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Abstract.

Objectives
This paper proposes an infectious disease model incorporating two new model compartments,

hospitalization, and intensive care unit.

Methods
The model dynamics are analyzed using the local and global stability theory of nonlinear sys-

tems of ordinary differential equations. For the numerical simulations, we used the Rosenbrock
method for stiff initial value problems. We obtained numerical simulations using MAPLE soft-

ware. The returned MAPLE procedure was called only for points inside the range on which

the method evaluated the numerical solution of the system with specified initial conditions.
Results

• We proposed a new model to describe the dynamics of microparasitic infections.

• Numerical simulations revealed that the proposed model fitted with the expected be-
haviour of microparasitic infections with ”acute epidemicity.”

• The numerical simulations showed consistency in the behaviour of the system.

Conclusions
• The model proposed has ”robust” dynamics, supported by the global stability of its

endemic state and the consistency of the numerical simulations regarding the model’s

time evolution behaviour.
• The introduction of the hospitalization and intensive care unit compartments in the

proposed model revealed that it is essential to consider such policies in the case of

”acute epidemicity” of microparasitic infections.
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1. Introduction

The SIR model is a classical model for studying the dynamics of infectious diseases
introduced by Kermack and McKendrick in 1927 [13] following prior works conducted
by Ross and Hudson [21] [22] [23]. Ronald Ross [21] gives a relevant, intuitive classifi-
cation of infectious diseases, classifying the pandemic-type of diseases, based on their
”acute epidemicity,” separately from any other types of infectious diseases. In that
perspective, COVID 19 fits the profile of being a pandemic-type of infectious disease.
We designed a model addressing the ”acute epidemicity” of an infectious disease pri-
marily, which can be applied to any disease within this class, including COVID 19.
In designing our model, we followed the expected findings of Ross [22] looking for
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solutions whose graphs ”are bell-shaped and nearly symmetrical, and tend to decline
more slowly than they rose.” Based on Ross’ intuitive classification, we show that the
model that we propose behaves in the way described by Ross, but the disease may not
disappear. We will have two scenarios for the equilibrium states of the model. One
scenario when we have only the disease-free equilibrium state and the second scenario
when besides the disease-free equilibrium state, we have an endemic equilibrium state,
suggesting that the disease did not ”disappear entirely after the acute epidemicity.”
Therefore, we extend the class of infectious diseases with ”acute epidemicity” de-
scribed by Ross to the class of diseases as presented by Hethcote [10] ”Classification
of infectious diseases by agent and mode of transmission,” where the SIR model is
applicable. The mathematical understanding of the dynamics of infectious diseases
is a persistent endeavour by many researchers in the field; [1] [10] [11] [15] are a few
examples of works by experts in the field of modeling infectious diseases.

The following system of ordinary differential equations describes the classical epi-
demic model for microparasitic infections (i.e., caused by bacteria or viruses) [11]

dS

dt
=− βSI,

dI

dt
=βSI − γII,

dR

dt
=γII.

(1.1)

where S(t), I(t), and R(t) represent the number of susceptible, infected, and recovered
individuals at time t, β is the transmission rate of the disease, and γI is the recovery
rate of infected individuals. The model (1.1) is called a compartmentalized model
where the three compartments, S, I, and R are assumed to be homogeneously mixed,
i.e., there are no separations amongst the three compartments at any time. The
assumptions on which the model (1.1) is based are the followings:
• The system is closed. The total size of the population considered for the model

is constant, i.e., N = S + I +R = constant, as dS
dt + dI

dt + dR
dt = 0.

• The first equation indicates that the rate at which the susceptible individuals
become infected is proportional to the number of susceptible individuals that
come in contact with the infected individuals; this gives the rationale of the term
βSI.

• The third equation indicates that the rate at which the recovered individuals be-
come immune to the disease (i.e., unable to transmit the disease) is proportional
to the number of infected individuals.

In the model that we propose, we modify the SIR model (1.1) by first introducing
the following new variables (new compartments):
• H(t) representing the number of hospitalized individuals who do not require to

be in the Intensive Care Unit (ICU).
• U(t) representing the number of hospitalized individuals in ICU.
• D(t) representing the deceased individuals (cumulative) due to the infection.

