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Some remarks on quadratic differentials on Klein surfaces

Peter Kessler and Monica Roşiu

Abstract. In this paper one proves some characterisations of quadratic differentials on Klein
surfaces by symmetric quadratic differentials and families of meromorphic functions on the
corresponding double covering.
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A dianalytic atlas A on a surface X is a family A = {(Ũi, hi, Vi)}i∈I , where:
a) (Ũi)i∈I is an open cover of X,
b) for every i ∈ I, Vi is an open set in the complex plane C,
c) hi : Ũi −→ hi(Ũi) = Vi is an homeomorphism, for every i ∈ I ,
d) if i, j ∈ I, then Ũi∩ Ũj = ∅ or Ũi∩ Ũj 	= ∅ and in this case hi ◦h−1

j : hj(Ũi∩ Ũj)
→ hi(Ũi ∩ Ũj) is a dianalytic function on hj(Ũi ∩ Ũj). The charts (Ũi, hi, Vi) and
(Ũj , hj , Vj) are dianalytic compatible.

A Klein surface is a pair (X, A), where X is a surface andA is a maximal dianalytic
atlas on X, such that A does not contain any analytic subatlas.

Let O2 be a Riemann surface. A mapping k : O2 → O2 with property k ◦ k = Id,
where Id is the identity of O2, is an involution of O2.

A symmetric Riemann surface is a pair (O2,k), consisting of a Riemann (ori-
entable) surface O2 and an antianalytic involution, k : O2 → O2 having no fixed
points.

Let X be a Klein surface. Then exists a Riemann surface X̂ and a covering
mapping π : X̂ → X . For X̂ satisfies the universal property, then X̂ is the universal
covering of X. X̂ is conformal equivalent with :

1) Ĉ = C∪{∞}, if X is the real projective plane P2,
2) the complex plane C if X is the pointed real projective plane P2\{0} or a Klein

bottle,
3) {z ∈ C | Imz > 0} in the other cases.
Let G be the covering mappings group of π. Because X is nonorientable , G will

contains either analytic automorphisms of X̂ or antianalytic automorphisms of X̂.
Let G1 be the subgroup of analytic automorphisms of G. Then G1 is a subgroup of G
and for every S ∈ G \ G1, G = G1 ∪SG1, G1 ∩SG1 = ∅, where SG1 = {S ◦ T | T ∈ G1}.

If P̂ ∈ X̂, then we denote with P̃ (respectively P ) its G- orbit (respectively its G1-
orbit). Therefore

P̃ = {G(P̂ ) | G ∈ G} and P = {T (P̂ ) | T ∈ G1}
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The quotient space X̂/G = {P̃ | P̂ ∈ X̂} has a Klein surface structure and the
projection mapping π : X̂ → X̂/G, P̂

π→ P̃ is a dianalytic covering mapping, by P̃
definition.

Theorem 0.1. Let X be a Klein surface, X̂ the universal covering of X, π : X̂ → X
the corresponding covering mapping and G the covering mappings group of π. If
O2 = X̂/G1, then O2 has a Riemann surface structure.

Proof. By construction O2 = {P | P̂ ∈ X̂}, therefore O2 is a surface. The covering
projection p : X̂ → O2, p(P̂ ) = P is an analytic covering mapping. Because for
every S1, S2 ∈ G \ G1, p(S1(P̂ )) = p(S2(P̂ )), for every P̂ ∈ X̂, S1 ◦ S−1

2 is analytic,
it results that k : O2 → O2, k(P ) = Q, is well defined, namely doesn

′
t depend of S

and P̂ ∈ p−1(P ) where Q = {T (Q̂)|T ∈ G1}, Q̂ = S(P̂ ) and S ∈ G \ G1. k(P ) is the
G1- orbit of S(P̂ ) and because S is antianalytic, the mapping k is antianalytic too.(
the G1- orbit of Q̂

)
∩

(
the G1-orbit of P̂

)
= ∅, for every P ∈ O2, means that the

mapping k doesn
′
t have fixed points. Also, k is an involution because (k ◦ k)(P ) =

k(Q) = (the G1−orbit of S1(Q̂)) = (the G1- orbit of (S1 ◦ S)(P̂ )) = (the G1- orbit of
P̂ ) = P , where S1 ◦ S ∈ G1, because S1, S ∈ G \ G1. Therefore, k is an antianalytic
involution, without fixed points. If q : O2 → X is the covering projection, q(P ) = P̃ ,
for every P ∈ O2, then q = q ◦ k and the following diagram is comutative:

