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A necessary optimality condition for quasiconvex functions on
closed convex sets

Abdessamad Jaddar and Youssef Jabri

Abstract. We give a necessary condition for a minimization problem of a quasiconvex func-
tion on a closed convex set.
We consider both the case of a general convex set and a convex set defined as a constrained
set for a quasiconvex lower semicontinuous function.
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1. Introduction

Consider the following problem

(P)
{

minimize f(x),
x ∈ C ⊂ X,

where X is a Banach space, f : X → R ∪ {+∞} and C is closed convex.
When looking in the literature for the nature of the different conditions on the

objective function f , to solve (P), we see clearly that convexity and differentiability
are among the widely used candidates. Nevertheless, even the case when f is neither
convex nor differentiable has been treated. In [1], Clarke considered the case of locally
Lipschitz functions and in [2], Huriart-Urruty the case of directionally stable functions.
The two papers may be considered as contributions to the case where f enjoys some
“regularity.”

A natural question is the following: what happens when f is less regular, but
instead possesses some kind of convexity?

In this paper, we consider the case of quasiconvex functions. The case of pseudo-
convex functions is treated in the paper [3].

The paper is organized as follows. After recalling basic definitions and properties,
we give in the next section a necessary condition for a minimization problem of a
quasiconvex function on a closed convex set. We consider both the case of a general
convex set and a convex set defined as a constrained set for a quasiconvex l.s.c.
function.

As usual, X∗ denotes the dual space to X and 〈., .〉 the duality pairing. The interval
[a, b] = {a+ t(b−a); 0 ≤ t ≤ 1} and ]a, b[= [a, b] \ {a, b}. The open ball centered at x
with radius r is denoted by Br(x). We recall that f is quasiconvex if for any x, y ∈ X
and any z ∈ [x, y],

f(z) ≤ max{f(x), f(y)}.
This is equivalent to the convexity of the level sets

Sλ(f) = {x ∈ X; f(x) ≤ λ}, ∀λ ∈ R.
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We will also use the notations S̃λ(f) = {x ∈ X; f(x) < λ}, Lf (x0) = {x ∈
X; f(x) = f(x0)}. The mapping f is lower semicontinuous (l.s.c.) if Sλ(f) is closed
for any λ ∈ R. When f is l.s.c., the Clarke-Rockafellar generalized derivative at x
along the direction v is defined by

f↗(x; v) = sup
ε>0

lim sup
y→f x, t↘0

inf
u∈Bε(v)

f(y + tu)− f(y)
t

,

where y →f x means that y → x and f(y) → f(x). The Clarke-Rockafellar subdiffer-
ential of f at x is

∂f(x) = {x∗ ∈ X∗; 〈x∗, v〉 ≤ f↗(x; v),∀v ∈ X}
with the convention that ∂f(x) is empty if f is not finite at x. And last, the normal
cone of f to the convex set C at x0 is defined by

N(C;x0) = {x∗ ∈ X∗; 〈x∗, x − x0〉 ≤ 0,∀x ∈ C}.

2. Minimization of quasiconvex functions

The main result in this note is a necessary optimality condition for (P) when f is
l.s.c., quasiconvex and C is any nonempty closed convex set of X.

Theorem 2.1. Let X be a Banach space, f : X → R ∪ {+∞} a l.s.c. quasiconvex
function. Consider x0 ∈ C such that

(i) S̃f(x0)(f) is nonempty and open in X.
(ii) ∂f(x0) is nonempty and w∗-compact in X∗.
(iii) There is ν > 0 such that

∀x ∈ Bν(x0) ∩ L(x0), 0 �∈ ∂f(x). (2.1)

Then, a necessary condition for x0 to be a solution of (P) is that

0 ∈ ∂f(x0) +N(C;x0). (2.2)

We will need in the sequel the following technical result.

Lemma 2.1. Let X be a Banach space, f : X → R ∪ {+∞} a l.s.c. quasiconvex
function.
(i) If ∂f(x0) is nonempty and there exists r > 0 such that 0 �∈ ∂f(x) for all x ∈
Br(x0) ∩ Lf (x0), then

N(Sf(x0)(f);x0) = Cl(R+∂f(x0)).

(ii) If moreover, ∂f(x0) is w∗-compact, then

N(Sf(x0)(f);x0) = R
+∂f(x0).