The compartment D is a standard variable in epidemiological modeling. It has high
relevance, especially for the pandemic-type of infectious diseases where the mortality
factor is an essential component to consider. The SIR epidemic model including the
compartment D is called SIRD model, and [2] [3] [16] [19] are a few examples that
address pandemic-type of infectious diseases; COVID 19.
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For pandemic-type of infectious diseases, the rapidly increasing frequency of hos-
pitalization and ICU are significant variables of the proposed model, as the COVID
19 reality revealed.

We propose the following autonomous system of differential equations, a Suscep-
tible - Infected - Hospitalized - (Intensive Care) Unit - Recovered - Deceased model
(SIHURD)

dS

dt
=τN − β

N
SI − τS,

dI

dt
=
β

N
SI − (γI + ν + η + µI + τ)I,

dH

dt
=νI − (τ + γH + µH)H,

dU

dt
=ηI − (τ + γU + µU )U,

dR

dt
=αIγII + αHγHH + αUγUU − τR,

dD

dt
=µII + µHH + µUU − dD.

(1.2)

• N : initial alive human population size.
• β : transmission rate of disease from an infected individual to a susceptible

individual; same meaning as for the SIR model (1.1).
• τ : natural mortality rate of human individuals assumed constant for each coun-

try.
• γI : global average recovery rate over all infected individuals.
• γH : global average recovery rate over all hospitalized individuals who do not

require being in ICU.
• γU : global average recovery rate over all individuals who require being in ICU.
• αI : dimensionless multiple of γI indicating the expected recovery rate of each

infected individuals specific to the unit of time used. αI ∈ (0, 1], with αI = 1
when the recovery of an infected individual from the compartment I is completed.

• αH : dimensionless multiple of γH indicating the expected recovery rate of each
infected individuals specific to the unit of time used. αH ∈ (0, 1], with αH = 1
when the recovery of an infected individual from the compartment H is com-
pleted.

• αU : dimensionless multiple of γU indicating the expected recovery rate of each
infected individuals specific to the unit of time used. αU ∈ (0, 1], with αU = 1
when the recovery of an infected individual from the compartment U is com-
pleted.

• ν : rate of infected individuals who need to be hospitalized but do not require
being in ICU.

• η : rate of infected individuals who require being in ICU.
• µI : microparasitic-induced averaged fatality rate of infected individuals.
• µH : microparasitic-induced averaged fatality rate of hospitalized individuals who

were not in ICU.
• µU : microparasitic-induced averaged fatality rate of individuals deceased in ICU.
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• 1/d : mean caring duration of deceased human individuals. Thus, d denotes the
burial rate of deceased human individuals (i.e., natural death rate). Here, we
assume that d ≥ τ.

The SIHURD model (1.2) takes in account the following assumptions:
• It has vital dynamics [11]: we consider that the death balances the birth at a

constant rate τ , so we take into account the inflow of newborns into the suscepti-
ble compartment at rate τN and deaths in the compartments S, I, H, U , and R
at rates τS, τI, τH, τU , and τR respectively. As well, according to [12] infants
can become infected with the virus that causes COVID-19.

• The system is not closed because we take in account the burial rate, d. Thus,
the rate at which the total population varies (including death as well) is given
by

d

dt
(S + I +H + U +R+D) =

τ [N − (S + I +H + U +R)]− (1− αI) I − (1− αH)H − (1− αU )U − dD. (1.3)

Without the burial rate d, and when all infected population is recovered, i.e.,
αI = αH = αU = 1, considering the system (1.2) with N = S(t) + I(t) +H(t) +
U(t) +R(t), then the system would be closed. Indeed, we would have

d

dt
(S + I +H + U +R+D) = 0 ⇒ S + I +H + U +R+D = constant. (1.4)

which proves the consistency of our modeling with respect to the SIR classic
endemic model [11]. Our assumption is based on the fact that mortality happens
regardless of epidemic microparasitic infections.

In the subsequent sections, we will discuss the theoretical aspect of the model
(1.2) and numerical simulations exemplifying the behaviour of the model. Lastly,
we will summarize our results showing how they suit a pandemic-type scenario for
microparasitic infections.

