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Abstract. In this paper, we analyze various classes of multi-dimensional asymptotically ρ-
almost periodic type functions in general metric. We clarify the main structural properties for

the introduced classes of asymptotically ρ-almost periodic type functions, and provide some

applications of our results to the abstract Volterra integro-differential equations.
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1. Introduction and preliminaries

As is well known, the notion of almost periodicity was introduced by the Danish
mathematician H. Bohr around 1924-1926 and later generalized by many other authors
(see the research monographs [2], [4], [7], [8], [9], [10], [19], [20] and [22] for further
information concerning almost periodic functions and their applications). Suppose
that (X, ‖ · ‖) is a complex Banach space and F : Rn → X is a continuous function
(n ∈ N). Then it is said that the function F (·) is almost periodic if and only if for
each ε > 0 there exists l > 0 such that for each t0 ∈ Rn there exists τ ∈ B(t0, l) ≡
{t ∈ Rn : |t− t0| ≤ l} such that∥∥F (t + τ)− F (t)

∥∥ ≤ ε, t ∈ Rn;

here, |·−·| denotes the Euclidean distance in Rn. Any trigonometric polynomial in Rn
is almost periodic, and we know that a continuous function F (·) is almost periodic if
and only if there exists a sequence of trigonometric polynomials in Rn which converges
uniformly to F (·).

In M. Fečkan et al [6], we have initiated the study of multi-dimensional ρ-almost
periodic type functions. In our previous research studies, we have also analyzed
the Stepanov and Weyl classes of multi-dimensional ρ-almost periodic type functions
([16]). Further on, in our recent research study [13], we have initiated the study
of multi-dimensional ρ-almost periodic functions in general metric. The Stepanov
class of metrical multi-dimensional ρ-almost periodic functions and the Weyl class of
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metrical multi-dimensional ρ-almost periodic functions have recently been analyzed
in [14] and [15], respectively.

The main aim of this research paper is to continue the research studies [13, 14, 15]
by investigating various classes of multi-dimensional asymptotically ρ-almost periodic
type functions in general metric. More precisely, we analyze here the following classes
of multi-dimensional asymptotically ρ-almost periodic type functions:

(i) the class of metrically (S,D,B)-asymptotically (ω, ρ)-periodic functions;
(ii) the class of metrically (S,B)-asymptotically (ωj , ρj ,Dj)j∈Nn-periodic functions;
(iii) the class of metrically ρ-slowly oscillating type functions;
(iv) the class of D-asymptotically Bohr (B, I ′, ρ,P)-almost periodic functions of type

1;
(v) the class of D-quasi-asymptotically (B, I ′, ρ,P)-almost periodic functions;

(vi) the class of D-quasi-asymptotically (B, I ′, ρ,P)-uniformly recurrent functions.
The organization of paper can be briefly described as follows. Section 2 investi-

gates the notion of metrical (S,D,B)-asymptotical (ω, ρ)-periodicity and the notion
of metrical (S,B)-asymptotical (ωj , ρj ,Dj)j∈Nn -periodicity. Section 3 is devoted to
the study of metrically ρ-slowly oscillating type functions in Rn, and Section 4 is
devoted to the study of metrically quasi-asymptotically ρ-almost periodic type func-
tions. We present some applications of our theoretical results to the abstract Volterra
integro-differential equations in the final section of paper.

For more details about binary relations, we refer the reader to the classical uni-
versity textbooks; see also [6]. We will always assume henceforth that (X, ‖ · ‖) and
(Y, ‖·‖Y ) are complex Banach spaces, n ∈ N, ∅ 6= Λ ⊆ Rn, B is a non-empty collection
of non-empty subsets of X satisfying that for each x ∈ X there exists B ∈ B such that
x ∈ B. By L(X,Y ) we denote the Banach space of all bounded linear operators from
X into Y ; L(X,X) ≡ L(X) and I denotes the identity operator on Y. The Lebesgue
measure in Rn is denoted by m(·); we define the function f̌(·) := f(−·), whenever it
make sense. If A and B are non-empty sets, then we define BA := {f |f : A → B}.
Set Nn := {1, 2, ..., n}. The basic facts about Lebesgue spaces with variable exponent
Lp(x) can be obtained by consulting the monograph [5] by L. Diening et al. Suppose
now that the set I is Lebesgue measurable as well as that ν : I → (0,∞) is a Lebesgue
measurable function. We will work with the following Banach space

Lp(t)ν (I : Y ) :=
{
u : I → Y ; u(·) is measurable and ||u||p(t) <∞

}
,

where p ∈ P(I), the space of of all Lebesgue measurable functions p : I → [1,∞], and∥∥u∥∥
p(t)

:=
∥∥u(t)ν(t)

∥∥
Lp(t)(I:Y )

.

If ν : I → (0,∞) is any function such that the function 1/ν(·) is locally bounded,
then we will also work with the Banach space C0,ν(I : Y ) consisting of all continuous
functions u : I → Y satisfying that lim|t|→∞,t∈I ‖u(t)‖Y ν(t) = 0. Equipped with the
norm ‖ · ‖ := supt∈I ‖ · (t)ν(t)‖Y , C0,ν(I : Y ) is a Banach space.