X̂
S→ X̂

p ↓ p ↓
O2

k→ O2

q ↓ q ↙
X

Let B1 (respectively B2) be the maximal analytic atlases on O2. B1 determines the
analytic structure on O2 and B2 the analytic structure on k(O2). k(O2) is thinking
like the surface O2 endowed with its second orientation. Then k : O2 → k(O2) is an
antianalytic isomorphism. So, q : O2 → X is a dianalytic mapping, which mixed the
two structures of O2 and k(O2). Therefore O2 = (O2,B1), k(O2) = (O2,B2). �

We denote by H the group consisting of k and the identity of O2, with respect to
the usual composition of functions.

Theorem 0.2. O2/H is dianalytic equivalent with X.

Proof. Let P ∈ O2, its H- orbit consists of two elements P and k(P ). Therefore , P̃ =
P ∪ k(P ) and the mapping { P , k(P ) } → P̃ is a dianalytic isomorphism between
O2/H and X. Then X can be identify with O2/H. �

The diagram is comutative :
X̂

p ↓
π

↘

O2 −→
q

X ←→ O2/H
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where we have denoted with ←→ the dianalytic equivalence.

Theorem 0.3. Let (O2,k) be a symmetric Riemann surface and H the two elements
group generated by k. Then the covering projection q : O2 → O2/H induces a Klein
surface structure on O2/H.

Let O2 be a Riemann surface with the analytic structure {(Ui, hi, Vi)}i∈I . A
meromorphic quadratic differential Φ on O2 is a family of meromorphic functions
(ϕi)i∈I , in the local parameters zi = hi(P ), i ∈ I, for which the transformation law

ϕi(zi)dz2
i = ϕj(zj)dz2

j , dzj =
dzj

dzi
dzi

holds for every i, j ∈ I, whenever zi and zj are parameters values which correspond
to the same point P of O2.

Because for every parametric disk Ũ of X , the preimage q−1(Ũ) = (U , k(U)), is
natural to consider the restriction at U ∪k(U) in the local study of the meromorphic
quadratic differentials on O2. But k is an involution without fixed points so we can
consider U ∩ k(U) = ∅.

We denote with Q2(O2), respectively with Q2(O2), the vectorial space of the mero-
morphic (respectively antimeromorphic) quadratic differentials on (O2, B1).

Let V and f(V ) the images through the corresponding charts of the parametric
disks U , respectively k(U). Because k is an antianalytic involution it results that f is
an antianalytic involution. We will use z, like local parameter on U and w, like local
parameter on k(U).

Theorem 0.4. There is an isomorphism K, between Q2(O2) and Q2(O2).

Proof. Φ ∈ Q2(O2) with the local representation :

Φ∗/U ∪ k(U) =
{

ϕ(z)dz2, z ∈ V
ϕ̂(w)dw2, w ∈ f(V )

where ϕ and ϕ̂ are meromorphic functions on V , respectively f(V ). If ϕ is not
holomorphic, namely it has at least a pole then z ∈ V means z is not a pole of ϕ.

Then the symmetry k will induce the isomorphism K : Q2(O2)→ Q2(O2) :

K(Φ)∗/U ∪ k(U) = (Φ ◦ k)∗/U ∪ k(U) =
{

ϕ̂(f(z))df(z)2, if z ∈ V
ϕ(f(w))df(w)2, if w ∈ f(V )

and because f is an antianalytic function

K(Φ)∗/U ∪ k(U) =

{
ϕ̂(f(z))

(
∂f
∂z (z)

)2
dz2, if z ∈ V

ϕ(f(w))
(

∂f
∂w (w)

)2
dw2, if w ∈ f(V )

.

