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Abstract. In this paper, using the definition of functions (h,m, s)-convex modified of sec-

ond type, various extensions of the classic Hermite-Hadamard Inequality are obtained using
Katugampola integrals. In addition, we show that several results known are particular cases

of ours.
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1. Introduction

The notion of convex function has been the object of attention of many researchers
in recent years, due to its multiple applications and links with various mathematical
areas. Readers interested in the aforementioned development, can consult [32], where
a panorama, practically complete, of these branches is presented.

A function ψ : I = [a, b]→ R, is said to be convex if ψ
(
τξ + (1− τ)ς

)
≤ τ ψ(ξ) +

(1− τ)ψ(ς) holds ∀ ξ, ς ∈ I,τ ∈ [0, 1]. And they say that the function ψ is concave on
[a, b] if the inequality is the opposite.

Definition 1.1. Let h : [0, 1] → [0, 1] be a nonnegative function, h 6= 0 and ψ : I =
[0,+∞)→ [0,+∞). If inequality

ψ (τξ +m(1− τ)ς) ≤ hs(τ)ψ(ξ) +m(1− hs(τ))ψ (ς) (1)

is fulfilled for all ξ, ς ∈ I and τ ∈ [0, 1], where m ∈ [0, 1], s ∈ [−1, 1]. Then is said
function ψ is a (h,m, s)−convex modified of first type on I.

Definition 1.2. Let h : [0, 1] → [0, 1] nonnegative functions, h 6= 0 and ψ : I =
[0,+∞)→ [0,+∞). If inequality

ψ (τξ +m(1− τ)ς) ≤ hs(τ)ψ(ξ) +m(1− h(τ))sψ (ς) (2)

is fulfilled for all ξ, ς ∈ I and τ ∈ [0, 1], where m ∈ [0, 1], s ∈ [−1, 1]. Then is said
function ψ is a (h,m, s)−convex modified of second type on I.

Remark 1.1. From Definitions 1.1 and 1.2 we can define Ns
h,m[a, b], where a, b ∈

[0,+∞), as the set of functions (h,m, s)−convex modified, for which ψ(a) ≥ 0, char-
acterized by the triple (h(τ),m, s). Note that if:
(1) (h(τ), 0, 0) we have the increasing functions ( [8]).
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(2) (τ, 0, s) we have the s−starshaped functions ( [8]).
(3) (τ, 0, 1) we have the starshaped functions ( [8]).
(4) (τ, 1, 1) then ψ is a convex function on [0,+∞) ( [8]).
(5) (τ, 1,−1) then ψ is a Godunova-Levin convex function on [0,+∞) ( [16])
(6) (τ,m, 1) then ψ is a m−convex function on [0,+∞) ( [49]).
(7) (τ, 1, s) s ∈ (0, 1] then ψ is a s−convex function on [0,+∞) ( [9, 22]).
(8) (τ, 1, s) s ∈ [−1, 1] then ψ is a extended s−convex function on [0,+∞) ( [55]).
(9) (τ,m, s), s ∈ [−1, 1] then ψ is a extended (s,m)-convex function on [0,+∞)

( [57]).
(10) (τα, 1, s) with α ∈ (0, 1], then ψ is a (α, s)−convex function on [0,+∞) ( [56]).
(11) (τa,m, 1) with α ∈ (0, 1], then ψ is a (α,m)−convex function on [0,+∞) ( [29]).
(12) (τα,m, s) with α ∈ (0, 1], then ψ is a s − (α,m)−convex function on [0,+∞)

( [31,56]).
(13) (h(τ),m, 1) then we have a variant of a function (h,m)-convex on [0,+∞) ( [35]).