2. Metrical (S,D,B)-asymptotical (ω, ρ)-periodicity and metrical
(S,B)-asymptotical (ωj , ρj ,Dj)j∈Nn-periodicity

This section investigates the notions of metrical (S,D,B)-asymptotical
(ω, ρ)-periodicity and metrical (S,B)-asymptotical (ωj , ρj ,Dj)j∈Nn -periodicity.
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In the following two definitions, we extend the notion introduced in [10, Definition
7.3.1, Definition 7.3.2] and [16, Definition 2.1, Definition 2.2] (in case of consideration
of the first-mentioned definition, set only, for every set B ∈ B, PB := C0(D × B :
Y ) := {F : D × B → Y ; lim|t|→+∞,t∈D supx∈B ‖F (t;x)‖Y = 0} and dB(F,G) :=
supx∈B supt∈D ‖F (t;x)‖Y for all F, G ∈ PB ; similarly we can analyze the notion from
the second-mentioned definition):

Definition 2.1. Let ρ be a binary relation on Y, ω ∈ Rn \ {0}, ω + I ⊆ I, D ⊆
I ⊆ Rn and the set D be unbounded. Suppose, further, that for each set B ∈ B,
PB = (PB , dB) is a metric space of functions from [0,∞)D×B containing the zero
function. A function F : I ×X → Y is said to be (S,D,B,PB)-asymptotically (ω, ρ)-
periodic if and only if for each B ∈ B there exists a function G : D × B → Y such
that G(·; ·) ∈ ρ(F (·; ·)) and ∥∥F (·+ ω; ·)−G(·; ·)

∥∥
Y
∈ PB .

Definition 2.2. Let ρj be a binary relation on Y, ωj ∈ R \ {0}, ωjej + I ⊆ I,
Dj ⊆ I ⊆ Rn and the set Dj be unbounded (1 ≤ j ≤ n). Suppose, further, that for

each j ∈ Nn and for each set B ∈ B, PjB = (P jB , d
j
B) is a metric space of functions

from [0,∞)Dj×B containing the zero function. A function F : I×X → Y is said to be

(S,B)-asymptotically (ωj , ρj ,Dj ,PjB)j∈Nn -periodic if and only if for each j ∈ Nn and
for each B ∈ B there exists a function Gj : Dj×B → Y such that Gj(·; ·) ∈ ρj(F (·; ·))
and ∥∥F (·+ ω; ·)−Gj(·; ·)

∥∥
Y
∈ P jB .

Before proceeding further, we would like to note that, in the case of consideration
of functions of the form F : I → Y, we have X = {0} and B = {X}, so that we
actually work with the metric space PB = P = (PB , dB) = (P, d) consisting of certain
functions from [0,∞)D and functions G : D→ Y ; see e.g., Definition 2.1.

The following result extends the statement of [16, Proposition 2.5] and particularly
shows that the notion introduced in Definition 2.1 is more general, in a certain sense,
than the notion introduced in Definition 2.2:

Proposition 2.1. Let ωj ∈ R \ {0}, Tj ∈ L(X), ωjej + I ⊆ I, Dj ⊆ I ⊆ Rn and
the set Dj be unbounded (1 ≤ j ≤ n). If F : I × X → X is (S,B)-asymptotically

(ωj , Tj ,Dj ,PjB)j∈Nn-periodic and the set D, consisting of all tuples t ∈ Dn such that
t+
∑n
i=j+1 ωiei ∈ Dj for all j ∈ Nn−1, is unbounded in Rn, then the function F (·; ·) is

(S,D,B)-asymptotically (ω, T,P)-periodic, where ω :=
∑n
j=1 ωjej and T :=

∏n
j=1 Tj ,

provided that for each set B ∈ B there exists a finite real constant cB > 0 such that:

∥∥F (·; ·)
∥∥
P
≤ cB

[∥∥∥∥∥F
(
·+

n∑
i=1

ωiei; ·

)
− T1F

(
·+

n∑
i=2

ωiei; ·

)∥∥∥∥∥
P1
B

+

∥∥∥∥∥F
(
·+

n∑
i=2

ωiei; ·

)
− T2F

(
·+

n∑
i=3

ωiei; ·

)∥∥∥∥∥
P2
B

+ ...+

∥∥∥∥∥F (·+ ωnen; ·
)
− TnF (·; ·)

∥∥∥∥∥
Pn
B

]
.
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Proof. The proof is an almost direct consequence of the corresponding definitions, the
prescribed assumption and the following calculation (t ∈ D):∥∥F (t + ω;x)− TF (t;x)

∥∥ =
∥∥∥F (t1 + ω1, ..., tn + ωn;x

)
− T1...TnF

(
t1, ..., tn;x

)∥∥∥
≤
∥∥∥F (t1 + ω1, t2 + ω2, ..., tn + ωn;x

)
− T1F

(
t1, t2 + ω2, ..., tn + ωn;x

)∥∥∥
+
∥∥T1

∥∥ · ∥∥∥F (t1, t2 + ω2, ..., tn + ωn;x
)
− T2...TnF

(
t1, ..., tn;x

)∥∥∥
≤
∥∥∥F (t1 + ω1, t2 + ω2, ..., tn + ωn;x

)
− T1F

(
t1, t2 + ω2, ..., tn + ωn;x

)∥∥∥
+
∥∥T1

∥∥ · [∥∥∥F (t1, t2 + ω2, ..., tn + ωn;x
)
− T2F

(
t1, t2, ..., tn + ωn;x

)∥∥∥
+
∥∥T2

∥∥ · ∥∥∥F (t1, t2, ..., tn + ωn;x
)
− T3...TnF

(
t1, t2, ..., tn;x

)∥∥∥]
≤ ... .

