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Heteroclinic solutions for damped p-Laplacian difference
equations
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Abstract. In this paper, we investigate the existence of heteroclinic solutions for a class of p-
Laplacian difference equations with a parameter. The proof of the main theorem is variational

and based on the use of the Mountain Pass Theorem. Our results successfully improve recent

ones in the literature and partially answer an open problem proposed by Cabada and Tersian
in [7].
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1. Introduction

In this work, we explore the existence of solutions for a class of damped difference
equations with p-Laplacian of the type{

∆
(
φp(∆u(n− 1))

)
+ c φp(∆u(n)) + λf(n, u(n)) = 0, n ∈ Z+,

u(0) = 0, u(+∞) = 1
(1)

where p > 1 and c > 0 are fixed numbers, λ > 0 is a parameter, φp(t) = |t|p−2t for
all t ∈ R and f : Z × R → R is continuous with respect to the second variable and
satisfies specific growth conditions. Moreover, ∆ is the forward difference operator
defined as ∆u(n− 1) = u(n)− u(n− 1) and Z+ = {1, 2, 3, ...}.

Let v =
{
v(n)|n ∈ Z+ ∪ {0}

}
be a solution of the following problem{

∆
(
φp(∆v(n− 1))

)
+ c φp(∆v(n)) + λg(n, v(n)) = 0, n ∈ Z+,

v(0) = −1, v(+∞) = 0,
(2)

where g(n, v) = f(n, v + 1) for n ∈ Z+ and v ∈ R.
Set u =

{
u(n)|n ∈ Z+ ∪ {0}

}
, where u(n) = v(n) + 1, n ∈ Z+ ∪ {0}. Then u is a

solution of (1). Moreover, suppose c = 0 and f is odd with respect to both variables,
that is :
(F ) f(−n,−u) = −f(n, u), for all n ∈ Z and u ∈ R,
and let u =

{
u(n)|n ∈ Z

}
be defined by

u(n) =

 v(n) + 1, for n ∈ Z+,
0, for n = 0,
−v(−n)− 1, for n ∈ Z−.
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Then, a straightforward calculation proves that u is a solution of the problem{
∆
(
φp(∆u(n− 1))

)
+ λf(n, u(n)) = 0, n ∈ Z,

u(−∞) = −1, u(+∞) = 1.
(3)

Hence, during this paper, we are concerned about the existence of solutions for (2).

If p = 2, problem (1) is reduced to the damped second order problem{
∆2u(n− 1) + c∆u(n− 1) + λf(n, u(n)) = 0, n ∈ Z+,
u(0) = 0, u(+∞) = 1.

(4)

Nonlinear difference equations and mainly discrete p-Laplacian problems is a very
vast field. It has been dealt with for more than a decade with various boundary value
conditions. Particularly, existence of homoclinic orbits were considered in many works
(see for example [11, 12, 15, 17, 25]). Solutions of problem (3) are known as hetero-
clinic orbits. The study of this type of solutions is scarce in the literature compared
to the continuous case. In fact, the continuity of the solutions is a crucial argument
in their study and therefore it can not be applied directly to discrete systems. We
mention here the first work [27] which attacked to heteroclinic orbits for the discrete
equations

∆2u(n− 1) +A sin(u(n)) = 0, n ∈ Z,

where A is a positive constant. The authors chose to follow certain effective tech-
niques, first presented by Rabinowitz in [23]. Their results are generalized in [26] to
a class of discrete Hamiltonian systems.

In 2017, the authors of [24] followed the same approach to study the existence and
multiplicity of heteroclinics for the equation

∆2u(n− 1) + p(n)f(u(n)) = 0, n ∈ Z.

Since the nonlinearity is non autonomous (by the presence of the sequence p(n)), this
work seems to be not accurate. Nevertheless, we can deduce that this approach still
useless in case of equations presenting autonomous term or in case where the sequence
p(n) is even. Note that in the above works, the periodicity of the nonlinearity is fun-
damental.

To the best of our knowledge, heteroclinic solutions for discrete p-Laplacian prob-
lems were first considered by Cabada and Tersian in [7]. They proved the existence
of at least one solution of the problem (3) for all λ > 2/p. Also, contrary to the
above works, the assumption of the periodicity of the nonlinearity is omitted and
replaced by a symmetry one. Their proof follows from the construction of a sequence
of solutions of a suitable related Dirichlet problems combined with an argument of
troncature. They left open the question of existence or nonexistence of heteroclinic
solutions to (3) if λ ≤ 2/p.