We will use the following diagram :

V
ĥT,Û←− T (Û) T←− Û

ϕ

↘ ↓
p/T (Û)

↘ p/Û ↓
S

↘
C

ϕ◦p−1
T,U←− U −→ S(Û)

ĥS,Û−→ f(V )

k ↓
p/S(Û)

↙ ↓
ϕ̂

↙
k(U)

ϕ̂◦p−1
S,U−→ C
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Let Φ ∈ Q2(O2) with the local representation ϕ(z)dz2 on U . Then ϕ◦ p−1
T,U : U →

C is a meromorphic mapping on (O2, B1). Also ϕ̂◦p−1
S,U : k(U)→ C is a meromorphic

mapping on (O2, B2).
Let pk,S(Û) = p−1

S,U ◦ k/U and (U,pk,S(Û), VS,Û = f(V )) a mapping on (O2,B2),
where S ∈ G \G1. Then (ϕ̂◦p−1

S,U ◦k) ◦ p−1

k,S(Û)
= ϕ̂ and ϕ̂◦p−1

S,U ◦k is a meromorphic
mapping on (O2,B2), namely ϕ̂ ◦ f is an antimeromorphic function in parameter z.
But ϕ̂ ◦ f is the local representation of K(Φ) in parameter z and by the defintion
of Φ we have ϕ̂(w)dw2 = ϕ̂0(w0)dw2

0, for every w and w0 parametrics values which
correspond to the same point of O2 and for which the transition mapping is analytic,
where ϕ̂0 is the representation of Φ in the parameter w0. We obtain K(Φ) ∈ Q2(O2).
Thus, K is well defined and by the definition we obtain that K is an isomorphism. �

Let ∆ be an open, k-symmetric, subset of O2, namely an open subset which sat-
isfies the condition k(∆) = ∆. Then Φ′ ∈ Q2(O2)⊕ Q2(O2) is called symmetric,
respectively antisymmetric, quadratic differential , on ∆ iff :

Φ′/∆ = (Φ′ ◦ k)/∆, respectively Φ′/∆ = −(Φ′ ◦ k)/∆.

Φ′ is a symmetric, respectively antisymmetric, quadratic differential on O2 iff
Φ′/U ∪ k(U) a symmetric, respectively antisymmetric, quadratic differential on U ∪
k(U), for every parametric disk U of O2.We denote with Qs(O2), respectively Qa(O2),
the set of the symmetric quadratic differentials Φs, respectively antisymmetric Φa, on
O2.

Let Φ′ ∈ Q2(O2)⊕ Q2(O2) with the following local representation:

(Φ′)∗/U ∪ k(U) =
{

ϕ1(z)dz2 + ϕ2(z)dz2, z ∈ V
ϕ̂1(w)dw2 + ϕ̂2(w)dw2, w ∈ f(V )

where ϕ1 and ϕ̂1 are meromorphic functions and ϕ2 , ϕ̂2 are antimeromorphic func-
tions.

Theorem 0.5. a) Φ′ is a symmetric quadratic differential on O2 iff ϕ1, ϕ2, ϕ̂1, ϕ̂2

satisfy the conditions: ϕ1(z) = ϕ̂2(f(z))
(

∂f
∂z (z)

)2

ϕ2(z) = ϕ̂1(f(z))
(

∂f
∂z (z)

)2
, for every z ∈ V

 ϕ̂1(w) = ϕ2(f(w))
(

∂f
∂w (w)

)2

ϕ̂2(w) = ϕ1(f(w))
(

∂f
∂w (w)

)2
, for every w ∈ f(V )

b) Φ′ is an antisymmetric differential on O2 iff ϕ1, ϕ2, ϕ̂1, ϕ̂2 satisfy the conditions: ϕ1(z) = −ϕ̂2(f(z))
(

∂f
∂z (z)

)2

ϕ2(z) = −ϕ̂1(f(z))
(

∂f
∂z (z)

)2
, for every z ∈ V

 ϕ̂1(w) = −ϕ2(f(w))
(

∂f
∂w (w)

)2

ϕ̂2(w) = −ϕ1(f(w))
(

∂f
∂w (w)

)2
, for every w ∈ f(V )
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Proof. From definition of K it results:

(Φ′◦k)∗/U∪k(U) =

 ϕ̂2(f(z))
(

∂f
∂z (z)

)2

dz2 + ϕ̂1(f(z))
(

∂f
∂z (z)

)2
dz2, z ∈ V

ϕ2(f(w))
(

∂f
∂w (w)

)2

dw2 + ϕ1(f(w))
(

∂f
∂w (w)

)2
dw2, w ∈ f(V )

.