�

In the following proposition, we examine the convolution invariance of function
spaces introduced in this section:

Proposition 2.2. Suppose that h ∈ L1(Rn) and F : Rn×X → Y is a function which
satisfies that for each set B ∈ B we have supt∈Rn,x∈B ‖F (t, x)‖Y < +∞. Suppose,
further, that ρ = A is a closed linear operator on Y satisfying that:
(D) For each t ∈ Rn and x ∈ X, the function s 7→ AF (t− s;x), s ∈ Rn is essentially

bounded; for each B ∈ B, the function s 7→ supx∈B ‖AF (s;x)‖Y , s ∈ Rn is
bounded.

Then the function

(h ∗ F )(t;x) :=

∫
Rn
h(σ)F (t− σ;x) dσ, t ∈ Rn, x ∈ X

is well defined and for each set B ∈ B we have supt∈Rn,x∈B ‖(h ∗ F )(t;x)‖Y < +∞.
Furthermore, the following holds:
(i) Suppose that D = Rn, ν ∈ L∞(Rn : (0,∞)) and there exists a function ϕ :

Rn → (0,∞) such that ν(x) ≤ ν(y)ϕ(x− y) for all x, y ∈ Rn and hϕ ∈ L1(Rn).
Suppose also that, for every set B ∈ B, we have PB = C0,ν(Rn × B : (0,∞)) or
PB = L∞ν (Rn × B : (0,∞)). If the function F (·; ·) is (S,Rn,B)-asymptotically
(ω,A,PB)-periodic, then the function (h ∗ F )(·; ·) is likewise
(S,Rn,B)-asymptotically (ω,A,PB)-periodic.

(ii) Suppose that Dj = Rn and the function νj ∈ L∞(Rn : (0,∞)) satisfies that there
exists a function ϕj : Rn → (0,∞) such that νj(x) ≤ νj(y)ϕj(x − y) for all
x, y ∈ Rn and hϕj ∈ L1(Rn), for all j ∈ Nn. Suppose also that, for every set

B ∈ B and j ∈ Nn, we have P jB = C0,νj (Rn ×B : (0,∞)) or P jB = L∞νj (R
n ×B :

(0,∞)). If for each j ∈ Nn condition (D) holds with the closed linear operator
A replaced therein with the closed linear operator Aj , and the function F (·; ·) is

(S,B)-asymptotically (ωj , Aj ,Rn,PjB)j∈Nn-periodic, then the function (h∗F )(·; ·)
is likewise (S,B)-asymptotically (ωj , Aj ,Rn,PjB)j∈Nn-periodic.



362 M. KOSTIĆ

Proof. The proof is very similar to the proof of [12, Theorem 2.6], and we will only
provide the main details of proof for the issue (i). It can be easily proved that the
function (h∗F )(·; ·) is well defined as well as that supt∈Rn,x∈B ‖(h∗F )(t;x)‖Y < +∞
for all B ∈ B. Let a real number ε > 0 and a set B ∈ B be fixed. Then there exists
a sufficiently large real number M1 > 0 such that ‖F (t +ω;x)−AF (t;x)‖Y ν(t) < ε,
provided |t| > M1 and x ∈ B. Since A is closed and condition (D) holds, for every
t ∈ Rn and x ∈ B, the value of Gx(t) := A((h ∗ F )(t;x)) =

∫
Rn h(s)A(F (t− s;x)) ds

is well defined. Due to the second part of condition (D), the essential boundedness
of function ν(·) and the fact that hϕ ∈ L1(Rn), we know that there exists a finite
constant cB ≥ 1 such that∥∥∥(h ∗ F )(t + ω;x)−Gx(t)

∥∥∥
Y
ν(t)

≤
∫
Rn
|h(σ)| ·

∥∥F (t + ω − σ;x)−AF (t− σ;x)
∥∥
Y
ν(t) dσ

=

∫
|σ|≤M1

|h(t− σ)| ·
∥∥F (σ + ω;x)−AF (σ;x)

∥∥
Y
ν(t) dσ

+

∫
|σ|≥M1

|h(t− σ)| ·
∥∥F (σ + ω;x)−AF (σ;x)

∥∥
Y
ν(t) dσ

≤
∫
|σ|≤M1

|h(t− σ)| ·
∥∥F (σ + ω;x)−AF (σ;x)

∥∥
Y
ν(t) dσ

+

∫
|σ|≥M1

|h(t− σ)|ϕ(t− σ) ·
∥∥F (σ + ω;x)−AF (σ;x)

∥∥
Y
ν(σ) dσ

≤ cB‖ν‖∞
∫
|σ|≤M1

|h(t− σ)| dσ + ε‖ϕh‖L1(Rn).

To complete the proof, it suffices to observe that there exists a finite real number
M2 > 0 such that

∫
|σ|≥M2

|h(σ)| dσ < ε. �

We would like to note that an analogue of Proposition 2.2, with the same choice of
metric spaces, can be formulated for metrically quasi-asymptotically ρ-almost periodic
type functions in Rn and metrically ρ-slowly oscillating type functions in Rn. Further-
more, the composition principle clarified in [16, Theorem 4.5] can be straightforwardly
reformulated for metrically ρ-slowly oscillating type functions in Rn, providing the
same choice of metric spaces as in Proposition 2.2.

3. Metrically ρ-slowly oscillating type functions in Rn

In the following two definitions, we extend the notion recently introduced in [16,
Definition 4.1, Definition 4.2]:

Definition 3.1. Let ρ be a binary relation on Y, D ⊆ I ⊆ Rn and the set D be
unbounded. Suppose, further, that for each set B ∈ B, PB = (PB , dB) is a metric
space of functions from [0,∞)D×B containing the zero function. Set

AI :=
{
ω ∈ Rn \ {0} : ω + I ⊆ I

}
.