One of the most important inequalities, for convex functions, is the called Hermite–
Hadamard inequality:

ψ

(
a+ b

2

)
≤ 1

b− a

∫ b

a

ψ(ξ)dξ ≤ ψ(a) + ψ(b)

2
(3)

valid for any function ψ convex on the interval [a, b]. This inequality was published by
Hermite ( [19]) in 1883 and, independently, by Hadamard in 1893 ( [18]). It gives an
estimation of the mean value of a convex function, and it is important to note that it
also provides a refinement to the Jensen inequality. Several results can be consulted
in [3–10, 12–14, 17, 20, 28, 33] and references therein for more information and other
extensions of the Hermite–Hadamard inequality. All through the work we utilize the
functions Γ (see [52]) and Γk (see [11]):

Γ(z) =

∫ ∞
0

τz−1e−τ dτ, <(z) > 0,

Γk(z) =

∫ ∞
0

τz−1e−τ
k/k dτ, k > 0.

Unmistakably if k → 1 we have Γk(z) → Γ(z), Γk(z) = (k)
z
k−1

Γ
(
z
k

)
and Γk(z +

k) = zΓk(z).
To encourage comprehension of the subject, we present the definition of Riemann-

Liouville fractional integral (with 0 ≤ a < τ < ν2 ≤ ∞). The first is the classic
Riemann-Liouville fractional integrals.

Definition 1.3. Let ψ ∈ L1[a, b]. Then the Riemann-Liouville fractional integrals of
order α ∈ C, <(α) > 0 are defined by (right and left respectively):

Iαν1+ψ(ξ) =
1

Γ(α)

∫ ξ

ν1

(ξ − τ)α−1ψ(τ) dτ, ξ > ν1

Iαν2−ψ(ξ) =
1

Γ(α)

∫ ν2

ξ

(τ − ξ)α−1ψ(τ) dτ, ξ < ν2.

Next we present Katugampola fractional integral, which will be the basis of our
work (see [27]).
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Definition 1.4. Let ψ ∈ L1(ν1, ν2) the left-sided ρIαν1+ and the right-sided ρIαν2−
Katugampola fractional integral is defined by(

ρIαν1+ψ
)

(x) =
ρ1−α

Γ(α)

∫ x

ν1

τρ−1

(xρ − τρ)1−α f(τ)dτ,

(
ρIαν2−ψ

)
(x) =

ρ1−α

Γ(α)

∫ ν2

x

τρ−1

(τρ − xρ)1−α f(τ)dτ,

with 0 ≤ ν1 < x < ν2 ≤ ∞, where α is the order of the fractional integral α ∈ C,
Re(α) > 0.

Remark 1.2. If ρ = 1 then the Katugampola fractional integrals become Riemann–
Liouville fractional integrals. If additionally α = 1, then we have the classic Riemann
integral.

In this paper, we obtain several integral inequalities of the Hermite – Hadamard
type for differentiable (h,m, s)−convex second–order modified functions. To obtain
the inequalities, we use Katugampola fractional integral, previously defined.

2. Hermite – Hadamard type inequalities for (h,m, s)− convex modified
functions of second type

We have the first result:

Theorem 2.1. Let ψ : [0,+∞) → R and ψ ∈ Ns
h,m[ν1,mν2], with m ∈ (0, 1]. If

0 ≤ ν1 < mν2 < +∞, ψ ∈ L1[ν1,mν2] and h ∈ L1[0, 1], then for all integers ` ≥ 0 we
have the following inequality:

ψ

(
νρ1 + νρ2

2

)
≤ hs

(
1

2

)
(`+ 1)αΓ(α+ 1)ρα

(νρ2 − ν
ρ
1 )

ρI
α
ν2−ψ

(
ν1 + `ν2

`+ 1

)
+

(
1− h

(
1

2

))s
(`+ 1)αΓ(α+ 1)ρα

(νρ2 − ν
ρ
1 )

ρI
α
ν1+ψ

(
`ν1 + ν2

`+ 1

)
(4)

≤ ρα
[
hs
(

1

2

)
ψ(νρ1 ) +

(
1− h

(
1

2

))s
ψ(νρ2 )

] ∫ 1

0

τρα−1hs
(

τρ

`+ 1

)
dτ

+mρα

[
hs
(

1

2

)
ψ

(
νρ2
m

)
+

(
1− h

(
1

2

))s
ψ

(
νρ1
m

)]
×
∫ 1

0

τρα−1

(
1− h

(
1− τρ

`+ 1

))s
dτ.