2. Equilibrium states and nullclines

The dynamical system (1.2) has an endemic equilibrium point

Ŝ =
N

R0
,

Î =
τN(R0 − 1)

β
,

Ĥ =
ντN(R0 − 1)

βσH
,

Û =
ητN(R0 − 1)

βσU
,

R̂ =
N(R0 − 1)(ηαUγUσH + ναHγHσU + αIγIσHσU )

βσHσU
,

D̂ =
τN(R0 − 1)(ηµUσH + νµHσU + µIσHσU )

βdσHσU
, (2.1)
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where

R0 =
β

γI + ν + η + µI + τ
, σH = γH + µH + τ, σU = γU + µU + τ, (2.2)

if

R0 =
β

γI + ν + η + µI + τ
> 1. (2.3)

If R0 ≤ 1 the dynamical system (1.2) has only the disease-free equilibrium point

S = N, I = 0, H = 0, U = 0, R = 0, D = 0. (2.4)

The number R0 in (2.3) is called reproduction number and explanations regarding
it can be found in [28] & [6].

In this article, we are interested in discussing the dynamical system (1.2) when it
has an endemic equilibrium point, i.e., R0 > 1.

The dynamics of the two compartments S and I in the SIHURD model (1.2) is
independent of the dynamics of the compartments H, U , R, and D, i.e., they behave
like a self-contained system within the SIHURD system. Thus, their dynamics will
be unchanged within the dynamics of the whole system (1.2). But the compartment
I will affect the dynamics of the other components of the system (1.2), H, U , R, and
D, respectively.

The directional vector field for the compartments S and I in (1.2), when S 6= 0, is

~F = FS~i+ FI~j, (2.5)

where

FS =βS

[
τ

β

(
N

S
− 1

)
− I

N

]
,

FI =βI

(
S

N
− 1

R0

)
. (2.6)

From (2.6) we get the S-nullcline and the I-nullcline, respectively

I =
τN

β

(
N

S
− 1

)
,

S =
N

R0
.

(2.7)

Based on the nullclines (2.7), the (S, I) components of the endemic equilibrium
point (2.1) represent always a stable equilibrium point in the S − I solution plane.
Indeed we have

FS < 0 for I >
τN

β

(
N

S
− 1

)
,

FS > 0 for I <
τN

β

(
N

S
− 1

)
,

FI < 0 for S <
N

R0
,

FI > 0 for S >
N

R0
. (2.8)
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Figure 1 is a generic picture showing the nullclines (2.7) that reveal the dynamics
of the two compartments S and I in the SIHURD model (1.2). Based on (2.8), the
trajectories of S and I will always have the tendency to merge towards the equilibrium
point

Ŝ =
N

R0
,

Î =
τN(R0 − 1)

β
,

(2.9)

in the S−I solution plane. Based on the explanations that we gave above regarding the
dynamics of the compartments S and I, we notice, as expected, that the equilibrium
point (2.9) is the same as Ŝ and Î in (2.1).

Figure 1. The nullclines (2.7), the equilibrium point (2.9), and the
behavior the the vector field (2.5) as revealed in (2.8).

In the next section we discuss about the local stability of the equilibrium point
(2.9). We will show that it is asymptotically stable, followed by a proof of its global
asymptotic stable behaviour.

3. Local and global stability of the equilibrium point (2.9)

Linearizing the system
dS

dt
=τN − β

N
SI − τS,

dI

dt
=
β

N
SI − β

R0
I,

(3.1)

about its equilibrium point (2.9), we obtain the following Jacobian matrix representing
the coefficient matrix of the linearized system of (3.1) about its equilibrium point (2.9)

JSI =

[
−τR0 − β

R0

τ(R0 − 1) 0

]
, (3.2)
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with the following eigenvalues

λ1,2 =
1

2

−τR2
0 ±

√
τ2R4

0 − 4βτR2
0 + 4βτR0

R0
. (3.3)

Because we work under the case R0 > 1, then

τR2
0 >

√
τ2R4

0 − 4NβτR2
0 + 4NβτR0. (3.4)

Thus, Re(λ1,2) < 0, which shows that the equilibrium point (2.9) is an asymptoti-
cally stable hyperbolic point. The equilibrium point (2.9) is
• Asymptotically stable node if Im(λ1,2) = 0.
• Asymptotically stable focus if Im(λ1,2) 6= 0.

(a) Trajectories of the system (3.1)
with initial conditions S(0) =10(10+
i), I(0) = 10 + i, i = 1..5.

(b) Phase portrait and trajectory of
the system (3.1) with initial condi-
tions S(0) = 100, I(0) = 20.

