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Derivatives with respect to the perturbations of a domain

Daniela Inoan

Abstract. The paper studies the existence of derivatives (of Gâteaux and Hadamard type)
with respect to the perturbations of the domain, for the solutions of a variational problem.
Such derivatives appear in shape sensitivity analysis. The method that we use is the mapping
method.
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1. Introduction

Variational problems which depend on a parameter have been studied in many
papers (see W. Alt and J. Kolumbán, [1], G. Kassay and J. Kolumbán, [4]). The
case studied in this paper is special: the parameter is the underlying domain of the
variational problem in discution. More precisely, we are interested in the behaviour
of the solutions at small perturbations of the domain. This is in fact the subject
of shape sensitivity analysis (see F. Murat and J. Simon [7], M.C. Delfour and J.-P.
Zolésio, [2] , J. Sokolowski and J.P. Zolesio, [9]).
In the first section, after a brief presentation of the mapping method (used in shape
optimization), we give a result (Theorem 2.1) concerning the stability of a variational
problem at small perturbations of the domain. The next section contains the main
results (Theorems 3.2 and 3.3) about the existence of Gâteaux and Hadamard deriva-
tives of the solutions, with respect to the perturbations of the domain. Finally, we
give some conditions in which the above results can be applied.

2. Stability with respect to the perturbations of the domain

Consider a family of variational problems, depending on the parameter Ω:

Find uΩ ∈ H1(Ω) such that∫
Ω

A(x,∇uΩ(x))∇v(x)dx+
∫
Ω

a(x, uΩ(x))v(x)dx = 0, ∀ v ∈ H1(Ω), (1)

with Ω ⊂ R
N a bounded, open set, where A and a are functions with properties to

be mentioned later.
When the behavior of the solutions to (1) with respect to the perturbations of the
domain Ω is studied, one of the difficulties is that the space in which the solutions lie
(H1(Ω)), depends on the variable domain.
To overcome this, the mapping method, initiated in the 70’s by A-M. Micheletti, and,
in a different approach, by F. Murat and J. Simon [7], defines the admissible domains
as images of a fixed set through a class of transformations. We present some notions
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and properties of the mapping method following [7] (see also [8], [2]).
Let C be a fixed, bounded, open set in RN , with the boundary ∂C of class W i,∞,
i ≥ 1 and such that intC̄ = C. The following spaces are defined:

W k,∞(RN )N = {φ |Dαφ ∈ L∞(RN )N ,∀ α, 0 ≤ |α| ≤ k}
Fk,∞ = {T : RN → RN | T is bijective and T − I, T−1 − I ∈ W k,∞(RN )N}

Ok,∞ = {Ω | Ω = T (C), T ∈ Fk,∞}
Ok,∞ consists of a set of bounded open sets. The norm on W k,∞(RN )N is:

‖T‖k,∞ = ess sup
x∈RN

( ∑
0≤|α|≤k

‖DαT (x)‖2N
)1/2

It can be proved (see [7]) that there exists a metric on Ok,∞ such that the space is
complete and Ωn → Ω in Ok,∞ iff there exist Tn and T in Fk,∞ such that Tn(C) = Ωn,
T (C) = Ω and Tn → T , T−1

n → T−1 in W k,∞(RN )N .
Some important properties are given in the following:

Lemma 2.1. (a) If T ∈ Fk,∞ and Ω = T (C) then: u ∈ L2(Ω) (H1(Ω)) if and only
if u ◦ T ∈ L2(C) (H1(C)).
(b) Let k ≥ 1, u ∈ L2(RN ) (or u ∈ H1(RN )). The mapping T �→ u ◦ T is continuous
from Fk,∞ to L2(RN ) (or H1(RN )).
(c) Let k ≥ 1. The mappings T �→ JT−1 and T �→ detJT from Fk,∞ to W k−1,∞(RN )
are continuous. (JT denotes the Jacobian matrix of T ).
(e) If Ωn → Ω in Ok,∞ then 1Ωn

→ 1Ω in L2(RN ) (1Ω is the characteristic function
for Ω).