Newly, in [18], Kuang and Guo partially answered the problem proposed by Cabada
and Tersian using variational methods under an assumption of Ambrosetti-Rabinowitz-
type on the growth of the nonlinearity.
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In this paper, we continue treating problem (3) where the parameter λ may be less
than 2/p by applying variational methods under assumptions weaker than those used
in [18].

On the other hand, the damped second order problem (4), which is related in
autonomous case to Fisher-Kolmogorov’s equation, were considered in [6] (see also
[4]). The authors of [6] obtained the existence of decreasing and heteroclinic type
solutions using monotonicity and continuity arguments. Here, we consider the more
general problem (1). Under less restrictive assumptions on the nonlinearity and the
damping coefficient c, we derive the existence of at least one solution to (1) via
Mountain Pass Theorem.

Throughout this work, we suppose that

(A) a(n) > 0 for all n ∈ Z+ and lim
n→+∞

a(n) = +∞.

(G) For all n ∈ Z, g(n, v) = −a(n)φp(v) + w(n, v), where w(n, v) is continuous

with respect to the second variable and W (n, v) =

∫ v

0

w(n, t)dt for all v ∈ R,

(H1) lim
v→0

w(n, v)

|v|p−1
= 0 uniformly for all n ∈ Z+,

(H2) there exists µ > p such that

µW (n, v) 6 w(n, v)v, ∀v ∈ R, ∀n ∈ Z+,

(H3) W (n0,±v0) > 0 for some n0 ∈ Z+, v0 ∈ R.

Our main results are the following:

Theorem 1.1. Suppose that (A), (G), (H1) − (H3) are satisfied. Then there exists
λ > 0 such that for any λ > λ, equation (2) has at least a nontrivial solution.

In the particular case where c = 0 and f is an odd function with respect to both
variables, one gets the existence of heteroclinic solutions for (3). Precisely, we have

Corollary 1.2. Suppose that (A), (G), (F ), (H1) − (H3) are satisfied. Then, there
exists λ > 0 such that for any λ > λ, problem (3) admits at least a nontrivial solution.

The remainder of the paper is organized as follows: In Section 2, we present some
preliminary results. In Section 3 we give the proof of Theorem 1.1 and Corollary 1.2.

2. Preliminary results

Let S = {v = {v(n)}|v(n) ∈ R, n ∈ Z+} be a vector space with av + bx = {av(n) +
bx(n)} for v, x ∈ S and a, b ∈ R. Also, let

lpc (Z+) =

{
v ∈ S|

+∞∑
n=1

(1 + c)n|v(n)|p <∞

}
,

and

H =

{
v ∈ S|

+∞∑
n=1

[(1 + c)na(n)|v(n)|p] <∞

}
.
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Define the norms of lpc (Z+) and H respectively, as follows

|v|p =

(
+∞∑
n=1

(1 + c)n|v(n)|p
) 1
p

, ‖v‖ =

(
+∞∑
n=1

[(1 + c)na(n)|v(n)|p]

) 1
p

.

Evidently, (lpc (Z+), |.|p) is a reflexive Banach space and the embedding lpc (Z+) ↪→

lp(Z+) is compact where lp(Z+) =

{
v ∈ S|

+∞∑
n=1

|v(n)|p <∞

}
(see Proposition 3 in

[15]). The following lemma displays the main properties of the spaces defined above.

Lemma 2.1. Suppose that (A) holds. Then, for all 1 < p <∞, (H, ‖.‖) is a reflexive
and separable Banach space and the embedding H ↪→ lpc (Z+) is compact.

Proof. Similarly to Proposition 3 in [15], one obtains that (H, ‖.‖) is a reflexive Banach
space. Let M = inf

n∈Z+
a(n), from the assumption (A), it’s clear that M > 0. Moreover,

we have

|v|p 6M−
1
p ‖v‖, ∀v ∈ H. (5)

Then the embedding H ↪→ lpc is continuous. It remains to prove that this embedding
is compact. Let {vk}k∈N be a sequence in H. Assume, without loss of generality, that
vk ⇀ 0 in H. Then, there is N > 0 such that

‖vk‖ 6 N, ∀k ∈ N.