A function F : I ×X → Y is said to be (D,B, ρ,PB)-slowly oscillating if and only if
for each ω ∈ AI the function F (·; ·) is (S,D,B,PB)-asymptotically (ω, ρ)-periodic.
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Definition 3.2. Let ρj be a binary relation on Y, Dj ⊆ I ⊆ Rn and the set Dj be
unbounded (1 ≤ j ≤ n). Suppose, further, that for each j ∈ Nn and for each set

B ∈ B, PjB = (P jB , d
j
B) is a metric space of functions from [0,∞)Dj×B containing the

zero function. Set

BI :=
{

(ω1, ..., ωn) ∈ (R \ {0})n : ωjej + I ⊆ I for all j ∈ Nn
}
.

A function F : I ×X → Y is said to be (B, (ωj , ρj ,Dj ,PjB)j∈Nn)-slowly oscillating if
and only if for each tuple (ω1, ..., ωn) ∈ BI the function F (·; ·) is (S,B)-asymptotically

(ωj , ρj ,Dj ,PjB)j∈Nn -periodic.

There is no need to say that the terms “(S,D,B,PB)-asymptotically (ω, ρ)-periodic”
and “(D,B, ρ,PB)-slowly oscillating”, as well as their relatives from Definition 2.2 and
Definition 3.2, are not ideal but suitable in the situation in which we use the weighted
C0-spaces of functions.

It is also worth noting that, in the usual approach developed by D. Sarason [21] for
the functions of form F : [0,∞)→ C, the boundedness and continuity of function F (·)
are assumed a priori; we do not use these assumptions here. Further on, in the usual
approach, any slowly oscillating function F : [0,∞)→ C is uniformly continuous. We
have expanded this result in [17, Proposition 2.3]; it is clear that we cannot expect
the uniform continuity of functions introduced in Definition 3.1 and Definition 3.2.

We continue by providing two illustrative examples:

Example 3.1. Let X := c0(C) be the Banach space of all numerical sequences
tending to zero, equipped with the sup-norm. Consider the function

f(t) :=

(
4k2t2

(t2 + k2)2

)
k∈N

, t ≥ 0.

Then we know (see e.g., [11, Example 2.6]) that the function f(·) is uniformly con-
tinuous, the range of f(·) is not relatively compact in X and, for every positive real
number τ > 0, we have

‖f(t+ τ)− f(t)‖ ≤ 1

t4
+ 4

τ2

t2
, t > 0.

This implies that the function f(·) is P-slowly oscillating with P = C0,ν([0,∞) : X)
and ν(t) = (1 + t)ζ , where ζ ∈ (0, 2).

Example 3.2. Suppose that F : Rn → R is continuously differentiable and there
exist finite real numbers σ ∈ R and M ≥ 1 such that |∇F (x)| ≤ M |x|σ, |x| ≥
1. Suppose, further, that ν : Rn → (0,∞) is any continuous function such that
lim|x|→+∞ |x|σν(x) = 0. Applying the Lagrange mean value theorem, we get that, for
every x, τ ∈ Rn \ {0}, there exists a number c ∈ (0, 1) such that:

|f(x+ τ)− f(x)|ν(x) ≤ |∇f(x+ (1− c)τ)| · |τ | · ν(x)

≤M |τ | · |x+ (1− c)τ |σ · ν(x) = M |τ | · |x+ (1− c)τ |σ

|x|σ
[
|x|σν(x)

]
.

Along with an elementary argumentation, this computation shows that, for every
τ ∈ Rn, we have: lim|x|→+∞ |f(x + τ) − f(x)|ν(x) = 0. Hence, the function F (·) is
P-slowly oscillating with P = C0,ν(Rn : R) and the metric d induced by the norm of
this Banach space.
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In [17, Proposition 2.2], we have recently observed that it is not so logical to
study the class of (D,B, c)-slowly oscillating functions by replacing the term ‖F (t +
ω;x)−F (t;x)‖Y in the usual definition by the term ‖F (t +ω;x)− cF (t;x)‖Y , where
c ∈ C \ {0}. This result can be further generalized as follows:

Proposition 3.1. Let c ∈ C \ {0}, ∅ 6= I ⊆ Rn, D ⊆ I ⊆ Rn and the set D be
unbounded. Suppose that ν : I → (0,∞) is a function which satisfies that there
exists a function ϕ : AI → (0,∞) such that ν(t) ≤ ν(t + ω)ϕ(ω) for all t ∈ D
and ω ∈ AI , as well as that AI ⊆ 2AI and ω′ + D ⊆ D for all ω′ ∈ AI/2. Let
PB := C0,D,ν(I ×B : (0,∞)) for all B ∈ B. Then the following holds:

(i) If a function F : I ×X → Y is (D,B, cI,PB)-slowly oscillating, then for each set
B ∈ B we have

lim
|t|→+∞,t∈D

sup
x∈B

∥∥F (t;x)
∥∥
Y
ν(t) = 0. (1)

(ii) If, in addition to the above, we have ω + D ⊆ D for all ω ∈ AI , then a function
F : I×X → Y is (D,B, cI,PB)-slowly oscillating if and only if for each set B ∈ B
we have (1).