Proof. The point (i) is [4, Proposition 2.2].
(ii) Consider a sequence (λnx∗

n)n ⊂ R
+∂f(xn) such that λnx∗

n ⇀ y∗. We will show
that y∗ = λx∗ for some λ ∈ R

+ and x∗ ∈ ∂f(x0).
Since x∗

n ∈ ∂f(x0) which is w∗-compact, for a subsequence still denoted (x∗
n)n,

x∗
n ⇀ x∗ ∈ ∂f(x0).

Claim 2.1. There is a subsequence of (λn)n, still denoted (λn)n, that is bounded.
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Indeed, 0 �∈ ∂f(x0). By the Hahn-Banach theorem, there is v ∈ X such that

〈z∗, v〉 > 0, ∀z∗ ∈ ∂f(x). (2.3)

But λnx∗
n ⇀ y∗, so there is M > 0 such that

M ≥ 〈λnx∗
n, v〉.

If (λn)n was not bounded, for some subsequence, still denoted (λn)n, we would get

M

λn
≥ 〈x∗

n, v〉 > 0.

At the limit, we get a contradiction with (2.3). �

Proof of Theorem 2.1. Suppose that x0 minimizes f on C. Then, C ∩ S̃f(x0)(f) = ∅.
But S̃f(x0)(f) ∩ Bν/4(x0) �= ∅ because otherwise, x0 would be a local minimum of f
and hence we would get 0 ∈ ∂f(x0), a contradiction with (iii). Moreover,

(
C ∩ Cl(Bν/2(x0))

) ∩ (
S̃f(x0)(f) ∩ Bν/2(x0)

)
= ∅.

By (i) and using the Hahn-Banach theorem, there is u∗ ∈ X∗ such that u∗ �= 0 and
α ∈ R separating our two convex sets:

〈u∗, x〉 ≤ α, ∀x ∈ S̃f(x0)(f) ∩ Bν/2(x0), (2.4)

〈u∗, x〉 ≥ α, ∀x ∈ C ∩ Bν/2(x0), (2.5)

We claim that 〈u∗, x0〉 = α. Indeed, it is clear that 〈u∗, x0〉 ≥ α. It suffices to check
the other sense.

Let us first show the equality

Cl(S̃f(x0)(f)) ∩ Bν/2(x0) = Sf(x0)(f) ∩ Bν/2(x0). (2.6)

Indeed, the sense “⊂” is obvious. For the inverse inclusion, suppose by contradiction
that there is
y ∈

(
Cl(S̃f(x0)(f)) ∩ Bν/2(x0)

)
\(Sf(x0)(f) ∩ Bν/2(x0)

)
. Then, y ∈ Lf (x0)∩Bν/2(x0)

and it is a local minimum of f . So 0 ∈ ∂f(y), a contradiction with (iii).
By (2.6), there is a sequence (xn)n ⊂ S̃f(x0)(f) ∩Bν/2(x0) such that xn → x0 and

hence 〈u∗, x0〉 ≤ α.
Using (2.4), 〈u∗, x0〉 = α and (2.6), we get

u∗ ∈ N(S̃f(x0)(f) ∩ Bν/2(x0);x0) = property of normal cones
N(Cl(S̃f(x0)(f)) ∩ Bν/2(x0);x0) = by (2.6)
N(Sf(x0)(f) ∩ Bν/2(x0);x0) = property of normal cones
N(Sf(x0)(f);x0)

By (ii) of Lemma 2.1, we have

u∗ ∈ R
+∂f(x0).

And by (2.5),
−u∗ ∈ N(C;x0).

Since u∗ �= 0, we finally get

0 ∈ ∂f(x0) +N(C;x0).

�
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This theorem refines the results of Clarke [1] and Huriart-Urruty [2] when we
require the quasiconvexity of the objective function f .

In the case where the general convex set C, appearing in the former result, is
defined as the constraint set

C = {x ∈ X; g(x) ≤ 0},
where g is quasiconvex, l.s.c. and satisfies (ii), (iii) of Theorem 1, and g(x0) = 0, we
obtain the following result where appears some Lagrange multiplier.

Corollary 2.1. A necessary condition for x0 to solve (P) is

0 ∈ ∂f(x0) + λ∂g(x0), for some λ > 0.

Note that g(x0) = 0 is not a problem, we could always use h(t) = g(x) − g(x0).
For the proof, it suffices to use Theorem 2.1 and Lemma 2.1(ii).

The case where f is pseudoconvex is investigated in an other paper [3].
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