A necessary optimality condition for quasiconvex functions on closed convex sets

Abdessamad Jaddar and Youssef Jabri

> AbStract. We give a necessary condition for a minimization problem of a quasiconvex function on a closed convex set.
> We consider both the case of a general convex set and a convex set defined as a constrained set for a quasiconvex lower semicontinuous function.

2000 Mathematics Subject Classification. 52A40, 32F17.
Key words and phrases. minimization, quasiconvexity, normal cone, subdifferential.

1. Introduction

Consider the following problem

$$
(\mathcal{P}) \quad\left\{\begin{array}{c}
\text { minimize } f(x), \\
x \in C \subset X,
\end{array}\right.
$$

where X is a Banach space, $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ and C is closed convex.
When looking in the literature for the nature of the different conditions on the objective function f, to solve (\mathcal{P}), we see clearly that convexity and differentiability are among the widely used candidates. Nevertheless, even the case when f is neither convex nor differentiable has been treated. In [1], Clarke considered the case of locally Lipschitz functions and in [2], Huriart-Urruty the case of directionally stable functions. The two papers may be considered as contributions to the case where f enjoys some "regularity."

A natural question is the following: what happens when f is less regular, but instead possesses some kind of convexity?

In this paper, we consider the case of quasiconvex functions. The case of pseudoconvex functions is treated in the paper [3].

The paper is organized as follows. After recalling basic definitions and properties, we give in the next section a necessary condition for a minimization problem of a quasiconvex function on a closed convex set. We consider both the case of a general convex set and a convex set defined as a constrained set for a quasiconvex l.s.c. function.

As usual, X^{*} denotes the dual space to X and $\langle.,$.$\rangle the duality pairing. The interval$ $[a, b]=\{a+t(b-a) ; 0 \leq t \leq 1\}$ and $] a, b[=[a, b] \backslash\{a, b\}$. The open ball centered at x with radius r is denoted by $B_{r}(x)$. We recall that f is quasiconvex if for any $x, y \in X$ and any $z \in[x, y]$,

$$
f(z) \leq \max \{f(x), f(y)\}
$$

This is equivalent to the convexity of the level sets

$$
S_{\lambda}(f)=\{x \in X ; f(x) \leq \lambda\}, \quad \forall \lambda \in \mathbb{R} .
$$

[^0]We will also use the notations $\tilde{S}_{\lambda}(f)=\{x \in X ; f(x)<\lambda\}, L_{f}\left(x_{0}\right)=\{x \in$ $\left.X ; f(x)=f\left(x_{0}\right)\right\}$. The mapping f is lower semicontinuous (l.s.c.) if $S_{\lambda}(f)$ is closed for any $\lambda \in \mathbb{R}$. When f is l.s.c., the Clarke-Rockafellar generalized derivative at x along the direction v is defined by

$$
f^{\nearrow}(x ; v)=\sup _{\varepsilon>0} \limsup _{y \rightarrow f_{f} x, t \searrow 0} \inf _{u \in B_{\varepsilon}(v)} \frac{f(y+t u)-f(y)}{t}
$$

where $y \rightarrow_{f} x$ means that $y \rightarrow x$ and $f(y) \rightarrow f(x)$. The Clarke-Rockafellar subdifferential of f at x is

$$
\partial f(x)=\left\{x^{*} \in X^{*} ;\left\langle x^{*}, v\right\rangle \leq f^{\nearrow}(x ; v), \forall v \in X\right\}
$$

with the convention that $\partial f(x)$ is empty if f is not finite at x. And last, the normal cone of f to the convex set C at x_{0} is defined by

$$
N\left(C ; x_{0}\right)=\left\{x^{*} \in X^{*} ;\left\langle x^{*}, x-x_{0}\right\rangle \leq 0, \forall x \in C\right\} .
$$

2. Minimization of quasiconvex functions

The main result in this note is a necessary optimality condition for (\mathcal{P}) when f is l.s.c., quasiconvex and C is any nonempty closed convex set of X.