Figure 2. Phase portrait and trajectories for the system (3.1) on
the time range t = 0..2500 for N = 1000, τ = 0.001, β = 0.4417,
ν = 0.013, η = 0.001, γI = 0.1384, and µI = 0.00542.

Figure 2 shows the dynamics of the system (3.1) in a scenario of infection spread
at a rate β = 0.4417/unit time within a community of individuals N = 1000 with
a natural mortality rate (measured per 1000 population) τ = 0.001 (i.e., the rate
of natural death is 0.1%) throughout 2500 units of time. We considered the rate of
hospitalization of individuals not requiring to be in ICU, ν = 0.013/unit time, and
the rate of infected individuals needing to be in ICU, η = 0.001/unit time. Lastly,
we considered the recovery rate of infected individuals, γI = 0.1384/unit time, and
the fatality rate due to infection, µI = 0.00542/unit time. Thus, the trajectories of
the system will approach the equilibrium state given by the equilibrium point (2.9),
which, for this scenario, is an asymptotically stable focus.

Let us notice from Figure 2 that if we started with nonnegative initial conditions,
S(0) = S0 ≥ 0 & I(0) = I0 ≥ 0, then S(t) ≥ 0 & I(t) ≥ 0 for all t ≥ 0. Indeed, let us
show that every time when the initial conditions for the system (3.1) are nonnegative,
then the trajectories of the system will be residing in R2

+.
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Theorem 3.1. If S(0) = S0 ≥ 0 & I(0) = I0 ≥ 0, then the trajectories of the system
(3.1) will reside in R2

+, i.e., S(t) ≥ 0 & I(t) ≥ 0 for all t ≥ 0.

Proof. The first equation of the system (3.1) can be viewed as a first order ordinary
differential equation in standard form as follows

dS

dt
+ P (t)S +Q(t) = 0, P (t) =

β

N
I(t) + τ, Q(t) = −τN. (3.5)

The equation (3.5), under the initial condition S(0) = S0, has the unique solution

S(t) = e−
∫ t
0 ( βN I(w)+τ) dw

∫ t

0

τNe−
∫ t
0 ( βN I(w)+τ) dw dv + S0e

−
∫ t
0 ( βN I(w)+τ) dw. (3.6)

If S0 ≥ 0, from (3.6), it follows immediately that S(t) ≥ 0 for all t ≥ 0.
The second equation of the system (3.1) can be viewed as a separable ordinary

differential equation in the variable I as follows

dI

I
= β

(
S

N
− 1

R0

)
. (3.7)

The equation (3.7), under the initial condition I(0) = I0, has the unique solution

I(t) = I0e
∫ t
0
β
(
S(w)
N − 1

R0

)
dw
. (3.8)

If I0 ≥ 0, from (3.8), it follows immediately that I(t) ≥ 0 for all t ≥ 0. �

Regarding the global stability of the equilibrium point (2.9), we will prove it
through the following theorem.

Theorem 3.2. The endemic equilibrium point (2.9) is globally asymptotically stable.

Proof. Following the ideas from [14] & [26], let us define the following function

V (S, I) = S − Ŝ − Ŝ ln

(
S

Ŝ

)
+ I − Î − Î ln

(
I

Î

)
, (3.9)

on some neighbourhood U of
(
Ŝ, Î

)
. Because the set U \

{(
Ŝ, Î

)}
cannot be empty, it

is important to note that we work under the assumption that the endemic equilibrium

point
(
Ŝ, Î

)
satisfies Ŝ > 1 and Î > 1.

The function V satisfies the following properties
• V is C1 on U ,

• V
(
Ŝ, Î

)
= 0,

• V (S, I) > 0 for all (S, I) ∈ U \
{(
Ŝ, Î

)}
. We have

∇V =

[
1− N

R0S
, 1− τN(R0 − 1)

βI

]T
, (3.10)

which show that the only critical point of V is the endemic equilibrium point(
Ŝ, Î

)
, and V

(
Ŝ, Î

)
= 0 is the absolute minimum of V in any neighbourhood

U of
(
Ŝ, Î

)
. Therefore V (S, I) > 0 for all (S, I) ∈ U \

{(
Ŝ, Î

)}
.
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As well, let us prove that

V̇ = ∇V ·
[
Ṡ, İ

]T
< 0, ∀(S, I) ∈ U \

{(
Ŝ, Î

)}
. (3.11)