Using the notations above, let T ∈ Fk,∞ such that Ω = T (C). Making the trans-
form x = T (X) in (1), we get an equivalent problem on the fixed set C:

uT ∈ H1(C) such that
∫

C

A(T (X), JT−t(X)∇uT (X))JT−t(X)∇v(X)detJT (X)dX

+
∫

C

a(T (X), uT (X))v(X)detJT (X)dX = 0, ∀ v ∈ H1(C),

(2)

with uT = uΩ ◦ T .
Defining the operator A : Fk,∞ ×H1(C)→ (H1(C))∗ by

〈A(T, u), v〉 =
∫

C

A(T (X), JT−t(X)∇u(X))(JT−t(X)∇v(X))detJT (X)dX

+
∫

C

a(T (X), u(X))v(X)detJT (X)dX, ∀ v ∈ H1(C) (3)

the variational problem can be written:

uT ∈ H1(C) such that 〈A(T, uT ), v〉 = 0, ∀v ∈ H1(C), (4)

In this formulation, we can consider the family of variational problems (4) as depend-
ing on the parameter T .
Consider the following hypotheses on the functions A and a:

(H1) A = (a1, . . . , aN ) with aj : RN×R
N → R, a : RN×R → R having the properties:

(P1) aj(·, ·), j = 1, . . . , N and a(·, ·) are measurable with respect to the first variable
and continuous with respect to the second one,
(P2) |aj(x, ξ)| ≤ c(k(x)+‖ξ‖N ) a.e. x ∈ R

N , for all ξ ∈ R
N and |a(x, η)| ≤ c1(k1(x)+

|η|) for all η ∈ R, with c, c1 positive constants and k, k1 functions in L2(D) (for any
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D a bounded and open set),

(P3)
N∑

j=1

aj(x, ξ)ξj ≥ c2‖ξ‖2N − c3 and a(x, η)η ≥ c4|η| − c5, a.e. x ∈ R
N , for all

ξ ∈ R
N , η ∈ R,

(P4)
N∑

j=1

(aj(x, ξ)− aj(x, ξ̃))(ξj − ξ̃j) ≥ γ1‖ξ − ξ̃‖2N , a.e. x ∈ R
N , for all ξ, ξ̃ ∈ R

N

and (a(x, η)− a(x, η̃))(η − η̃) ≥ γ2|η − η̃|2, a.e. x ∈ R
N , for all η, η̃ ∈ R.

(H2) |aj(x, ξ)− aj(x̃, ξ̃)| ≤ ψ(x, x̃)(‖ξ‖N + ‖ξ̃‖N ) + φ(x, x̃)‖ξ − ξ̃‖N + σ(x, x̃), for all
j = 1, . . . , N , x, x̃, ξ, ξ̃ ∈ R

N ; where ψ(·, ·), φ(·, ·), σ(·, ·) are nonnegative functions
belonging to C(RN×R

N )∩L∞(RN×R
N ) and ψ(x, x̃) = ψ(x̃, x), ψ(x, x) = σ(x, x) = 0

(H3) |a(x, η) − a(x̃, η̃)| ≤ χ(x, x̃)(|η| + |η̃|) + µ(x, x̃)|η − η̃|, where χ has the same
properties like ψ and µ has the same properties like φ.
The hypotheses above inssure that, for each parameter T ∈ Fk,∞, the problem (4)

has a unique solution.
Fix T0 ∈ Fk,∞ an initial parameter.
We proved in [5], in a more general setting, using some results about parametric
variational inequalities of G. Kassay and J. Kolumbán [4]:

Theorem 2.1. Suppose that (H1)-(H3) are satisfied. Let T0 ∈ Fk,∞ and u0 ∈ H1(C)
fixed. If u0 is a solution of the variational problem (4) for T0, then this problem is
stable under perturbations, that is: there exists a neighborhoodW0 of T0 and a mapping
u : W0 → H1(C) such that for each T ∈ W0, u(T ) = uT is a solution of (4) for T ,
u(T0) = u0 and u is continuous at T0.

In the following section we will also study the existence of Gâteaux and Hadamard
derivatives for the function u(T ). To this end, we will use some ideas from W. Alt
and J. Kolumbán, [1].

3. Existence of derivatives with respect to the domain

Consider a variational problem of the type (4), with an arbitrary operator A :
Fk,∞ ×H1(C)→ (H1(C))∗.

