it is not
proved that limits

lim
S→∞

v∗i (S) ∀ i = 1, N (70)

exist and they are equal to the respective optimal values of the subinterval continuous
games. Second, if limits (70) exist, it is not proved that this is followed by that any
approximate solution (35) is ε-payoff-S-consistent for any S > S∗ (S∗ ∈ N). The
inter-influence among the consistency decomposition parts by Definitions 3–8 is also
uncertain yet.

Nevertheless, the presented method is a significant contribution to the antagonistic
game theory. It allows approximately solving zero-sum games with staircase-function
strategies in a far simpler manner. It “deeinstellungizes” the initial staircase game
along with its solution interpretation [5]. Once the (weak) consistency is confirmed
(the respective approximate solution should be at least ε-payoff consistent by Defini-
tion 9), the approximate pure-mixed-strategy solution (like that in Figure 6) can be
easily implemented and practiced (e. g., see [17, 2, 11]).
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10. Conclusion

A zero-sum game defined on a product of staircase-function continuous spaces is
approximated to a matrix game by sampling the player’s pure strategy value set. The
set is sampled uniformly so the resulting matrix game is square. Owing to Theorem 2,
the solution of the matrix game is obtained by stacking the solutions of the “smaller”
matrix games, each defined on an interval where the pure strategy value is constant.

The stack of the “smaller” matrix game solutions is an approximate solution to
the initial staircase game. The (weak) consistency of the approximate solution is
studied by how much the payoff and optimal situation change as the sampling density
minimally increases. Thus, the consistency, equivalent to the approximate solution
acceptability, is decomposed into the payoff (Definition 3), optimal strategy support
cardinality (Definitions 4 and 5), optimal strategy sampling density (Definitions 6 and
7), and support probability consistency (Definition 8). The most important parts are
the payoff consistency and optimal strategy support cardinality (weak) consistency.
They are checked in the quickest and easiest way. In addition, it is practically rea-
sonable to consider a relaxed payoff consistency. The relaxed payoff consistency by
(69) means that, as the sampling density minimally increases, the game optimal value
change in an appropriate approximation may grow at most by ε. The weak consis-
tency itself is a relaxation to the consistency, where the minimal decrement of the
sampling density is ignored.

Therefore, the suggested method of finite approximation of staircase zero-sum
games consists in the uniform sampling, solving “smaller” matrix games, and stacking
their solutions if they are consistent. The finite approximation is regarded appropri-
ate if at least the respective approximate (stacked) solution is ε-payoff consistent
(Definition 9).

Finite uniform approximation of games on a product of staircase-function continu-
ous spaces can be studied also for the case of non-antagonistic interests of two players.
Nonetheless, an approach to solving the corresponding “smaller” bimatrix games is
not straightforwardly deduced from Theorem 2. The matter is the optimality in the
matrix game does not have an analogy for the bimatrix game [4, 17, 9]. This speci-
ficity will make a generalized study of two-person games dissimilar to the presented
study. The consistency definitions should be generalized as well.
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