Proof. In order to prove (i), suppose that ω′ ∈ AI and B ∈ B; then there exists
ω ∈ AI such that ω′ = 2ω. We have (t ∈ I; x ∈ B):[

F
(
t + ω′;x

)
− c2F (t;x)

]
ν(t) =

[
F
(
t + 2ω;x

)
− c2F (t;x)

]
ν(t)

=
[
F
(
t + 2ω;x

)
− cF

(
t + ω;x

)]
ν(t) + c

[
F
(
t + ω;x

)
− cF

(
t;x
)]
ν(t),

which implies∥∥∥F (t + ω′;x
)
− c2F (t;x)

∥∥∥
Y
ν(t) ≤

∥∥F (t + 2ω;x
)
− cF

(
t + ω;x

)∥∥
Y
ν(t + ω)ϕ(ω)

+ |c| ·
∥∥F (t + ω;x

)
· F
(
t;x
)∥∥
Y
ν(t).

Our assumption (AI/2) + D ⊆ D implies t + ω ∈ D, t ∈ D and

lim
|t|→+∞,t∈D

∥∥F (t + ω′;x
)
− c2F (t;x)

∥∥
Y
ν(t) = 0, uniformly in x ∈ B.

Subtracting the term in the above equality and the corresponding term from the
definition of (D,B, cI,PB)-slowly oscillating property, with the number ω replaced
therein with the number ω′, we obtain

lim
|t|→+∞,t∈D

∥∥(c2 − c) · F (t;x)
∥∥
Y
ν(t) = 0, uniformly in x ∈ B.

This immediately implies (1) since c 6= 1. In order to prove (ii), it suffices to apply (i)
and observe that the assumption ω + D ⊆ D for all ω ∈ AI implies

lim
|t|→+∞,t∈D

∥∥F (t + ω;x)
∥∥
Y
ν(t) = 0, uniformly in x ∈ B,

since ν(t) ≤ ν(t + ω)ϕ(ω) for all t ∈ D and ω ∈ AI . �

4. Metrically quasi-asymptotically ρ-almost periodic type functions

In this section, we investigate various classes of metrical quasi-asymptotically ρ-almost
periodic type functions. We will always assume the validity of the following condition:
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(QAAP-1) Suppose that D ⊆ I ⊆ Rn, ∅ 6= I ′ ⊆ Rn, ∅ 6= I ⊆ Rn and I + I ′ ⊆ I. If τ ∈ I ′
and M > 0, then we define

DM := {t ∈ D : |t| ≥M}
and

Iτ,M := {t ∈ I : t, t + τ ∈ DM};
further on, we assume that Pτ,M = (Pτ,M , dτ,M ) is a metric space, where Pτ,M ⊆
Y Iτ,M and Pτ,M contains the zero function. We set ‖f‖Pτ,M := dτ,M (0, f) for all
f ∈ Pτ,M .

Now we are able to introduce the following notion:

Definition 4.1. Suppose that (QAAP-1) holds as well as that F : I ×X → Y is a
given function. Then we say that:
(i) F (·; ·) is D-asymptotically Bohr (B, I ′, ρ,P)-almost periodic of type 1 if and only

if for every B ∈ B and ε > 0 there exist finite real numbers l > 0 and M > 0
such that for each t0 ∈ I ′ there exists τ ∈ B(t0, l)∩I ′ such that, for every x ∈ B,
there exists a function Gx ∈ Y Iτ,M such that Gx(t) ∈ ρ(F (t;x)) for all t ∈ Iτ,M ,
x ∈ B and

sup
x∈B

∥∥F (·+ τ ;x)−Gx(·)
∥∥
Pτ,M

≤ ε.

(ii) F (·; ·) is D-quasi-asymptotically (B, I ′, ρ,P)-almost periodic if and only if for
every B ∈ B and ε > 0 there exists l > 0 such that for each t0 ∈ I ′ there exists
τ ∈ B(t0, l) ∩ I ′ such that there exists a finite real number M ≡ M(ε, τ) > 0
such that, for every x ∈ B, there exists a function Gx ∈ Y Iτ,M such that Gx(t) ∈
ρ(F (t;x)) for all t ∈ Iτ,M , x ∈ B and

sup
x∈B

∥∥F (·+ τ ;x)−Gx(·)
∥∥
Pτ,M

≤ ε.

(iii) F (·; ·) is D-quasi-asymptotically (B, I ′, ρ,P)-uniformly recurrent (or, equivalently,
D-asymptotically (B, I ′, ρ,P)-uniformly recurrent of type 1) if and only if for ev-
ery B ∈ B there exist a sequence (τk) in I ′ and a sequence (Mk) in (0,∞) such
that limk→+∞ |τk| = limk→+∞Mk = +∞ and, for every x ∈ B, there exists a
function Gx ∈ Y Iτk,Mk such that Gx(t) ∈ ρ(F (t;x)) for all t ∈ Iτ,M , x ∈ B and

lim
k→+∞

sup
x∈B

∥∥F (·+ τk;x)−Gx(·)
∥∥
Pτk,Mk

= 0.

If I ′ = I, then we also say that F (·; ·) is D-asymptotically Bohr (B, ρ,P)-almost pe-
riodic of type 1 (D-quasi-asymptotically (B, ρ,P)-almost periodic,
D-quasi-asymptotically (B, ρ,P)-uniformly recurrent); furthermore, if X ∈ B, then
it is also said that F (·; ·) is D-asymptotically (I ′, ρ,P)-almost periodic of type 1
(D-quasi-asymptotically (I ′, ρ,P)-almost periodic, D-quasi-asymptotically (I ′, ρ,P)-
uniformly recurrent). If I ′ = I and X ∈ B, then we also say that F (·; ·) is D-
asymptotically (ρ,P)-almost periodic of type 1 (D-quasi-asymptotically (ρ,P)-almost
periodic, D-quasi-asymptotically (ρ,P)-uniformly recurrent). We remove the prefix
“D-” in the case that D = I, remove the prefix “(B, )” in the case that X ∈ B and
remove the prefix “ρ-” if ρ = I, the identity operator on Y.