For u ∈ H1(C), we denote dGAu(T0, u0)(u) = lim
ε↘0

A(T0, u0 + εu)−A(T0, u0)
ε

the

Gâteaux derivative at the point u0, in the direction u, of the application u �→ A(T0, u).
It takes place, similar to W. Alt and J. Kolumbán [1]:

Lemma 3.1. Let u0 ∈ H1(C), T0 ∈ Fk,∞ and suppose that there exists a neighbor-
hood U0 of u0 such that the application u �→ A(T0, u) is strongly monotone on U0 and
Gâteaux differentiable at u0. Then the operator dGAu(T0, u0) is invertible.

Proof. Let u ∈ H1(C) be fixed. For ε > 0, sufficiently small, we have, from the defi-
nition of the Gâteaux derivative in the direction u and from the strong monotonicity

〈dGAu(T0, u0)(u), u〉 = 〈dGAu(T0, u0)(u)− A(T0, u0 + εu)−A(T0, u0)
ε

, u〉

+
1
ε2

〈A(T0, u0 + εu)−A(T0, u0), εu〉 ≥ o(ε) + α‖u‖2,
with lim

ε↘0
o(ε) = 0 and α > 0. We get in this way that 〈dGAu(T0, u0)(u), u〉 ≥ α‖u‖2,

for every u ∈ H1(C), and so u �→ dGAu(T0, u0)(u) is invertible.
�
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As defined in the first section, Fk,∞ is the set of essentially bounded, with essen-
tially bounded derivatives, perturbations of the identity. According to F. Murat and
J. Simon [7], it takes place:

Theorem 3.1. If ‖θ‖W k,∞(RN )N is sufficiently small, then I + θ belongs to Fk,∞.

In view of this, consider θ0 ∈ W k,∞(RN )N and θ ∈ W k,∞(RN )N , sufficiently small
such that T0 = I + θ0 belongs to Fk,∞. For a function f defined on Fk,∞ we define
the Gâteaux derivative at T0, in the direction θ:

dGf(T0)(θ) = lim
ε↘0

f(T0 + εθ)− f(T0)
ε

.

Theorem 3.2. Consider the variational problem (4). Suppose that the following
conditions take place:
(i) u0 is a solution of the problem corresponding to the initial parameter T0,
(ii) A is consistent in T at (T0, u0),
(iii) the applications A(T, ·) are uniformly strongly monotone, continuous from the
line segments of H1(C) to (H1(C))∗ with the weak topology, for every T ∈ Fk,∞ and
every u ∈ H1(C),
(iv) the application u �→ A(T0, u) is Gâteaux differentiable at the point u0, there exists
a ball B((T0, u0), r) such that for every (T, u) from that ball there exists the Gâteaux
derivative dGAu(T, u)(w), for every w ∈ H1(C),
(v) for every w ∈ H1(C), the application (T, u) �→ dGAu(T, u)(w) is continuous at
(T0, u0),
(vi) for a direction θ̃ ∈ W k,∞(RN )N there exists the Gâteaux derivative

dGAT (T0, u0)(θ̃) = lim
ε↘0

A(T0 + εθ̃, u0)−A(T0, u0)
ε

.

Then, the variational problem (4) is stable with respect to the perturbations of the
domain and there exists the Gâteaux derivative dGu(T0)(θ̃) of the function u (as a
function of the parameter T , see Theorem 2.1 ), and is given by:

dGu(T0)(θ̃) = −dGAu(T0, u0)−1(dGAT (T0, u0)(θ̃)).

Proof. We use the ideea of the proof from [1]. Lemma 3.1 assures the inversability of
the application w �→ dGAu(T0, u0)(w), so we can define

ũ = −dGAu(T0, u0)−1(dGAT (T0, u0)(θ̃)).

We will show that this is the Gâteaux derivative of u at T0, in the direction θ̃.
From the strong monotonicity we have:

α‖u(T0 + εθ̃)− u(T0)− εũ‖2
≤ 〈A(T0 + εθ̃, u(T0 + εθ̃))−A(T0 + εθ̃, u0 + εũ), u(T0 + εθ̃)− u0 − εũ〉.