Indeed, using (3.10) and the equations in (3.1) we obtain

∇V ·
[
Ṡ, İ

]T
= −τ(N −R0S)2

R0S
< 0, ∀(S, I) ∈ U \

{(
Ŝ, Î

)}
,

which shows that (3.11) is true.
Hence, the function V defined in (3.9) is a strict Lyapunov function, therefore the

endemic equilibrium point (2.9) is globally asymptotically stable. �

4. Local and global stability of the equilibrium point (2.1)

Linearizing the system (1.2) about its equilibrium point (2.1), we obtain the following
Jacobian matrix representing the coefficient matrix of the linearized system of (1.2)
about its equilibrium point (2.1).

J =


−τR0 − β

R0
0 0 0 0

τ(R0 − 1) 0 0 0 0 0
0 ν −σH 0 0 0
0 η 0 −σU 0 0
0 αIγI αHγH αUγU −τ 0
0 µI µH µU 0 −d

 , (4.1)

with the following eigenvalues

λ1,2 =
1

2

−τR2
0 ±

√
τ2R4

0 − 4βτR2
0 + 4βτR0

R0
,

λ3 = −σH , λ4 = −σU , λ5 = −τ, λ6 = −d. (4.2)

Because we work under the case R0 > 1 (when we have an endemic equilibrium state),
then

τR2
0 >

√
τ2R4

0 − 4βτR2
0 + 4βτR0,

and therefore Re(λ1,2) < 0. As well, we have λi < 0, i = 3..6. Thus, the equilibrium
point (2.1) is an asymptotically stable hyperbolic point.

As an important note, based on the explanations that we gave in Section 2 re-
garding the dynamics of the compartments S and I, we notice, as expected, that the
eigenvalues λ1,2 in (4.2) are the same as the eigenvalues λ1,2 in (3.3).

Theorem 4.1. If S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, H(0) = H0 ≥ 0, U(0) = U0 ≥ 0,
R(0) = S0 ≥ 0, & D(0) = D0 ≥ 0, then the trajectories of the system (1.2) will reside
in R6

+.

Proof. The proof of S(t) ≥ 0 & I(t) ≥ 0 for all t ≥ 0 is identical with the proof given
in the Theorem 3.1. Let us prove that H(t) ≥ 0 & U(t) ≥ 0 for all t ≥ 0.

The third and fourth equations of the system (1.2) can be viewed as first order
ordinary differential equations in standard form, as follows

dH

dt
+ P (t)H +Q(t) = 0, P (t) = σH , Q(t) = −νI(t), σH = τ + γH + µH , (4.3)
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dU

dt
+ P (t)U +Q(t) = 0, P (t) = σU , Q(t) = −ηI(t), σU = τ + γU + µU . (4.4)

The equations (4.3) and (4.4), under the initial conditions H(0) = H0 and U(0) =
U0 respectively, have the following unique solutions

H(t) = e−σHt
∫ t

0

eσHwνI(w) dw + e−σHtH0, (4.5)

U(t) = e−σU t
∫ t

0

eσUwηI(w) dw + e−σU tU0. (4.6)

If H0 ≥ 0 and U0 ≥ 0, and because I(t) ≥ 0 for all t ≥ 0, from (4.5) and (4.6), it
follows immediately that H(t) ≥ 0 & U(t) ≥ 0 for all t ≥ 0.

The fifth and sixth equations of the system (1.2) can be viewed as first order
ordinary differential equations in standard form, as follows

dR

dt
+ P (t)R+Q(t) = 0, P (t) = τ, Q(t) = − (αIγII(t) + αHγHH(t) + αUγUU(t)) ,

(4.7)
dD

dt
+ P (t)D +Q(t) = 0, P (t) = d, Q(t) = − (µII(t) + µHH(t) + µUU(t)) . (4.8)

The equations (4.7) and (4.8), under the initial conditions R(0) = R0 and D(0) =
D0 respectively, have the following unique solutions

R(t) = e−τt
∫ t

0

eτw (αIγII(w) + αHγHH(w) + αUγUU(w)) dw + e−τtR0, (4.9)

D(t) = e−dt
∫ t

0

edw (µII(w) + µHH(w) + µUU(w)) dw + e−dtD0. (4.10)

If R0 ≥ 0 and D0 ≥ 0, and because I(t) ≥ 0, H(t) ≥ 0, and U(t) ≥ 0 for all t ≥ 0,
from (4.9) and (4.10), it follows immediately that R(t) ≥ 0 & D(t) ≥ 0 for all t ≥ 0.