It is worth noting that we do not assume the continuity of a function F (·; ·) here.
The notion of D-quasi-asymptotical Bohr (B, I ′, ρ)-almost periodicity and the notion
of D-quasi-asymptotical (B, I ′, ρ)-uniform recurrence, introduced and analyzed in [16],
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are obtained by plugging that Pτ,M = L∞(Iτ,M : Y ) for all τ ∈ I ′ and M > 0;
similarly, the notion of D-asymptotical Bohr (B, I ′, ρ)-almost periodicity of type 1
and the notion of D-asymptotical (B, I ′, ρ)-uniform recurrence of type 1, introduced
and analyzed in [6], are obtained in the same way; see also [10, Definition 6.1.33,
Definition 7.1.23, Definition 7.3.14].

Remark 4.1. The notion introduced in the former part of this paper can be under-
stood in a more general setting. By that, we primarily mean that all considered metric
spaces can be pseudometric spaces as well as that X and Y can be general non-empty
sets, only. Let us consider in more detail part (i) of Definition 4.1; then it suffices
to assume that I, I ′, X and Y are non-empty sets, (I ′, d′) is a pseudometric space
[then for each t0 ∈ I ′ the inclusion τ ∈ B(t0, l) ∩ I ′ means τ ∈ I ′ and d′(t0, τ) ≤ l],
the operation ⊕ : I × I ′ → I is defined [then ·+ τ means · ⊕ τ ], Pτ,M = (Pτ,M , dτ,M )
is a pseudometric space, where P ⊆ Y Iτ,M contains a zero function, and (Y,	) is a
grupoid [then F (·+ τ ;x)−Gx(·) ∈ Pτ,M means F (· ⊕ τ ;x)	Gx(·) ∈ Pτ,M ], for any
τ ∈ I ′ and M > 0.

Suppose that (QAAP-1) holds and F : I ×X → Y is a given function. Then it is
clear that the following holds:
(i) If F (·; ·) is D-asymptotically Bohr (B, I ′, ρ,P)-almost periodic of type 1, then

F (·; ·) is D-quasi-asymptotically (B, I ′, ρ,P)-almost periodic.
(ii) If F (·; ·) is D-quasi-asymptotically (B, I ′, ρ,P)-almost periodic, then F (·; ·) is

D-quasi-asymptotically (B, I ′, ρ,P)-uniformly recurrent.
For simplicity, we will not consider here the Stepanov generalizations of the notion

introduced in Definition 4.1; see [10, Subsection 6.2.3, Subsection 6.2.5, Subsection
7.3.4] for some results obtained in the case that ρ = I. Recall also that the notion of
Stepanov quasi-asymptotical almost periodicity intermediates the concepts Stepanov
asymptotical almost periodicity and Weyl almost periodicity, considered in the general
approach of A. S. Kovanko ([18]). Concerning this issue, we would like to note that an
analogue of [11, Proposition 2.12] and its multi-dimensional extensions can be proved
in metrical framework, provided that the metric spaces under our consideration are
weighted Lp-spaces. Details can be left to the interested readers. Furthermore, in
[16, Subsection 3.1], we have recently analyzed various classes of remotely ρ-almost
periodic type functions. The notion of metrical remote ρ-almost periodicity can be
introduced and analyzed, as well; for simplicity, we will skip all related details con-
cerning this topic here.

We continue by providing an illustrative example:

Example 4.1. Suppose that I = R, ν : R→ (0,∞) is any function satisfying that the
function 1/ν(·) is locally bounded, and f(·) is any scalar-valued continuous function
such that f(t) = 1 for all t ≥ 0 and f(t) = 0 for all t ≤ −1. Then f(·) is not equi-
Weyl-p-almost periodic for any finite exponent p ≥ 1 (cf. [9] for the notion) but f(·)
is quasi-asymptotically P-almost periodic, where Pτ,M = C0,ν(R : R) for every τ ∈ R
and M > 0.

Denote by AX,Y any of the function spaces introduced in the former part of this
paper. If F (·; ·) belongs to AX,Y , c1 ∈ R \ {0}, τ ∈ Rn, c, c2 ∈ C \ {0} and x0 ∈ X,
then it is not difficult to clarify certain sufficient conditions ensuring that the function
cF (·; ·), F̌ (·; ·), F (c1·; c2·), ‖F (·; ·)‖Y or F (·+ τ ; ·+x0) also belongs to AX,Y . In some
cases, it is almost trivial to say when AX,Y will be a vector space. Concerning
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the uniformly convergent sequences of functions belonging to some of the above-
introduced function spaces, we must impose some restrictive conditions on the metric
spaces under our considerations in order to obtain any relevant. For example, suppose
that (Fk(·; ·) : I × X → Y ) is a sequence of functions and there exists a function
F : I ×X → Y such that limk→+∞ Fk(t;x) = F (t;x), uniformly on I × B for each
set B of collection B. Concerning the binary relation ρ on Y , we assume that D(ρ)
is closed, ρ is single-valued on R(F ) and continuous on D(ρ) in the usual sense ([6]);
we assume the same conditions for the sequence (ρj)j∈Nn of binary relations on Y, if
considered. Then we have the following:
(i) Suppose that for each positive integer k ∈ N the function Fk(·; ·) is

D-asymptotically Bohr (B, I ′, ρ,P)-almost periodic of type 1, respectively, D-
quasi-asymptotically (B, I ′, ρ,P)-almost periodic [D-quasi-asymptotically
(B, I ′, ρ,P)-uniformly recurrent]. Suppose, further, that for each τ ∈ I ′ and
M > 0 we have that Pτ,M = C0,ν(Iτ,M : Y ) or Pτ,M = L∞ν (Iτ,M : Y ), where
ν ∈ L∞(I : (0,∞)). Then F (·; ·) is D-asymptotically Bohr (B, I ′, ρ,P)-almost pe-
riodic of type 1, respectively, D-quasi-asymptotically (B, I ′, ρ,P)-almost periodic
[D-quasi-asymptotically (B, I ′, ρ,P)-uniformly recurrent].