From 〈A(T0 + εθ̃, u(T0 + εθ̃)), v〉 = 0 for every v ∈ H1(C) we get

‖u(T0 + εθ̃)− u(T0)− εũ‖ ≤ α−1‖A(T0 + εθ̃, u(T0) + εũ)‖.
The proof will be complete if we show that:

‖A(T0 + εθ̃, u(T0) + εũ)‖ = o(ε),

for ε sufficiently small.
From (vi) we have

A(T0 + εθ̃, u0)−A(T0, u0)− dGAT (T0, u0)(εθ̃) = o1(ε)ε,
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where lim
ε↘0

‖o1(ε)‖ = 0.
Define the function g : [0, ε]→ (H1(C))∗ by

g(s) = A(T0 + εθ̃, u0 + sũ)−A(T0 + εθ̃, u0)− dGAu(T0, u0)(sũ).

From (iv), g is differentiable at the right, with

g′+(s) = dGAu(T0 + εθ̃, u0 + sũ)(ũ)− dGAu(T0, u0)(ũ).

By (v), ‖g′+(s)‖ ≤ o2(ε), with lim
ε↘0

o2(ε) = 0.

Further on, from the Mean value Theorem, this implies:

‖g(ε)‖ = ‖g(ε)− g(0)‖ ≤ sup
s∈[0,ε]

‖g′+(s)‖ε ≤ o2(ε)ε.

From dGAu(T0, u0)(εũ) = −dGAT (T0, u0)(εθ̃) and from 〈A(T0, u0), v〉 = 0, for every
v ∈ H1(C), follows

‖A(T0 + εθ̃, u(T0) + εũ)‖(H1(C))∗ = sup
v∈H1(C)
‖v‖≤1

〈A(T0 + εθ̃, u0 + εũ), v〉

= sup
v∈H1(C)
‖v‖≤1

{〈A(T0 + εθ̃, u0 + εũ)−A(T0 + εθ̃, u0)− dGAu(T0, u0)(εũ), v〉

+ 〈A(T0 + εθ̃, u0)−A(T0, u0)− dGAT (T0, u0)(εθ̃), v〉
}

≤ (o2(ε) + ‖o1(ε)‖)ε = o(ε).

which concludes the proof. �

A similar result takes place for the Hadamard derivative with respect to the pa-
rameter T .

Theorem 3.3. If, for the variational problem (4) the conditions (i)-(v) from Theorem
3.2 are satisfied and moreover:
(vi)′ for a direction θ̃ there exists the Hadamard derivative

dHAT (T0, u0)(θ̃) = lim
ε↘0

θ→θ̃

A(T0 + εθ, u0)−A(T0, u0)
ε

,

then there exists the Hadamard derivative dHu(T0)(θ̃) and is given by the formula

dHu(T0)(θ̃) = −dGAu(T0, u0)−1(dHAT (T0, u0)(θ̃)). (5)

3.1. Conditions that assure the existence of the Hadamard derivative. We
state in what follows some supplementary hypotheses on the functions a : RN×R → R

and A = (a1, . . . , aN ) : RN×R
N → R

N which will imply the conditions from Theorem
3.3 and will permit applying this theorem to the problem (4), with the operator A
given by (3), that is problem (2):

(H4) a(x, ·) is differentiable with respect to the second variable and | ∂
∂η

a(x, η)| ≤ M1,

for every η ∈ R, x ∈ R
N ,

(H5) for every i = 1, . . . , N , the function ai(x, ·) is partially differentiable with respect
to each ξj , with continuous partial derivatives and ‖∇ξai(x, ξ)‖N ≤ M2i, for every
ξ, x ∈ R

N ,

(H6) | ∂
∂η

a(x, η)− ∂

∂η
a(x̃, η̃)| ≤ M3‖x̃− x‖N +M4,
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‖∇ξai(x, ξ) − ∇ξai(x̃, ξ̃)‖N ≤ M5i‖x̃ − x‖N + M6, for every x, x̃, ξ, ξ̃ ∈ R
N ,

η, η̃ ∈ R,
(H7) a(·, η) and ai(·, ξ), i = 1, . . . , N are partially differentiable with respect to each

xj , with continuous partial derivatives and:
∣∣ ∂a
∂xj

(x, η)
∣∣ ≤ M7,

∣∣ ∂ai

∂xj
(x, ξ)

∣∣ ≤ M8ij , for every x, ξ ∈ R
N , η ∈ R,

(H8) the functions k and k1 from the hypothesis (P2) belong to the space L∞.