Proof. For x, y ∈ [0,+∞), τ = 1
2 and m = 1, we have

ψ

(
xρ + yρ

2

)
≤ hs

(
1

2

)
ψ(xρ) +

(
1− h

(
1

2

))s
ψ(yρ).

If we choose xρ = τρ

`+1ν
ρ
1 +
(

1− τρ

`+1

)
νρ2 and yρ = τρ

`+1ν
ρ
2 +
(

1− τρ

`+1

)
νρ1 , with τ ∈ [0, 1],

we get

ψ

(
νρ1 + νρ2

2

)
≤ hs

(
1

2

)
ψ

(
τρ

`+ 1
νρ1 +

(
1− τρ

`+ 1

)
νρ2

)
(5)

+

(
1− h

(
1

2

))s
ψ

(
τρ

`+ 1
νρ2 +

(
1− τρ

`+ 1

)
νρ1

)
.



374 B. BAYRAKTAR AND J. NÁPOLES

Multiplying both members of the previous inequality by τρα−1, integrating with
respect to τ from 0 to 1 we obtain

1

ρα
ψ

(
νρ1 + νρ2

2

)
≤ hs

(
1

2

)
(`+ 1)αΓ(α)ρα−1

(νρ2 − ν
ρ
1 )

ρI
α
ν2−ψ

(
ν1 + `ν2

`+ 1

)
+

(
1− h

(
1

2

))s
(`+ 1)αΓ(α)ρα−1

(νρ2 − ν
ρ
1 )

ρI
α
ν1+ψ

(
`ν1 + ν2

`+ 1

)
.

the first inequality of (4).
From right member of (5) we obtain

hs
(

1

2

)
ψ

(
τρ

`+ 1
νρ1 +

(
1− τρ

`+ 1

)
νρ2

)
+

(
1− h

(
1

2

))s
ψ

(
τρ

`+ 1
νρ2 +

(
1− τρ

`+ 1

)
νρ1

)
= hs

(
1

2

)
ψ

(
τρ

`+ 1
νρ1 +m

(
1− τρ

`+ 1

)
νρ2
m

)
+

(
1− h

(
1

2

))s
ψ

(
τρ

`+ 1
νρ2 +m

(
1− τρ

`+ 1

)
νρ1
m

)
≤ hs

(
1

2

)[
hs
(

τρ

`+ 1

)
ψ(νρ1 ) +m

(
1− h

(
1− τρ

`+ 1

))s
ψ

(
νρ2
m

)]
+

(
1− h

(
1

2

))s [
hs
(

τρ

`+ 1

)
ψ(νρ2 ) +m

(
1− h

(
1− τρ

`+ 1

))s
ψ

(
νρ1
m

)]
.

Multiplying this by τρα−1 and integrating with respect to τ , between 0 and 1,
allows us to get the right member of (4). In this way the proof is completed. �

Remark 2.1. If in the previous Theorem we consider convex functions, i.e. s = m = 1
and h(τ) = τ and we put ρ = α = 1, with ` = 0, from (4) we obtain the classic
Hermite-Hadamard inequality (3).

Remark 2.2. In the framework of convex functions, ` = 0 we have Theorem 4 of [41]
for Riemann-Liouville integrals.

Remark 2.3. If we consider s−convex functions, ` = 0 we have Theorem 2.1 of [28]
(also see Theorem 2.1 of [10]). Also with ` = 1, we obtain Theorem 1 of [58].

Remark 2.4. Readers can obtain, without much difficulty, Theorem 2.1 of [15],
Theorem 5 of [53] and Theorem 3.1 of [21] obtained for the k−integral of [30], with
` = 0.

The following result will be basic from now on.