Theorem 2.1. Let X be a Banach space, $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ a l.s.c. quasiconvex function. Consider $x_{0} \in C$ such that
(i) $\tilde{S}_{f\left(x_{0}\right)}(f)$ is nonempty and open in X.
(ii) $\partial f\left(x_{0}\right)$ is nonempty and w^{*}-compact in X^{*}.
(iii) There is $\nu>0$ such that

$$
\begin{equation*}
\forall x \in B_{\nu}\left(x_{0}\right) \cap L\left(x_{0}\right), \quad 0 \notin \partial f(x) \tag{2.1}
\end{equation*}
$$

Then, a necessary condition for x_{0} to be a solution of (\mathcal{P}) is that

$$
\begin{equation*}
0 \in \partial f\left(x_{0}\right)+N\left(C ; x_{0}\right) \tag{2.2}
\end{equation*}
$$

We will need in the sequel the following technical result.
Lemma 2.1. Let X be a Banach space, $f: X \rightarrow \mathbb{R} \cup\{+\infty\}$ a l.s.c. quasiconvex function.
(i) If $\partial f\left(x_{0}\right)$ is nonempty and there exists $r>0$ such that $0 \notin \partial f(x)$ for all $x \in$ $B_{r}\left(x_{0}\right) \cap L_{f}\left(x_{0}\right)$, then

$$
N\left(S_{f\left(x_{0}\right)}(f) ; x_{0}\right)=C l\left(\mathbb{R}^{+} \partial f\left(x_{0}\right)\right)
$$

(ii) If moreover, $\partial f\left(x_{0}\right)$ is w^{*}-compact, then

$$
N\left(S_{f\left(x_{0}\right)}(f) ; x_{0}\right)=\mathbb{R}^{+} \partial f\left(x_{0}\right)
$$

Proof. The point (i) is [4, Proposition 2.2].
(ii) Consider a sequence $\left(\lambda_{n} x_{n}^{*}\right)_{n} \subset \mathbb{R}^{+} \partial f\left(x_{n}\right)$ such that $\lambda_{n} x_{n}^{*} \rightharpoonup y^{*}$. We will show that $y^{*}=\lambda x^{*}$ for some $\lambda \in \mathbb{R}^{+}$and $x^{*} \in \partial f\left(x_{0}\right)$.

Since $x_{n}^{*} \in \partial f\left(x_{0}\right)$ which is w^{*}-compact, for a subsequence still denoted $\left(x_{n}^{*}\right)_{n}$, $x_{n}^{*} \rightharpoonup x^{*} \in \partial f\left(x_{0}\right)$.

Claim 2.1. There is a subsequence of $\left(\lambda_{n}\right)_{n}$, still denoted $\left(\lambda_{n}\right)_{n}$, that is bounded.

Indeed, $0 \notin \partial f\left(x_{0}\right)$. By the Hahn-Banach theorem, there is $v \in X$ such that

$$
\begin{equation*}
\left\langle z^{*}, v\right\rangle>0, \quad \forall z^{*} \in \partial f(x) \tag{2.3}
\end{equation*}
$$

But $\lambda_{n} x_{n}^{*} \rightharpoonup y^{*}$, so there is $M>0$ such that

$$
M \geq\left\langle\lambda_{n} x_{n}^{*}, v\right\rangle
$$

If $\left(\lambda_{n}\right)_{n}$ was not bounded, for some subsequence, still denoted $\left(\lambda_{n}\right)_{n}$, we would get

$$
\frac{M}{\lambda_{n}} \geq\left\langle x_{n}^{*}, v\right\rangle>0
$$

At the limit, we get a contradiction with (2.3).
Proof of Theorem 2.1. Suppose that x_{0} minimizes f on C. Then, $C \cap \tilde{S}_{f\left(x_{0}\right)}(f)=\varnothing$. But $\tilde{S}_{f\left(x_{0}\right)}(f) \cap B_{\nu / 4}\left(x_{0}\right) \neq \varnothing$ because otherwise, x_{0} would be a local minimum of f and hence we would get $0 \in \partial f\left(x_{0}\right)$, a contradiction with (iii). Moreover,

$$
\left(C \cap C l\left(B_{\nu / 2}\left(x_{0}\right)\right)\right) \cap\left(\tilde{S}_{f\left(x_{0}\right)}(f) \cap B_{\nu / 2}\left(x_{0}\right)\right)=\varnothing
$$

By (i) and using the Hahn-Banach theorem, there is $u^{*} \in X^{*}$ such that $u^{*} \neq 0$ and $\alpha \in \mathbb{R}$ separating our two convex sets:

$$
\begin{gather*}
\left\langle u^{*}, x\right\rangle \leq \alpha, \quad \forall x \in \tilde{S}_{f\left(x_{0}\right)}(f) \cap B_{\nu / 2}\left(x_{0}\right), \tag{2.4}\\
\left\langle u^{*}, x\right\rangle \geq \alpha, \quad \forall x \in C \cap B_{\nu / 2}\left(x_{0}\right) \tag{2.5}
\end{gather*}
$$

We claim that $\left\langle u^{*}, x_{0}\right\rangle=\alpha$. Indeed, it is clear that $\left\langle u^{*}, x_{0}\right\rangle \geq \alpha$. It suffices to check the other sense.