(ii) Suppose that for each positive integer k ∈ N the function Fk(·; ·) is (S,D,B,PB)-
asymptotically (ω, ρ)-periodic [(D,B, ρ,PB)-slowly oscillating]. Suppose, further,
that for each B ∈ B we have that PB = C0,ν(D × B : [0,∞)) or PB =
L∞ν (D × B : [0,∞)), where ν ∈ L∞(I : (0,∞)). Then F (·; ·) is (S,D,B,PB)-
asymptotically (ω, ρ)-periodic [(D,B, ρ,PB)-slowly oscillating]. Here, C0,ν(D ×
B : Y ) := {F : D × B → Y ; lim|t|→+∞,t∈D supx∈B ‖F (t;x)‖Y ν(t) = 0} and
dB(F,G) := supx∈B supt∈D ‖F (t;x)‖Y ν(t) for all F, G ∈ C0,ν(D × B : Y ); we
define L∞ν (D×B : Y ) similarly.

(iii) Suppose that for each positive integer k ∈ N the function Fk(·; ·) is (S,B)-

asymptotically (ωj , ρj ,Dj ,PjB)j∈Nn -periodic [(B, (ωj , ρj ,Dj ,PjB)j∈Nn)-slowly os-
cillating]. Suppose, further, that for each B ∈ B we have that PB = C0,ν(D×B :
[0,∞)) or PB = L∞ν (D × B : [0,∞)), where ν ∈ L∞(I : (0,∞)). Then F (·; ·)
is (S,B)-asymptotically (ωj , ρj ,Dj ,PjB)j∈Nn -periodic [(B, (ωj , ρj ,Dj ,PjB)j∈Nn)-
slowly oscillating].

The following result generalizes [12, Proposition 3.4(i)] and [16, Proposition 3.2]:

Proposition 4.1. Let ω ∈ I \{0}, T ∈ L(X), ‖T‖ ≤ 1, ω+I ⊆ I, ω+D ⊆ D and D ⊆
I ⊆ Rn. Set I ′ := ω · N. Suppose that ν : I → (0,∞), PB = C0,ν(D× : [0,∞)) (PB =
L∞ν (D× : [0,∞))) for any B ∈ B, and Pτ,M = C0,ν(Iτ,M : Y ) (Pτ,M = L∞ν (Iτ,M : Y ))
for any τ ∈ I ′ and M > 0. If a function F : I×X → Y is (S,D,B,PB)-asymptotically
(ω, ρ)-periodic, then the function F (·; ·) is D-quasi-asymptotically (B, I ′, ρ,P)-almost
periodic, provided that for each k ∈ N we have

sup
t∈D

k−1∑
j=0

ν(t)

ν(t + jω)
< +∞. (2)

Proof. The proof essentially follows from the argumentation contained in the proof
of [12, Proposition 3.4(i)] and our assumption (2). We will only note here that the
assumption t ∈ D implies t + kω ∈ D for each fixed integer k ∈ N, so that for each
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x ∈ B we have:∥∥F (t + kω;x)− TF (t;x)
∥∥
Y
ν(t)

≤
k−1∑
j=0

‖T‖k−1−j
∥∥∥F (t + (j + 1)ω;x)− TF (t + jω;x)

∥∥∥
Y
ν(t)

≤
k−1∑
j=0

∥∥∥F (t + (j + 1)ω;x)− TF (t + jω;x)
∥∥∥
Y
ν(t + jω)

ν(t)

ν(t + jω)
.

�

Concerning the invariance of metrical c-quasi-asymptotical almost periodicity un-
der the actions of convolution products, where c ∈ C \ {0}, we will only state the
following slight extensions of [11, Proposition 3.1, Proposition 3.2] without proofs
and say that these results can be also established in the multi-dimensional setting
(we can also consider the Banach space L∞ν (I : (0,∞)) here):

Proposition 4.2. Suppose that c ∈ C \ {0}, (R(t))t>0 ⊆ L(X,Y ) is a strongly
continuous operator family and

∫∞
0
‖R(s)‖ ds <∞.

(i) Suppose that ν : [0,∞) → (0,∞) is an essentially bounded function which sat-
isfies that the function 1/ν(·) is locally bounded, as well as that there exists a
function ϕ : [0,∞) → (0,∞) such that ν(t) ≤ ν(t − s)ϕ(s) for all t, s ≥ 0
and

∫∞
0
ϕ(s)‖R(s)‖ ds < ∞. If f : [0,∞) → X is bounded and (cI,P)-quasi-

asymoptotically almost periodic, then the function F (·), defined through

F (t) :=

∫ t

0

R(t− s)f(s) ds, t ≥ 0,

is likewise bounded and (cI,P)-quasi-asymoptotically almost periodic.
(ii) Suppose that ν : R → (0,∞) is an essentially bounded function which satis-

fies that the function 1/ν(·) is locally bounded, as well as that there exists a
function ϕ : [0,∞) → (0,∞) such that ν(t) ≤ ν(t − s)ϕ(s) for all t ∈ R,
s ≥ 0 and

∫∞
0
ϕ(s)‖R(s)‖ ds < ∞. If f : R → X is bounded and (cI,P)-quasi-

asymoptotically almost periodic, then the function F(t), defined through

F(t) :=

∫ t

−∞
R(t− s)f(s) ds, t ∈ R,

is likewise bounded and (cI,P)-quasi-asymoptotically almost periodic.