Lemma 2.2. Let ψ be a real function defined on some interval [ν1, ν2] ⊂ R, differ-
entiable on (ν1, ν2). If ψ′ ∈ L1(ν1, ν2), and w(τ) a differentiable function on [ν1, ν2],
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then for all integers ` ≥ 0 we have the following equality:{
−w(1)

(
ψ(
ν1 + `ν2

`+ 1
) + ψ(

`ν1 + ν2

`+ 1
)

)
+ w(0) (ψ(ν1) + ψ(ν2))

}
(6)

+
`+ 1

ν2 − ν1

(∫ `ν1+ν2
`+1

ν1

w′

[
u− ν1
ν2−ν1
`+1

]
ψ(u)du+

∫ ν2

ν1+`ν2
`+1

w′

[
ν2 − u
ν2−ν1
`+1

]
ψ(u)du

)

=
ν2 − ν1

`+ 1

∫ 1

0

w(τ)

[
ψ′
(

τ

`+ 1
ν1 +

(
1− τ

`+ 1

)
ν2

)
−ψ′

(
τ

`+ 1
ν2 +

(
1− τ

`+ 1

)
ν1

)
dτ

]
.

Proof. First note that∫ 1

0

w(τ)

[
ψ′
(
τν1

`+ 1
+

(
1− τ

`+ 1

)
ν2

)
− ψ′

(
τν2

`+ 1
+

(
1− τ

`+ 1

)
ν1

)]
dτ

=

∫ 1

0

w(τ)ψ′
(
τν1

`+ 1
+

(
1− τ

`+ 1

)
ν2

)
dτ

−
∫ 1

0

w(τ)ψ′
(
τν2

`+ 1
+

(
1− τ

`+ 1

)
ν1

)
dτ

= I1 − I2.

Integrating by parts, we have

I1 =
`+ 1

ν2 − ν1

[
−w(1)ψ

(
ν1 + `ν2

`+ 1

)
+ w(0)ψ(ν2)

]
+

(`+ 1)2

(ν2 − ν1)2

∫ `ν1+ν2
`+1

ν1

w′

[
u− ν1
ν2−ν1
`+1

]
ψ(u)du,

since∫ 1

0

w′(τ)ψ

(
τ

`+ 1
ν1 +

(
1− τ

`+ 1

)
ν2

)
dτ =

`+ 1

ν2 − ν1

∫ `ν1+ν2
`+1

ν1

w′

[
u− ν1
ν2−ν1
`+1

]
ψ(u)du.

Analogously

I2 =
`+ 1

ν2 − ν1

[
w(1)ψ

(
`ν1 + ν2

`+ 1

)
− w(0)ψ(ν1)

]
− (`+ 1)2

(ν2 − ν1)2

∫ ν2

ν1+`ν2
`+1

w′

[
ν2 − u
ν2−ν1
`+1

]
ψ(u)du.

From I1 − I2, and grouping appropriately, we have the required inequality. �

Let’s analyze some consequences of this result.

Remark 2.5. In [25], starting from Lemma 2.1 of [27] (see Remark 2.8 below),
through a change of variables obtains, for convex functions and with w(τ) = τ , the
integral of the right member of (6), we must point out that the + sign in said work
is incorrect. In this way, it is clear that equation (5) of [25] is obtained from the
previous Lemma for ` = 0, w(τ) = τ .
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We want to point out various results that can be obtained from the previous
Lemma, which shows the scope and generality of said result.

Remark 2.6. Putting w(τ) = τα and considering convex functions and ` = 1 we
obtain the Lemma 3 of [44].

Remark 2.7. If w(τ) = τ , ` = 0 we obtain a new result for classic integral.

Remark 2.8. Let’s consider ` = 0.
For various choices of the weight w′(τ) and taking, not only the right member of (6)
but only one of the integrals, they can be obtained without difficulty a variant of
Lemma 1 of [4], Lemma 2.1 of [12] (also see Lemma 2.1 of [24]), Lemma 2.3 of [15],
Lemma 1 of [23], Lemma 1 of [26], Lemma 2.1 of [27], Lemma 1 of [34], Lemma 1
of [37], Lemma 3.1 of [46] and Lemma 2 of [43] (see also [38]) are obtained.

