A necessary optimality condition for quasiconvex functions on closed convex sets

Abdessamad Jaddar and Youssef Jabri

Abstract. We give a necessary condition for a minimization problem of a quasiconvex function on a closed convex set. We consider both the case of a general convex set and a convex set defined as a constrained set for a quasiconvex lower semicontinuous function.

2000 Mathematics Subject Classification. 52A40, 32F17.

Key words and phrases. minimization, quasiconvexity, normal cone, subdifferential.

1. Introduction

Consider the following problem

$$\begin{align*}
\text{(P)} & \quad \begin{array}{ll}
\text{minimize} & f(x), \\
\text{subject to} & x \in C \subset X,
\end{array}
\end{align*}$$

where X is a Banach space, $f: X \to \mathbb{R} \cup \{+\infty\}$ and C is closed convex.

When looking in the literature for the nature of the different conditions on the objective function f, to solve (P), we see clearly that convexity and differentiability are among the widely used candidates. Nevertheless, even the case when f is neither convex nor differentiable has been treated. In [1], Clarke considered the case of locally Lipschitz functions and in [2], Huriart-Urruty the case of directionally stable functions. The two papers may be considered as contributions to the case where f enjoys some “regularity.”

A natural question is the following: what happens when f is less regular, but instead possesses some kind of convexity?

In this paper, we consider the case of quasiconvex functions. The case of pseudo-convex functions is treated in the paper [3].

The paper is organized as follows. After recalling basic definitions and properties, we give in the next section a necessary condition for a minimization problem of a quasiconvex function on a closed convex set. We consider both the case of a general convex set and a convex set defined as a constrained set for a quasiconvex l.s.c. function.

As usual, X^* denotes the dual space to X and $\langle \cdot, \cdot \rangle$ the duality pairing. The interval $[a, b] = \{a + t(b - a); \ 0 \leq t \leq 1\}$ and $\overline{a, b} = [a, b] \setminus \{a, b\}$. The open ball centered at x with radius r is denoted by $B_r(x)$. We recall that f is quasiconvex if for any $x, y \in X$ and any $z \in [x, y]$,

$$f(z) \leq \max\{f(x), f(y)\}.$$

This is equivalent to the convexity of the level sets

$$S_\lambda(f) = \{x \in X; f(x) \leq \lambda\}, \quad \forall \lambda \in \mathbb{R}.$$

Received: September 24, 2004.
We will also use the notations \(\tilde{S}_\lambda(f) = \{ x \in X : f(x) < \lambda \} \), \(L_f(x_0) = \{ x \in X : f(x) = f(x_0) \} \). The mapping \(f \) is lower semicontinuous (l.s.c.) if \(\tilde{S}_\lambda(f) \) is closed for any \(\lambda \in \mathbb{R} \). When \(f \) is l.s.c., the Clarke-Rockafellar generalized derivative at \(x \) along the direction \(v \) is defined by

\[
 f'(x; v) = \sup_{\varepsilon > 0} \limsup_{y \to f(x)} \inf_{t \in \mathbb{R}} \frac{f(y + tu) - f(y)}{t},
\]

where \(y \to f \) means that \(y \to x \) and \(f(y) \to f(x) \). The Clarke-Rockafellar subdifferential of \(f \) at \(x \) is

\[
 \partial f(x) = \{ x^* \in X^* : \langle x^*, v \rangle \leq f'(x; v), \forall v \in X \}
\]

with the convention that \(\partial f(x) \) is empty if \(f \) is not finite at \(x \). And last, the normal cone of \(f \) to the convex set \(C \) at \(x_0 \) is defined by

\[
 N(C; x_0) = \{ x^* \in X^* : \langle x^*, x - x_0 \rangle \leq 0, \forall x \in C \}.
\]

2. Minimization of quasiconvex functions

The main result in this note is a necessary optimality condition for (\(\mathcal{P} \)) when \(f \) is l.s.c., quasiconvex and \(C \) is any nonempty closed convex set of \(X \).

Theorem 2.1. Let \(X \) be a Banach space, \(f : X \to \mathbb{R} \cup \{ +\infty \} \) a l.s.c. quasiconvex function. Consider \(x_0 \in C \) such that

(i) \(\tilde{S}_f(x_0)(f) \) is nonempty and open in \(X \).

(ii) \(\partial f(x_0) \) is nonempty and \(w^* \)-compact in \(X^* \).

(iii) There is \(\nu > 0 \) such that

\[
 \forall x \in B_\nu(x_0) \cap L(x_0), \quad 0 \notin \partial f(x).
\]

(2.1)

Then, a necessary condition for \(x_0 \) to be a solution of (\(\mathcal{P} \)) is that

\[
 0 \in \partial f(x_0) + N(C; x_0).
\]

(2.2)

We will need in the sequel the following technical result.

Lemma 2.1. Let \(X \) be a Banach space, \(f : X \to \mathbb{R} \cup \{ +\infty \} \) a l.s.c. quasiconvex function.

(i) If \(\partial f(x_0) \) is nonempty and there exists \(r > 0 \) such that \(0 \notin \partial f(x) \) for all \(x \in B_r(x_0) \cap L_f(x_0) \), then

\[
 N(S_f(x_0)(f); x_0) = \text{Cl}(\mathbb{R}^+ \partial f(x_0)).
\]

(ii) If moreover, \(\partial f(x_0) \) is \(w^* \)-compact, then

\[
 N(S_f(x_0)(f); x_0) = \mathbb{R}^+ \partial f(x_0).
\]

Proof. The point (i) is [4, Proposition 2.2].