It would be very tempting to extend the statements of [3, Theorem 2.34] and [6,
Theorem 2.27] for some special kinds of metrically (asymptotically) almost periodic
type functions (see also [10, Theorem 7.1.25] for the case in which ρ = cI for some
c ∈ C \ {0}). The same observation can be given for the statements of [10, Theorem
6.1.40, Proposition 7.3.15, Proposition 7.3.17, Proposition 7.3.18].

5. Applications to the abstract Volterra integro-differential equations

In this section, we will briefly explain how the obtained results can be applied in
the analysis of existence and uniqueness of asymptotically ρ-almost periodic type
solutions for some classes of the abstract Volterra integro-differential equations.
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1. It is clear that Proposition 2.2 can be applied in the analysis of inhomogeneous
heat equation in Rn, and to the Poisson semigroup in Rn; let us only note here that
the use of multivalued binary relations is inevitable here and that a fairly complete
analysis of this problematic cannot be obtained by assuming that ρ is a function, only
([6, 16]).

In this part, we will apply Proposition 2.2 in the analysis of certain classes of the
abstract ill-posed Cauchy problems; we will consider the integrated semigroups here
(see [10] and [17] for more details about this kind of applications). Suppose that
k ∈ N, aα ∈ C, 0≤|α|≤k, aα 6= 0 for some α with |α| = k, P (x) =

∑
|α|≤k aαi

|α|xα,

x ∈ Rn, P (·) is an elliptic polynomial, i.e., there exist C > 0 and L > 0 such that
|P (x)| ≥ C|x|k, |x| ≥ L, ω := supx∈Rn <(P (x)) <∞, and X := BUC(Rn), the space
of bounded uniformly continuous functions f : Rn → C equipped with the sup-norm.
Define

P (D) :=
∑
|α|≤k

aαf
(α) and Dom(P (D)) :=

{
f ∈ X : P (D)f ∈ X distributionally

}
,

and assume that nX > n/2. It is well known that the operator P (D) generates an
exponentially bounded r-times integrated semigroup (Sr(t))t≥0 in X for any r > nX
(see [1], [9] and references cited therein for more details about fractionally integrated
semigroups). Furthermore, it is well known that for each t ≥ 0 there exists a function
ft ∈ L1(Rn) such that[

Sr(t)f
]
(x) :=

(
ft ∗ f

)
(x), x ∈ Rn, f ∈ X.

Let a number t0 ≥ 0 be fixed. Assume that A : BUC(Rn) → BUC(Rn) is given by
(Af)(x) := m(x)f(x), x ∈ Rn, f ∈ BUC(Rn), where m ∈ L∞(Rn). Let ν ∈ L∞(Rn :
(0,∞)) and let there exist a function ϕ : Rn → (0,∞) such that ν(x) ≤ ν(y)ϕ(x− y)
for all x, y ∈ Rn and hϕ ∈ L1(Rn). Assume also that, for every set B ∈ B, we
have PB = L∞ν (Rn × B : (0,∞)) and the function f(·) is (S,Rn,B)-asymptotically
(ω,A,PB)-periodic. Applying Proposition 2.2, we get that the function [Sr(t)f ](·) is
likewise (S,Rn,B)-asymptotically (ω,A,PB)-periodic. We can simply incorporate the
obtained result in the analysis of corresponding ill-posed Cauchy problems.

2. Because of a great similarity with our previous research studies (see e.g., [10]), we
will only note here that the function spaces introduced in this paper can be important
in the qualitative analysis of solutions of the inhomogeneous wave equation in R3, R2

and R, which are given by the famous Kirchhoff formula, the Poisson formula and the
d’Alembert formula, respectively.

3. It is clear that Proposition 4.2 can be applied in the analysis of the existence
and uniqueness of metrically c-quasi-asymptotically almost periodic solutions for var-
ious classes of abstract (degenerate) inhomogeneous Cauchy problems ([9, 10]); for
example, we can apply this result in the qualitative analysis of the following fractional
equation with higher order differential operators in the Hölder space X = Cα(Ω) :{

Dγ
t u(t, x) = −

∑
|β|≤2m

aβ(t, x)Dβu(t, x)− σu(t, x) + f(t, x), t ≥ 0, x ∈ Ω;

u(0, x) = u0(x), x ∈ Ω;

see [9, Example 3.10.4] for the notion and more details. Since the composition princi-
ple clarified in [16, Theorem 4.5] can be reformulated for metrically ρ-slowly oscillating
type functions in Rn, providing the same special choices of metric spaces, we are in
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a position to analyze the metrically (S,D,B)-asymptotically (ω, ρ)-periodic solutions,
e.g., for the class of semilinear Hammerstein integral equations of convolution type in
Rn ([3, 16]). We can also analyze metrically (S,D,B)-asymptotically (ω, ρ)-periodic
solutions for certain classes of the abstract semilinear fractional Cauchy problems
([9, 10]). Details can be left to the interested readers.
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[12] M. Kostić, Generalized c-almost periodic type functions in Rn, Arch. Math. (Brno) 57 (2021),

no. 4, 221–253.
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