Using condition (A), for ε > 0, we can find n∗ ∈ Z+ such that

a(n) >
2

ε
Np, ∀n > n∗.

hence, one obtains∑
n>n∗

(1 + c)n|vk(n)|p 6 ε

2Np

∑
n>n∗

(1 + c)na(n)|vk(n)|p 6 ε

2
. (6)

On the other hand, using condition (A) and (1 + c)n > 0 for all n ∈ Z+, we can say
that vk ⇀ 0 in Hn∗ , where Hn∗ = {v ∈ H| v(n) ∈ R, n ∈ N[1, n∗]}. Since Hn∗ is finite
dimensional space, thus vk → 0 in Hn∗ . As lpc,n∗ is also finite dimensional space, so
there exists k0 ∈ N such that

n∗∑
n=1

(1 + c)n|vk(n)|p 6 ε

2
, ∀k > k0. (7)

From (6) and (7), one have, for all k > k0,

+∞∑
n=1

(1 + c)n|vk(n)|p =

n∗∑
n=1

(1 + c)n|vk(n)|p +

+∞∑
n=n∗+1

(1 + c)n|vk(n)|p

6 ε.

Since ε is arbitrary, one gets vk → 0 in lpc . �

For all v ∈ H such that v(0) = −1, consider the functionals Ψ1 and Ψ2 defined by

Ψ1(v) =
1

p

+∞∑
n=1

(1 + c)n|∆v(n− 1)|p +
λ

p
‖v‖p − 1 + c

p
,
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Ψ2(v) = λ

+∞∑
n=1

(1 + c)nW (n, v(n)),

and

Ψ(v) = Ψ1(v)−Ψ2(v).

Lemma 2.2. [15] If V is a compact subset of lpc , then for all ε > 0 there is n′ ∈ N
such that [∑

n>n′

(1 + c)n|v(n)|p
] 1
p

6 ε, ∀v ∈ V.

Remark 2.1. Similarly to Lemma 2.2, suppose that V ⊂ lp is a compact subset.
Thus for every ε > 0 there is n′ > 0 such that ∑

|n|>n′
|v(n)|p

 1
p

6 ε, ∀v ∈ V.

Proposition 2.3. [15] If condition (A) is satisfied then Ψ1 ∈ C1(H) and for all
v, x ∈ H,

〈Ψ′1(v), x〉 =

+∞∑
n=1

(1 + c)n[φp(∆v(n− 1))∆x(n− 1) + λa(n)φp(v(n))x(n)].

Analogously to Proposition 2.6 in [9], we have

Proposition 2.4. If (H1) holds, then Ψ2 ∈ C1(lpc (Z+)) with

〈Ψ′2(v), x〉 = λ

+∞∑
n=1

(1 + c)nw(n, v(n))x(n), ∀v, x ∈ lpc (Z+).

Remark 2.2. From Lemma 2.1 and Proposition 2.4, one gets Ψ2 ∈ C1(lpc (Z+)) and
the embedding H ↪→ lpc (Z+) is continuous. So we obtain that Ψ2 ∈ C1(H).

Similarly to Proposition 2.8 in [9], one easily gets the following result, which implies
that a nonzero critical point of the functional Ψ defined on H is a nontrivial solution
of (2) (see also [18]).

Proposition 2.5. [18] If (A) and (H1) hold, then Ψ ∈ C1(H) and any critical point
v ∈ H of Ψ is a solution of (2) with

〈Ψ′(v), x〉 = −
+∞∑
n=1

(1 + c)n [∆(φp(∆v(n− 1)) + cφp(∆v(n))− λa(n)φp(v(n))

+λl(n, v(n))]x(n), ∀v, x ∈ H.

Proposition 2.6. Assume that (A), (H1) and (H2) hold. Then the functional Ψ
satisfies the Palais-Smale condition.

Proof. Let {vk}k∈N be a sequence inH such that {Ψ(vk)}k∈N is bounded and Ψ′(vk)→
0 as k → +∞. Let B a positive constant such that |Ψ(vk)| 6 B for all k ∈ N. We
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will show that {vk}k∈N possesses a convergent subsequence. By (H2), it yields

B + ‖vk‖ > Ψ(vk)− 1

µ
Ψ′(vk)vk

=

+∞∑
n=1

(1 + c)n[(
1

p
− 1

µ
)|∆vk(n− 1)|p +

λ

µ
w(n, vk(n))vk(n)

−λW (n, vk(n))] + λ(
1

p
− 1

µ
)‖vk‖p −

1 + c

p
,

> λ(
1

p
− 1

µ
)‖vk‖p −

1 + c

p
.