Hence, under nonnegative initial conditions, the trajectories of the system (1.2)
reside in R6

+. �

To prove that the endemic equilibrium state (2.1) is globally asymptotically stable,
the Theorem 3.2 shows that the compartments S and I are globally asymptotically
stable towards the equilibrium state, i.e.,

lim
t→∞

S(t) = Ŝ =
N

R0
,

lim
t→∞

I(t) = Î =
τN(R0 − 1)

β
, (4.11)

for any initial conditions S(0) = S0 ≥ 0 and I(0) = I0 ≥ 0 within R2
+. To prove that

the compartments H, U , R, and D are globally asymptotically stable towards the
equilibrium state (2.1), we will use the Theorem 4.1 as follows

For the compartment H

lim
t→∞

H(t) = lim
t→∞

(
e−σHt

∫ t

0

eσHwνI(w) dw + e−σHtH0

)
= lim
t→∞

∫ t
0
eσHwνI(w) dw

eσHt
.

Using L’Hospital Rule we obtain

lim
t→∞

H(t) = lim
t→∞

eσHtνI(t)

σHeσHt
=
νÎ

σH
=
ντN(R0 − 1)

βσH
= Ĥ, (4.12)
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which shows the global asymptotic stability of the compartment H.
For the compartment U

lim
t→∞

U(t) = lim
t→∞

(
e−σU t

∫ t

0

eσUwηI(w) dw + e−σU tU0

)
= lim
t→∞

∫ t
0
eσUwηI(w) dw

eσU t
.

Using L’Hospital Rule we obtain

lim
t→∞

U(t) = lim
t→∞

eσU tηI(t)

σUeσU t
=
ηÎ

σU
=
ητN(R0 − 1)

βσU
= Û , (4.13)

which shows the global asymptotic stability of the compartment U .
For the compartment R, using L’Hospital Rule we obtain

lim
t→∞

R(t) = lim
t→∞

(
e−τt

∫ t

0

eτw (αIγII(w) + αHγHH(w) + αUγUU(w)) dw + e−τtR0

)
= lim
t→∞

∫ t
0
eτw (αIγII(w) + αHγHH(w) + αUγUU(w)) dw

eτt

= lim
t→∞

eτt (αIγII(t) + αHγHH(t) + αUγUU(t))

τeτt

=

(
αIγI Î + αHγHĤ + αUγU Û

)
τ

=
N(R0 − 1)(ηαUγUσH + ναHγHσU + αIγIσHσU )

βσHσU
= R̂, (4.14)

which shows the global asymptotic stability of the compartment R.
For the compartment D, using L’Hospital Rule we obtain

lim
t→∞

D(t) = lim
t→∞

(
e−dt

∫ t

0

edw (µII(w) + µHH(w) + µUU(w)) dw + e−dtD0

)
= lim
t→∞

∫ t
0
edw (µII(w) + µHH(w) + µUU(w)) dw

edt

= lim
t→∞

edt (µII(t) + µHH(t) + µUU(t))

dedt
=
µI Î + µHĤ + µU Û

d

=
τN(R0 − 1)(ηµUσH + νµHσU + µIσHσU )

βdσHσU
= D̂, (4.15)

which shows the global asymptotic stability of the compartment D.
Hence the endemic equilibrium state (2.1) is globally asymptotically stable. �

5. Model (1.2) applied on COVID-19 data

We tested our model (1.2) with data obtained from [19] and other values and trends
obtained from statistical literature. We simulated Figure 3a, c&d from [19] and our
model provided significant similarities with those figures. We chose the data as shown
in Table 1 below.

We chose the initial condition of the system (1.2) following [19]

S0 = N, I0 = 1, H0 = 0, U0 = 0, R0 = 0, D0 = 0. (5.1)
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Parameters Values Data source
N 143.93·1e+7 [19]

β 0.912 (day−1) [19]

τ 1e-5 (day−1) [29]

ν 0.063 (day−1) Assumed
γI γI0e

δγI1 t [19]

γI0 0.216 (day−1) [19]

γI1 0.055 (day−1) [19]
δ 0.82 Assumed
γH γI Assumed
γU γI Assumed
µI µI0e

−ξµI1 t [19]

µI0 0.035 (day−1) [19]

µI1 0.078 (day−1) [19]
ξ 2 Assumed
µH 150µI Assumed
µU 150µI Assumed

η 0.0145 (day−1) Assumed
αI 0.1 Assumed recovery in 10 days
αH αI/2 Assumed
αU αI/4 Assumed

d 7.542·1e-03 (day−1) [5]

Table 1. Table of parameters.