(ii) Consider a sequence \((\lambda_n, x_n^*) \subseteq \mathbb{R}^+ \partial f(x_0) \) such that \(\lambda_n x_n^* \to y^* \). We will show that \(y^* = \lambda x^* \) for some \(\lambda \in \mathbb{R}^+ \) and \(x^* \in \partial f(x_0) \).

Since \(x_n^* \in \partial f(x_0) \) which is \(w^* \)-compact, for a subsequence still denoted \((x_n^*) \), \(x_n^* \to x^* \in \partial f(x_0) \).

Claim 2.1. There is a subsequence of \((\lambda_n) \), still denoted \((\lambda_n) \), that is bounded.
Indeed, \(0 \notin \partial f(x_0)\). By the Hahn-Banach theorem, there is \(v \in X\) such that
\[
\langle z^*, v \rangle > 0, \quad \forall z^* \in \partial f(x).
\] (2.3)

But \(\lambda_n x_n^* \to y^*\), so there is \(M > 0\) such that
\[
M \geq \langle \lambda_n x_n^*, v \rangle.
\]
If \((\lambda_n)_n\) was not bounded, for some subsequence, still denoted \((\lambda_n)_n\), we would get
\[
\frac{M}{\lambda_n} \geq \langle x_n^*, v \rangle > 0.
\]
At the limit, we get a contradiction with (2.3).

\[\square\]

Proof of Theorem 2.1. Suppose that \(x_0\) minimizes \(f\) on \(C\). Then, \(C \cap \tilde{S}_f(x_0)(f) = \emptyset\).

But \(\tilde{S}_f(x_0)(f) \cap B_{\nu/4}(x_0) \neq \emptyset\) because otherwise, \(x_0\) would be a local minimum of \(f\) and hence we would get \(0 \in \partial f(x_0)\), a contradiction with (iii). Moreover,
\[
(C \cap Cl(B_{\nu/2}(x_0))) \cap (\tilde{S}_f(x_0)(f) \cap B_{\nu/2}(x_0)) = \emptyset.
\]

By (i) and using the Hahn-Banach theorem, there is \(u^* \in X^*\) such that \(u^* \neq 0\) and \(\alpha \in \mathbb{R}\) separating our two convex sets:
\[
\langle u^*, x \rangle \leq \alpha, \quad \forall x \in \tilde{S}_f(x_0)(f) \cap B_{\nu/2}(x_0),
\] (2.4)
\[
\langle u^*, x \rangle \geq \alpha, \quad \forall x \in C \cap B_{\nu/2}(x_0),
\] (2.5)

We claim that \(\langle u^*, x_0 \rangle = \alpha\). Indeed, it is clear that \(\langle u^*, x_0 \rangle \geq \alpha\). It suffices to check the other sense.

Let us first show the equality
\[
Cl(\tilde{S}_f(x_0)(f)) \cap B_{\nu/2}(x_0) = S_f(x_0)(f) \cap B_{\nu/2}(x_0).
\] (2.6)

Indeed, the sense “\(\subset\)” is obvious. For the inverse inclusion, suppose by contradiction that there is \(y \in \left(\text{Cl}(\tilde{S}_f(x_0)(f)) \cap B_{\nu/2}(x_0)\right) \setminus (S_f(x_0)(f) \cap B_{\nu/2}(x_0))\). Then, \(y \in L_f(x_0) \cap B_{\nu/2}(x_0)\) and it is a local minimum of \(f\). So \(0 \in \partial f(y)\), a contradiction with (iii).

By (2.6), there is a sequence \((x_n)_n \subset \tilde{S}_f(x_0)(f) \cap B_{\nu/2}(x_0)\) such that \(x_n \to x_0\) and hence \(\langle u^*, x_0 \rangle \leq \alpha\).

Using (2.4), \(\langle u^*, x_0 \rangle = \alpha\) and (2.6), we get
\[
u^* \in \begin{cases}
N(\tilde{S}_f(x_0)(f) \cap B_{\nu/2}(x_0); x_0) & \text{property of normal cones} \\
N(\text{Cl}(\tilde{S}_f(x_0)(f)) \cap B_{\nu/2}(x_0); x_0) & \text{by (2.6)} \\
N(S_f(x_0)(f) \cap B_{\nu/2}(x_0); x_0) & \text{property of normal cones} \\
N(S_f(x_0)(f); x_0)
\end{cases}
\]

By (ii) of Lemma 2.1, we have
\[
u^* \in \mathbb{R}^+ \partial f(x_0).
\]

And by (2.5),
\[-\nu^* \in N(C; x_0).
\]
Since \(\nu^* \neq 0\), we finally get
\[
0 \in \partial f(x_0) + N(C; x_0).
\]
\[\square\]
This theorem refines the results of Clarke [1] and Huriart-Urruty [2] when we require the quasiconvexity of the objective function f. In the case where the general convex set C, appearing in the former result, is defined as the constraint set

$$C = \{ x \in X; g(x) \leq 0 \},$$

where g is quasiconvex, l.s.c. and satisfies (ii), (iii) of Theorem 1, and $g(x_0) = 0$, we obtain the following result where appears some Lagrange multiplier.

Corollary 2.1. A necessary condition for x_0 to solve (P) is

$$0 \in \partial f(x_0) + \lambda \partial g(x_0),$$

for some $\lambda > 0$.

Note that $g(x_0) = 0$ is not a problem, we could always use $h(t) = g(x) - g(x_0)$. For the proof, it suffices to use Theorem 2.1 and Lemma 2.1(ii).

The case where f is pseudoconvex is investigated in an other paper [3].

References

(Abdessamad Jaddar) University Mohamed I, Department of Mathematics, Oujda, Morocco

E-mail address: ajaddar@voila.fr

(Youssef Jabri) University Mohamed I, Department of Mathematics, Oujda, Morocco

E-mail address: jabri@sciences.univ-oujda.ac.ma