Let us first show the equality

$$
\begin{equation*}
C l\left(\tilde{S}_{f\left(x_{0}\right)}(f)\right) \cap B_{\nu / 2}\left(x_{0}\right)=S_{f\left(x_{0}\right)}(f) \cap B_{\nu / 2}\left(x_{0}\right) \tag{2.6}
\end{equation*}
$$

Indeed, the sense " \subset " is obvious. For the inverse inclusion, suppose by contradiction that there is
$y \in\left(C l\left(\tilde{S}_{f\left(x_{0}\right)}(f)\right) \cap B_{\nu / 2}\left(x_{0}\right)\right) \backslash\left(S_{f\left(x_{0}\right)}(f) \cap B_{\nu / 2}\left(x_{0}\right)\right)$. Then, $y \in L_{f}\left(x_{0}\right) \cap B_{\nu / 2}\left(x_{0}\right)$ and it is a local minimum of f. So $0 \in \partial f(y)$, a contradiction with (iii).

By (2.6), there is a sequence $\left(x_{n}\right)_{n} \subset \tilde{S}_{f\left(x_{0}\right)}(f) \cap B_{\nu / 2}\left(x_{0}\right)$ such that $x_{n} \rightarrow x_{0}$ and hence $\left\langle u^{*}, x_{0}\right\rangle \leq \alpha$.

Using (2.4), $\left\langle u^{*}, x_{0}\right\rangle=\alpha$ and (2.6), we get

$$
\begin{array}{rlr}
u^{*} \in & N\left(\tilde{S}_{f\left(x_{0}\right)}(f) \cap B_{\nu / 2}\left(x_{0}\right) ; x_{0}\right)= & \text { property of normal cones } \\
& N\left(C l\left(\tilde{S}_{f\left(x_{0}\right)}(f)\right) \cap B_{\nu / 2}\left(x_{0}\right) ; x_{0}\right)= & \\
& N\left(S_{f\left(x_{0}\right)}(f) \cap B_{\nu / 2}\left(x_{0}\right) ; x_{0}\right)= & \text { property of normal cones } \\
& N\left(S_{f\left(x_{0}\right)}(f) ; x_{0}\right) &
\end{array}
$$

By (ii) of Lemma 2.1, we have

$$
u^{*} \in \mathbb{R}^{+} \partial f\left(x_{0}\right)
$$

And by (2.5),

$$
-u^{*} \in N\left(C ; x_{0}\right) .
$$

Since $u^{*} \neq 0$, we finally get

$$
0 \in \partial f\left(x_{0}\right)+N\left(C ; x_{0}\right)
$$

This theorem refines the results of Clarke [1] and Huriart-Urruty [2] when we require the quasiconvexity of the objective function f.

In the case where the general convex set C, appearing in the former result, is defined as the constraint set

$$
C=\{x \in X ; g(x) \leq 0\},
$$

where g is quasiconvex, l.s.c. and satisfies (ii), (iii) of Theorem 1 , and $g\left(x_{0}\right)=0$, we obtain the following result where appears some Lagrange multiplier.

Corollary 2.1. A necessary condition for x_{0} to solve (\mathcal{P}) is

$$
0 \in \partial f\left(x_{0}\right)+\lambda \partial g\left(x_{0}\right), \quad \text { for some } \lambda>0
$$

Note that $g\left(x_{0}\right)=0$ is not a problem, we could always use $h(t)=g(x)-g\left(x_{0}\right)$. For the proof, it suffices to use Theorem 2.1 and Lemma 2.1(ii).

The case where f is pseudoconvex is investigated in an other paper [3].

References

[1] F.H. Clarke, Optimization and nonsmooth analysis, New York, Wiley-Interscience, 1983.
[2] J.B. Huriart-Urruty, Tangent cones, generalized gradients and mathematical programming in Banach spaces, Mathematics of operations research, 4, 79-97 (1979).
[3] Y. Jabri, A. Jaddar, Characterization of minima of pseudoconvex functions on closed convex sets, Preprint.
[4] A. Hassouni, A. Jaddar, Quasiconvex functions and applications to optimality conditions in nonlinear programming, Applied Mathematics Letters, 14, 241-244 (2001).
(Abdessamad Jaddar) University Mohamed I, Department of Mathematics, Oujda, Morocco E-mail address: ajaddar@voila.fr
(Youssef Jabri) University Mohamed I, Department of Mathematics, Oujda, Morocco
E-mail address: jabri@sciences.univ-oujda.ac.ma

[^0]: Received: September 24, 2004.

