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Characterization of continuous pseudoconvex functions’
extrema
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Abstract. We characterize both the minima and maxima of continuous pseudoconvex func-
tions using respectively variational inequalities and normal cones.
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1. Introduction

Generalized convexity is becoming a usual ingredient in recent results of Optimiza-
tion and Mathematical Programming. In this note, we characterize the extrema of
continuous pseudoconvex functions. Let f : X → R be a continuous and pseudoconvex
function on a Banach space X. Let C ⊂ X be convex and x̄ ∈ C.
In §2, we give a necessary and sufficient condition in terms of variational inequalities

for x̄ to be a minimum of f on C. Note that C needs not be a neighborhood of x̄. In
§3, we give an other necessary and sufficient condition for x̄ to be a maximum of f
on C using a relation between the normal cone of C at x̄ and the subdifferential of f
at x̄. Our results are closely related to (extending in some sense) those of [7] and [9].
A differentiable function was called pseudoconvex in [2] if for every x, y the in-

equality
〈df(x), y − x〉 ≥ 0 ensures f(y) ≥ f(x).

This notion was then extended to less smooth functions using the concepts of subd-
ifferential and generalized directional derivatives (see for example [3] and [10]).
We will adopt throughout the text the following definition.

Definition 1.1. A function f : X → R∪{+∞} is said to be pseudoconvex if for every
x, y ∈ domf = {x ∈ X; f(x) < +∞} and x∗ ∈ ∂f(x),

〈x∗, y − x〉 ≥ 0 implies f(y) ≥ f(x).

We have the following useful properties of continuous pseudoconvex functions.

Proposition 1.1. If f is a continuous pseudoconvex function, then
• f is quasiconvex,
• ∂f is quasimonotone, and
• there is x∗ ∈ ∂f(x) such that,

〈x∗, y − x〉 > 0 implies f(y) > f(x).
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For a proof see either [5] or [1].
The notation ∂f(x) stands in all the text for the Clarke-Rockafellar subdifferential

of f at x:
∂f(x) = {x∗ ∈ X∗; 〈x∗, v〉 ≤ f↗(x; v), ∀v ∈ X}

where X∗ is the dual space of X and the directional derivative of f at x along the
direction v, when f is continuous, is defined by

f↗(x; v) = sup
ε>0

lim sup
y →f x
t → 0

inf
u∈B(v,ε)

f(y + tu)− f(y)
t

where y →f x means that y → x and f(y)→ f(x).
The reader is referred to Clarke’s book [4] for a beautiful introduction of these

notions.

2. Characterization of minima using variational inequalities

Consider the following problem

(P)
{

minimize f(x)
x ∈ C

where f : X → R is continuous and pseudoconvex on the Banach space X and C is a
convex subset of X.
Using Definition 1, we can check easily that a local minimum x̄ (in some neigh-

borhood of x̄) is in fact a global minimum of f on all X. We will show that x̄ is a
minimum of f on some convex set C, not necessarily a neighborhood of x̄, and hence
x̄ may be not a local minimum, if and only if a certain variational inequality that will
be denoted (D) holds.
We say that ∂f satisfies the variational inequality (D) at x̄ if

∀x ∈ C, 〈x∗, x − x̄〉 ≥ 0, for all x∗ ∈ ∂f(x).

Theorem 2.1. Let X be a Banach space, f : X → R continuous and pseudoconvex.
Consider the following assertions:

• A vector x̄ ∈ C is a solution of (P).
• The subdifferential ∂f satisfies (D) at x̄.

Then, (1) implies (2). And (2) implies (1) if ∂f(x) �= ∅, for all x ∈ C.

Proof. (1) implies (2)
Suppose that x̄ is a solution of (P). By Proposition 1 (3), if f(x̄) ≤ f(x) for some
x ∈ C we have

〈x∗, x̄ − x〉 ≤ 0, ∀x∗ ∈ ∂f(x).

So, we have (D).
(2) implies (1) when ∂f(x)�=∅, ∀x ∈ C
Consider x ∈ C such that x �= x̄ and take y in the open segment (x̄, x) = {z ∈ C; z =
tx̄+ (1− t)x, 0 < t < 1} Then,

〈y∗, x̄ − y〉 ≤ 0, ∀y∗ ∈ ∂f(y).

Hence, because y lies between x̄ and x,

〈y∗, x − y〉 ≥ 0, ∀y∗ ∈ ∂f(y).
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As ∂f(y) �= ∅ and f is pseudoconvex, we get

f(y) ≤ f(x), ∀y ∈ (x̄, x).

But f is continuous, so f(x̄) ≤ f(x). �

Remark 2.1. The authors of [7] characterized local minima of quasiconvex functions
using the variational inequality (D). They supposed the set C to be either a convex
neighborhood of x̄ or C is the whole space X. While we do not require here our set
C to be a neighborhood of x̄.

3. Characterization of maxima using normal cones

Consider the following problem

(Q)
{

maximize f(x)
x ∈ C

where f : X → R is continuous and pseudoconvex on the Banach space X and C is a
convex subset of X as in §1.
Denote by

Cf (z) = {x ∈ C; f(x) = f(z)},
and the normal cone NC(x) to a convex set C at a point x by

NC(x) = {x∗ ∈ X∗; ∀y ∈ C, 〈x∗, y − x〉 ≤ 0}.
Before stating our main result of this section, we shall point out that if f is pseudo-
convex, −f is not pseudoconvex in general. So, the results of the former section do
not apply when considering a maximum.

Theorem 3.1. Let X be a Banach space, f : X → R continuous and pseudoconvex.
Consider x̄ ∈ C such that infC f < f(x̄). Consider also the following assertions:

• The vector x̄ ∈ C is a solution of (Q).
• For any x ∈ Cf (x̄), we have

∂f(x) ⊂ NC(x).

Then, (1) implies (2). And (2) implies (1) if ∂f(x) �= ∅, for all x ∈ Cf (x̄).

Proof. (1) implies (2)
Suppose that x̄ is a solution of (Q). Then, for any y ∈ C and any x ∈ Cf (x̄)

f(y) ≤ f(x).

By Proposition 1 (3), we get

∂f(x) ⊂ NC(x), ∀x ∈ Cf (x̄).

(2) implies (1) when ∂f(x)�=∅, ∀x ∈ Cf (x)
Suppose by contradiction that there is some z̄ ∈ C such that f(z̄) > f(x̄). Then,
since f(x̄) > infC f , we can find z ∈ C such that

f(z) < f(x̄).

By the usual mean value theorem for continuous functions, there is x0 ∈ Cf (x̄)∩(z, z̄).
By (2), for all x∗

0 ∈ ∂f(x0),
〈x∗

0, z − z0〉 ≤ 0,
and

〈x∗
0, z̄ − z0〉 ≤ 0.
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So that 〈x∗
0, z − z0〉 = 0. Since ∂f(x0) �= ∅ and f is pseudoconvex, we get the

contradiction f(x0) ≤ f(z). �
Remark 3.1. This result extends a previous one by Huriart-Urruty and Ledayev [9]
where continuous convex functions were considered.
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