Our model provided the following results as shown in Figures 3 & 4. Figure 3 has
a very high resemblance with Figure 3a, c&d from [19] and we used the same time-
span used by the authors in [19] i.e., the first 250 days of the COVID-19 pandemic
in China, starting February 11, 2020. Additionally, our model provided, in Figure
4, a prediction of the hospitalized and ICU compartments but unfortunately, we did
not have available data about hospitalization and ICU to necessarily support these
estimates.

Figure 3. The trajectories of the compartments I, R, and D of the
system (1.2) with initial conditions (5.1).

As an important exercise for the performance of our model (1.2), we tested it
on a pandemic-type scenario with assumed values mentioned in Table 2 below. We
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Figure 4. The trajectories of the compartments H and U of the
system (1.2) with initial conditions (5.1).

considered the data to uniformly represent the global Earth’s population (rounded-
up from the data declared on June 16, 2021, in [29]) regardless of the geographic
location, i.e., we considered all the inhabited geographic areas to be affected in the
same way by the pandemic. This scenario is under the assumption that pandemic
policies, specifically hospitalization and ICU, would be applied uniformly throughout
all inhabited areas. As well, we considered the vital dynamics of the system (1.2) to
be the same, globally.

We considered the initial condition of the system (1.2) as follows

S0 = 107, I0 = 106, H0 = 105, U0 = 104, R0 = 108, D0 = 104. (5.2)

Figure 5 shows the dynamics of the compartment I with the compartments H, U ,
R, D from the system (1.2).

Parameters Values
N 7.57·1e+9

β 0.4417 (month−1)

τ 0.000001 (month−1)

ν 0.13 (month−1)

γI 0.1384 (month−1)

γH 0.3 (month−1)

γU 0.5 (month−1)

µI 0.00542 (month−1)

µH 0.01 (month−1)

µU 0.08 (month−1)

η 0.045 (month−1)
αI,H,U 1, i.e., assumed recovery in less than 1 month

d 1.05 (month−1)

Table 2. Table of parameters.

The numerical simulations in Figure 5 revealed that the infection spread ”almost”
instantaneously, within one month (we considered the time unit to be 1 month). Thus,
the model (1.2) fits the ”acute epidemicity” factor of COVID-19.

The numerical simulations in Figure 6 show the correlation between hospitalization
and ICU and the effect of hospitalization on the recovery and death compartments.
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Figure 5. The dynamics of the compartment I with the compart-
ments H, U , R, and D, respectively.

Figure 6. The dynamics of the compartment H with the compart-
ments U , R, and D, respectively.

Figure 7. The dynamics of the compartment U with the compart-
ments R, and D, respectively, and the dynamics of the compartment
R with the compartment D.

Our simulations revealed that the downturn trend (i.e., when H and U start decreas-
ing) is happening after 3 month for the correlation between the hospitalization and
ICU. The effect of hospitalization on the recovery compartment shows that while the
hospitalization increases, the recovery does increase. After the ”wave” passed (which
in our simulations turned out to be about 4 month), the hospitalization decreases
while the recovery will keep increasing. The effect of hospitalization on the death
compartment shows that death will increase during the ”wave”, after which both
hospitalization and death decreased for the remaining time. In our simulations, the
”wave” effect of the infection kept consistent at about 4 month.

The numerical simulations in Figure 7 show the effect of ICU on the recovery and
death compartments and the correlation between the recovery and death compart-
ments, respectively. For the impact of ICU on the recovery and death compartments,
we noticed similar behaviour as the impact of hospitalization on the recovery and
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Figure 8. The trajectories of the compartments I, H, and U of the
system (1.2) with initial conditions (5.2).