As µ > p > 1, it follows that the sequence {vk}k∈N is bounded in H. Using Lemma
2.1, passing to a subsequence still denoted by {vk}k∈N, one gets vk ⇀ v in H and
vk → v in lpc (Z+). Thus, for all ε > 0, there exists k1 ∈ N such that

|vk − v|p 6
ε

2
, ∀k > k1. (8)

On the other hand, by (H1), there exists β > 0 such that

|w(n, t)| 6 |t|p−1, ∀n ∈ Z+, |t| 6 β. (9)

Also, we have

‖vk − v‖p 6 |vk − v|p.
Hence, using Remark 2.1, there is an integer n1 > 0 with |vk(n)| 6 β for every k ∈ N
and |v(n)| 6 β for every n ∈ N, n > n1. Then, using (9), we get

|w(n, vk(n))| 6 |vk(n)|p−1, ∀k ∈ N, |w(n, v(n))| 6 |v(n)|p−1. (10)

Moreover, since {vk}k∈N∪{v} is a compact subset of lpc (Z+), Lemma 2.2 implies that
there is n2 > 0, n2 > n1, such that∑

n>n2

(1 + c)n|vk(n)|p 6 1, ∀k ∈ N,
∑
n>n2

(1 + c)n|v(n)|p 6 1. (11)

Combining Minkowski’s inequality with (8), (10) and (11), we get∣∣∣∣∣ ∑
n>n2

(1 + c)n[w(n, vk(n))− w(n, v(n))](vk(n)− v(n))

∣∣∣∣∣ 6 ε, ∀ k > k1

which yields

lim
k→+∞

∑
n>n1

(1 + c)n[w(n, vk(n))− w(n, v(n))](vk(n)− v(n)) = 0. (12)

Besides, by continuity of the finite sum, the uniform continuity of w(n, v) in v and
vk → v in lpc (Z+), it yields

lim
k→+∞

n1∑
n=1

(1 + c)n[w(n, vk(n))− w(n, v(n))](vk(n)− v(n)) = 0. (13)

As a result, (12) and (13) give us

lim
k→+∞

+∞∑
n=1

(1 + c)n[w(n, vk(n))− w(n, v(n))](vk(n)− v(n)) = 0. (14)
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Let’s recall the following well-known inequalities [20]:
There exists d > 0 such that

(φp(a)− φp(b))(a− b) > d|a− b|p, ∀a, b ∈ R, for p > 2, (15)

(φp(a)− φp(b))(a− b) > d(|a|+ |b|)p−2|a− b|2, ∀a, b ∈ R, for 1 < p < 2.

Considering the case p > 2. It yields from (15) that

d|∆vk(n−1)−∆v(n−1)|p 6 [φp(∆vk(n−1))−φp(∆v(n−1))](∆vk(n−1)−∆v(n−1)),

d|vk(n)− v(n)|p 6 [φp(vk(n))− φp(v(n))](vk(n)− v(n)).

Summarizing what proved above, one obtains

dλ‖vk − v‖p + d

+∞∑
n=1

(1 + c)n|∆vk(n− 1)−∆v(n− 1)|p (16)

6 λ

+∞∑
n=1

(1 + c)n[w(n, vk(n))− w(n, v(n))](vk(n)− v(n)) + 〈Ψ′(vk)−Ψ′(v), vk − v〉.

From Ψ′(vk) → 0 as k → +∞, the boundedness of the sequence {vk}k∈N and the
fact that vk ⇀ v in H, it follows that

〈Ψ′(vk)−Ψ′(v), vk − v〉 → 0 as k →∞. (17)

Moreover, by (14), (16) and (17), one gets

dλ‖vk − v‖p + d

+∞∑
n=1

(1 + c)n|∆vk(n− 1)−∆v(n− 1)|p → 0 as k →∞.

Since

+∞∑
n=1

(1 + c)n|∆vk(n − 1) −∆v(n − 1)|p > 0, it yields ‖vk − v‖ → 0 as k → ∞.

The proof is completed. �

Lemma 2.7. Assume that (H2) holds. Then for all (n, x) ∈ N∗ ×R, s−µW (n, sx) is
increasing on ]0,+∞[.

In order to prove our main result, we need the following theorem introduced in
[22]. Let Bρ denote a closed ball of radius ρ about 0.