The symmetry and antisymmetry conditions means :

(Φ′)∗/U ∪ k(U) = (Φ′ ◦ k)∗/U ∪ k(U)

respectively,
(Φ′)∗/U ∪ k(U) = −(Φ′ ◦ k)∗/U ∪ k(U)

and then the previous conditions. �

Remark 0.1. Let D be an open subset of C and f : D → C a C2 - function. Then
∂f
∂z = ∂f

∂z .

Remark 0.2. Let Φs ∈ Qs(O2). Then, for every parametric disk U of O2, we have
Φ∗

s/U = Φ∗
s/k(U).

We will characterize the symmetric, respective antisymmetric, quadratic differen-
tials on O2.

Theorem 0.6.
Qs(O2) =

{
Φ+ Φ ◦ k | Φ ∈ Q2(O2)

}
Qa(O2) =

{
Φ− Φ ◦ k | Φ ∈ Q2(O2)

}
.

Proof. It is enough to prove the first equality.
Let Φ′ ∈ Qs(O2). Then:

(Φ′)∗/U ∪ k(U) = Φ∗/U ∪ k(U) + K(Φ)∗/U ∪ k(U), for every U ,

where Φ ∈ Q2(O2) and U is a parametric disk of O2.
Conversely, if Φ′ = Φ+Φ ◦ k, with Φ ∈ Q2(O2), because k is an involution on O2,

(Φ′ ◦ k)∗ = (Φ ◦ k)∗ + [(Φ ◦ k) ◦ k]∗ = (Φ ◦ k)∗ +Φ∗ = (Φ′)∗

on U ∪ k(U), for every parametric disk U of O2. �

Corollary 0.1.
Qs(O2) =

{
Φ+ K(Φ) | Φ ∈ Q2(O2)

}
and

Qa(O2) =
{
Φ−K(Φ) | Φ ∈ Q2(O2)

}
.

Let X be a Klein surface and A =
{
(Ũi, hi, Vi) | i ∈ I

}
the corresponding atlas on

X.
Φ̃ is a N - meromorphic quadratic differential, respectively holomorphic , on X iff:
a) For every (Ũ , h, V ) ∈ A, the local representation of Φ̃ on Ũ is Φ̃∗

1/Ũ + Φ̃∗
1/Ũ ,

where Φ̃1 is a meromorphic quadratic differential , respectively holomorphic on O2

and Φ̃2 is an antimeromorphic, respectively antiholomorphic, quadratic differential
on O2.

Φ̃∗
1/Ũ and Φ̃∗

2/Ũ are the local components of Φ̃ on chart (Ũ , h, V ).
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b) If (Ũ1, h1, V1), (Ũ2, h2, V2) ∈ A such that Ũ1 ∩ Ũ2 	= ∅ and Φ̃∗/Ũ1 = (Φ̃′
1)

∗/Ũ1 +
(Φ̃′

2)
∗/Ũ1, Φ̃∗/Ũ2 = ( Φ̃′′

1)
∗/Ũ2 +( Φ̃′′

2)
∗/Ũ2 are the corresponding local representations

of Φ̃, then for every connected component Ũ of Ũ1 ∩ Ũ2 there are the following
relations:

b1)

{
(Φ̃′

1)
∗/Ũ = (Φ̃′′

1)
∗/Ũ

(Φ̃′
2)

∗/Ũ = (Φ̃′′
2)

∗/Ũ
, if h2 ◦ h−1

1 is an analytic function on h1(Ũ)

b2)

{
(Φ̃′

1)
∗/Ũ = (Φ̃′′

2)
∗/Ũ

(Φ̃′
2)

∗/Ũ = (Φ̃′′
1)

∗/Ũ
, if h2 ◦ h−1

1 is an antianalytic function on h1(Ũ).

Let Q2(X) be the vectorial space of N - meromorphic quadratic differentials on X,
with respect to C.

Theorem 0.7. If A =
{
(Ũi, hi, Vi) | i ∈ I

}
is a dianalytic atlas on X, the following

sentences are equivalent :
1. Exists a N− meromorphic quadratic differential Φ̃ on X.
2. Exists a family of mappings:

ϕ̃A = {ϕ̃i : Ũi → Ĉ | i ∈ I}with :

(2′) For every i ∈ I, ϕ̃i ◦ h−1
i : hi(Ũi)→ Ĉ is a meromorphic function.

(2′′) If Ũij ⊆ Ũi∩Ũj is a connected component of Ũi∩Ũj, then ϕ̃i = ϕ̃j

(
∂(hj◦h−1

i )

∂z̃i

)2

,

if hj ◦ h−1
i is a dianalytic function on hi(Ũij).