Figure 9. The trajectories of the compartments R and D of the
system (1.2) with initial conditions (5.2).

death compartments. During the ”wave” period, ICU increased while recovery in-
creased and death increased as well, and after the ”wave”, ICU decreased while re-
covery kept on increasing and death started decreasing. Let us remember that in
the hospitalization compartment, we have individuals who do not require ICU. Our
simulations showed that the highest number of deaths occurred during the ”wave”
period, which was to be expected regarding the correlation between the recovery and
death compartments.

Figures 8 & 9 show the trajectories of the compartments I, H, U , R, and D of the
system (1.2) with the initial conditions (5.2), which reveal the ”wave” period being
about 4 month.

6. Summary

In this article, we realized the following main goals
• We proposed a model to describe the dynamics of microparasitic infections, in-

troducing two new compartments for infected human individuals, H and U re-
spectively.

• Our numerical simulations revealed that the proposed model fitted with the
expected behaviour of microparasitic infections with ”acute epidemicity.” The
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graphs of the compartments I, H, U , and D are bell-shaped and tend to decline
more slowly than they rise [22].

• The numerical simulations presented in Section 5 show consistency in the be-
haviour of the system (1.2). Thus, we may say that the system has ”robust”
dynamics. As well, the ”robust” dynamics of the model (1.2) is supported by
the global stability of its endemic state when R0 > 1. At the same time, the
free-disease equilibrium state of (1.2), i.e., when R0 ≤ 1 is a globally asymptotic
state and the proof is immediate.

The introduction of the compartments H and U in the model (1.2) revealed that it
is essential to consider such policies in the case of ”acute epidemicity” of microparasitic
infections. In our numerical simulations in Section 5, we could not find any data for
hospitalization and ICU, except for the microparasitic-induced averaged fatality rate
of individuals deceased in ICU, µU [18] and we used it in the exercise performed in
that section. In both simulations in Section 5, the compartments H and U displayed
the expected behaviour of rising fast at the beginning of a ”wave” of infections. Once
the ”wave” has passed, we saw a slower decline for each of them. With our present
reality of COVID-19, we noticed that hospitalization and ICU played a critical role
(if not crucial) in fighting it. We believe that nations should develop such policies, i.
e., hospitalization and ICU, in the circumstances like COVID-19. The measurement
of such compartments could improve the understanding of the necessary capacity for
hospitalization and ICU in combating microparasitic infections like COVID-19.

This article’s primary mission was to bring to the world a new look to a classic SIR
model and emphasize the importance of considering the compartments H and I into
the ”mix” of equations. Thus, in the present paper, we did not focus on parameter
estimation. The next step in our research will be to perform parameter estimation
and use our model to obtain results based on these estimations.

It is important to mention the preoccupations of statisticians (mainly) in obtaining
parameter estimations. For example, in [9] [27] and [7] the authors developed straight-
forward approaches for parameter estimation based on nonlinear least squares. Other
statisticians applied robust methods for analyzing contaminated data to estimate
parameters. In [4] the authors applied a robust M-estimator to study parameter es-
timation for differential equations. As well, in [20] the authors applied a generalized
profiling method to estimate parameters for nonlinear ordinary differential equations.
In [17] the authors studied large-sample theoretical properties for the methods pro-
posed in [4].

In the exercise performed in Section 5, we used the parameter estimation for β, γI ,
and µI from [2], where the authors mentioned that the data on which they performed
the parameter estimation was actual data obtained from the Ministry of Health of
Brazil between February 25, 2020, to March 30, 2020. Thus, we used the time unit of 1
month. As mentioned, we applied this data uniformly to the whole global population
as of June 16, 2021, and the graph for the I-compartment that we obtained in Figure
8 shows some interesting resemblance with the Figure 5 in [2].

For future research, we will estimate the parameters in the model (1.2) by apply-
ing the data smoothing methods developed in [20] (see also [4] & [17]). Compared
to other popular estimation approaches for ODEs, these methods are advanced in
computational efficiency. They are suited to the realization of statistical objectives
such as inference and interval estimation, which are also our goals in future research.



MODIFIED SIR MODEL 307

We obtained the numerical simulations by using MAPLE software. The initial value
problem for the model (1.2) is a stiff problem [8] [24] [25]. We used the Rosenbrock
method with relative error 10−6, and the returned procedure was called only for points
inside the range on which the method evaluated the numerical solution of the system
(1.2) with specified initial conditions. The accuracy of the numerical solutions was
also facilitated by increasing the digits environment in MAPLE to 30 (the default
digits environment in MAPLE is 10).
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