Theorem 2.8. (Mountain Pass Theorem [22])
Let E be a real Banach space and I ∈ C1(E,R) satisfying the Palais-Smale condition.
Suppose I(0) = 0 and
(I1) there are constants ρ, α > 0 such that I|∂Bρ > α;
(I2) there is an e ∈ E \Bρ such that I(e) 6 0.
Then I possesses a critical value c > α given by

c = inf
g∈Γ

max
s∈[0,1]

I(g(s)),

where

Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e}.
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3. Proof of Theorem 1.1

At first, we show that Ψ satisfies condition (I1) of Theorem 2.8. It follows from (H2)
that there exists δ > 0 such that

|W (n, v)| 6 M

2p
|v|p, ∀n ∈ Z+, ∀|v| 6 δ. (18)

Let δ > 0 be such that (18) satisfied and v ∈ H be such that

‖v‖ 6M
1
p δ.

Moreover, it is easy to check from (A) that

‖v‖p 6M−
1
p ‖v‖, ∀v ∈ H,

where ‖.‖p is the norm in the space lp(Z+). Combining the previous inequality with
‖v‖∞ 6 ‖v‖p where ‖.‖∞ is the norm of l∞(Z+), we obtain

‖v‖∞ 6M−
1
p ‖v‖.

Thus, one gets

|v(n)| 6 δ, ∀n ∈ Z+. (19)

From (5) together with (18) and (19), we obtain

|
+∞∑
n=1

(1 + c)nW (n, v(n))| 6 1

2p
‖v‖p. (20)

Set ρ = δM1/p. By (20), one gets for all v ∈ ∂Bρ ∩H,

Ψ(v) =
1

p

(+∞∑
n=1

(1 + c)n|∆vk(n− 1)|p + λ‖v‖p
)
− λ

+∞∑
n=1

(1 + c)nW (n, v(n))− 1 + c

p
,

>
λ

2p
‖v‖p − 1 + c

p
.

Let λ > 2(1 + c)/δpM := λ. Then

Ψ(v) > α :=
λ

2p
δpM − 1 + c

p
> 0.

As a result Ψ satisfies (I1) of Theorem 2.8.
Finally, we prove that Ψ satisfies (I2) of Theorem 2.8. Without loss of generality,
we may assume that v0 = 1 in (H3) and let β0 := min{W (n0,±1)}. Using a similar
result as Lemma 2.7 with s1 = 1

|v| and s2 = 1 for |v| > 1, it is easy to check that

W (n0, v) > β0|v|µ, ∀|v| > 1. (21)

Now, let e ∈ H be such that

e(n) =

{
σ, for n = n0,
0, for n ∈ {i ∈ Z+|i 6= n0}.
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From (21), we have

Ψ(e) =
1

p

+∞∑
n=1

|∆e(n− 1)|p +
λ

p
‖e‖p − λ(1 + c)n0W (n0, σ)− 1 + c

p
,

=
1

p
(1 + c)n0σp − 1

p
(1 + c)n0+1σp +

λ

p
(1 + c)n0a(n0)σp − λ(1 + c)n0W (n0, σ)

− 1 + c

p
6 (1 + c)n0

(1 + λa(n0)

p
σp − λβ0σ

µ
)
− 1 + c

p
.

As µ > p, we can choose σ > 1 such that ‖e‖ > ρ where ρ is defined above and
Ψ(e) 6 Ψ(0) = 0.

Hence all assumptions of Theorem 2.8 are satisfied and therefore Ψ possesses a
critical value which yields a nontrivial solution of (2) and the proof is completed. �

Remark 3.1. Choosing M large enough, one obtains λ < 2
p . Consequently, in

Corollary 1.2, we give a partial answer for the open problem proposed by Cabada and
Tersian in [7] for the case where λ < λ 6 2

p by weakening the conditions chosen by

Kuang and Guo in [18].

Example 3.1. Let p = 3, c = 1, µ = 4, a(n) = 20 n and W be defined by

W (n, v) = (
1

|n|+ 1
− 1)v4 + |v|5, ∀ (n, t) ∈ Z× R.

A straightforward calculation proves that inequality (18) holds true with δ = 0.8 and
then λ = 4

(0.8)320 < 2/p. Hence Theorem 1.1 and Corollary 1.2 extend the results in

[6, 7, 18] for instance.
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