Proof. Let Φ̃ ∈ Q2(X) and Φ be the corresponding meromorphic quadratic differential
on O2 associated with Φ̃ with the local representation Φ∗/Ui = ϕi(zi)dz2

i and
(Φ◦k)∗/Ui = ϕ̂i(f(zi))df(zi)2, where Ui = (q/Ui)−1(Ũi) and k(Ui) = (q/k(Ui))−1(Ũi).
If we consider a chart of X, we define ϕ̃i/Ũi = ϕi/Vi ◦ p−1

T,Ui
◦ (q/Ui)−1 and then

ϕ̃i/Ũi◦h−1
i = ϕi/Vi is a meromorphic function, namely ϕ̃i : Ũi → Ĉ is a meromorphic

mapping on Ũi. For the second type of chart on X , we define ϕ̃i/Ũi = ϕ̂i/f(V ) ◦ p−1
S,Ui

◦ (q/k(Ui))−1 and then ϕ̃i/Ũi ◦ g−1
i = ϕ̂i/f(Vi) is a meromorphic function namely

ϕ̃i : Ũi → Ĉ is a meromorphic mapping on Ũi. The condition (2′′) is true.
Conversely, if (ϕ̃i)i∈I , ϕ̃i : Ũi → Ĉ, for every i ∈ I, is a family of mappings with

the properties (2′) and (2′′), then we define:

Φ̃∗/Ũi = ϕi(zi)dz2
i + ϕ̂i(f(zi))df(zi)2,

where ϕi and ϕ̂i are the local representations of Φ̃ with respect to zi, respectively
f(zi). �

Let Φ̃ 	= 0 be a N - holomorphic quadratic differential on X . Then Φ̃/Ũ =
Φ/U + (Φ ◦k)/U , where q−1(Ũ) = {U, k(U)}, for every parametric disk Ũ of X. The
local representation for Φ̃ on Ũ is

Φ̃/Ũ = ϕ(z)dz2 + ϕ̂(f(z))df(z)2,

where Φ/U = ϕ(z)dz2 is the local representation of Φ on U , (Φ◦k)/U = ϕ̂(f(z))df(z)2

is the local representation of Φ on k(U) . Thus ϕ and ϕ̂ are holomorphic function in
z, respective f(z) .
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Since there is a dianalytic isomorphism between O2/H and X and an arbitrary
rectifiable curve on O2 which does not go through any critical point of Φ can be
subdivided into intervals each one of which lies in a parametric disk, we identify a
curve γ̃ in a parametric disk Ũ around a regular point P̃0 ∈ X with the k - symmetric
curve q−1(γ̃) = γ ∪ k(γ) in U ∪ k(U).

The N - holomorphic quadratic differential Φ̃ defines invariant N - length elements
on X, dS̃(z̃) = ds̃(z) = ds̃(f(z)), where

ds̃(z) =
1
2

(√
|ϕ(z)| |dz| +

√
|ϕ̂(f(z))| |df(z)|

)
is the k-symmetric element of Φ- length on O2 and area elements dÃ(z̃) = dã(z) =
dã(f(z)), where

dã(z) =
1
2
(|ϕ(z)| dxdy + |ϕ̂(f(z))| dudv)

is the k -symmetric element of Φ -area on O2, z = x + iy and f(z) = u + iv. This Φ̃-
metric is euclidean except at the singularities and the trajectories are the geodesics
of this metric.

Let γ̃ : [0, 1]→ X be a continuous differentiable arc on X, with q−1(γ̃) = {γ, k(γ)}.
The Φ̃ -length of γ̃ is

lΦ̃(γ̃) =
∫

γ̃

dS̃,

and the Φ̃ - distance of a pair of points z̃1, z̃2 is equal to

dΦ̃ [z̃1, z̃2] = inf
{γ̃}

lΦ̃(γ̃),

where γ̃ varies over all arcs connecting the two points. The Φ̃ -area of a Lebesque
measurable set of X is the integral

AΦ̃(Ẽ) =
∫∫

Ẽ

dÃ,

and the total area of X in this metric is L1- norm of Φ̃

AΦ̃(X) =
∥∥∥Φ̃∥∥∥

1
=

∫∫
X

dÃ.
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