Theorem 3.4. Consider the variational problem (4):

uT ∈ H1(C) such that 〈A(T, uT ), v〉 = 0 ∀v ∈ H1(C)

where A : Fk,∞ ×H1(C)→ (H1(C))∗ is given by (3).
If the hypotheses (H1)− (H8) are satisfied, then there exists the Hadamard derivative
for the solution u of the variational problem (as a function of the parameter T ), at
T0, in the direction θ̃.

The proof is technical, it uses the properties of the Gâteaux and Hadamard deriva-
tives, the Theorem of dominated convergence and the hypotheses (H1)− (H8).

Remark 3.1. The formula (5) can be also written in the form:

−dGAu(T0, u0)(dHu(T0)(θ̃)) = dHAT (T0, u0)(θ̃). (6)

Remark 3.2. In many applications the initial parameter T0 is the identity I. We
have then:

〈dGAu(I, u0)(w), v〉 =
N∑

i=1

∫
C

∇ξai(X,∇u0(X))∇w(X)(∇v(X))idX

+
∫

C

∂

∂η
a(X,u0(X))w(X)v(X)dX

〈dHAT (I, u0)(θ̃), v〉 =
N∑

i=1

∫
C

ai(X,∇u0(X))(∇v(X))itr(Jθ̃(X))dX

+
N∑

i=1

∫
C

ai(X,∇u0(X))(−Jθ̃t(X)∇v(X))idX

+
N∑

i=1

∫
C

[∇xai(X,∇u0(X))θ̃(X)

−∇ξai(X,∇u0(X))(Jθ̃t(X)∇u0(X))
]
(∇v(X))idX

+
∫

C

a(X,u0(X))v(X)tr(Jθ̃(X))dX +
∫

C

∇xa(X,∇u0(X))θ̃(X)v(X)dX.

In what follows we will write explicitly the formula (6) for an example of linear
variational problem, also studied in J.Sokolowski and J.P. Zolésio [9].

Example 3.1. Consider the problem∫
Ω

B∇u(x)∇v(x)dx+
∫
Ω

bu(x)v(x)dx = 0 ∀v ∈ H1(Ω), (7)
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where B is a matrix with
N∑

i=1

N∑
k=1

bikξkξi ≥ α‖ξ‖2N , with α > 0 constant and b noneg-

ative. We identify A(x, ξ) = Bξ, so ai =
N∑

k=1

bikξk and a(x, η) = bη, which satisfies

(H1)− (H8).
Denoting the Hadamard derivative of u, at I, in the direction θ̃: ũ = dHu(I)(θ̃), the
formula (6) becomes:

−
∫

C

B∇ũ(X)∇v(X)dX −
∫

C

bũ(X)v(X)dX

=
∫

C

B∇u0(X)∇v(X)divθ̃(X)dX −
∫

C

B∇u0(X)(Jθ̃(X)∇v(X))dX

−
∫

C

b(Jθ̃(X)∇u0(X))∇v(X) +
∫

C

bu0(X)v(X)divθ̃(X)dX,

for each v ∈ H1(C).
Taking B = In and b = 0, we can find the Hadamard derivative of u in a direction
V (0) ∈ W k,∞(RN )N , V (0)(X) being ”the initial speed of the particle X” (see also [9],
pg.105.):

−
∫

C

∇ũ(X)∇v(X)dX =
∫

C

∇u0(X)∇v(X)divV (0)dX

−
∫

C

[JV (0)t(X) + JV (0)(X)]∇u0(X)∇v(X)dX.

Appendix. Let H be a reflexive Banach space, H∗ its dual, W a topological space.
A map S : W ×H → H∗ is called consistent in w at (w0, x0) if, for each 0 < r ≤ 1,
there exists a neighborhood Wr of w0, a function β :Wr → R, continuous at w0, with
β(w0) = 0, such that for each w ∈ Wr, there exists yw ∈ H such that ‖yw−x0‖ ≤ β(w)
and

〈S(w, yw), z − yw〉+ β(w)‖z − yw‖ ≥ 0,
for each z ∈ H, with r < ‖z − yw‖ ≤ 2.
The maps S(w, ·) : H → H∗ are called uniformly strongly monotone on W0 ⊂ W if
there exists a positive constant α such that for all w ∈ W0 and x, y ∈ H, x �= y, we
have

〈S(w, x)− S(w, y), x− y〉 ≥ α‖x− y‖2.
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