Remark 2.9. Also, the reader will be able to verify, without much difficulty, that
under different variants of the weight w(τ) we can obtain Lemma 2 of [39], Lemma
1.1 of [47] (see also Lemma 2 of [36]), Lemma 2.1 from [42], Lemma 2.1 from [59],
Lemma 2.1 from [54], Lemma 1.6 from [13], Lemma 2.1 from [1], Lemma 1 of [5],
Lemma 2.1 of [45], and Lemma 2.1 of [40].

Remark 2.10. With w(τ) = (1−τ)α and ` = 0, we obtain a new result, for Riemann-
Liouville integrals.

Remark 2.11. If ` = 1, Lemma 1 of [2] and Lemma 1 of [50] can be obtained from
our result, under the appropriate definition of w(τ) = w1 + w2 (see also [51]).

In addition to the previous remarks, we want to stop at a very special case: the
Katugampola integral. Let’s put in the (6) w(τ) = τρα and let’s use appropriate
notations, then we have the following result:

Lemma 2.3.

−
(
ψ(
νρ1 + `νρ2
`+ 1

) + ψ(
`νρ1 + νρ2
`+ 1

)

)
(7)

+
ρα(`+ 1)αΓ(α+ 1)

(νρ2 − ν
ρ
1 )α

((
ρIανρ1 +ψ

)
(
`νρ1 + νρ2
`+ 1

)−
(
ρIανρ2−ψ

)
(
νρ1 + `νρ2
`+ 1

)

)
=
νρ2 − ν

ρ
1

`+ 1

∫ 1

0

τρα
[
ψ′
(

τρ

`+ 1
νρ1 +

(
1− τρ

`+ 1

)
νρ2

)
−ψ′

(
τρ

`+ 1
νρ2 +

(
1− τρ

`+ 1

)
νρ1

)
dτ

]
.

Remark 2.12. In the case ` = 0, this Lemma contains as a particular case, with
slight modification, Lemma 2.1 of [14]. If ` = 1 the above result covers Lemma 2.1
of [58], Lemma 3.1 of [15] for k-fractional integrals (ρ = 1) and Lemma 3 of [41] and
Lemma 2.1 of [48] for Riemann-Liouville fractional integrals (with ρ = 1).

Our first main result relative to the Katugampola integral is the following.

Theorem 2.4. Let ψ : I ⊂ R −→ R be a differentiable function on I◦ such that

ψ′ ∈ L1

[
νρ1 ,

νρ2
m

]
. Under the assumptions of Lemma 2.2, if |ψ′| ∈ Ns

h,m[νρ1 ,
νρ2
m ], then
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for all integers ` ≥ 0 we have the following inequality:∣∣∣∣A +
ρα(`+ 1)αΓ(α+ 1)

(νρ2 − ν
ρ
1 )α

((
ρIανρ1 +ψ

)
(
`νρ1 + νρ2
`+ 1

)−
(
ρIανρ2−ψ

)
(
νρ1 + `νρ2
`+ 1

)

)∣∣∣∣ (8)

≤ νρ2 − ν
ρ
1

`+ 1

{(
(|ψ′(νρ1 )|+ |ψ′(νρ2 )|)B +mC

[∣∣∣∣ψ′(νρ1m
)∣∣∣∣+

∣∣∣∣ψ′(νρ2m
)∣∣∣∣])}

with

A = −
[
ψ

(
νρ1 + `ν2

`+ 1

)
+ ψ

(
`ν1 + νρ2
`+ 1

)]
,

B =

∫ 1

0

τραhs
(

τρ

`+ 1

)
dτ

C =

∫ 1

0

τρα
(

1− h
(

1− τ

`+ 1

))s
dτ.

Proof. From Lemma 2.2 we obtain∣∣∣∣∫ 1

0

τρα
[
ψ′
(
τρνρ1
`+ 1

+

(
1− τρ

`+ 1

)
νρ2

)
− ψ′

(
τρνρ2
`+ 1

+

(
1− τρ

`+ 1

)
νρ1

)]
dτ

∣∣∣∣
≤
∫ 1

0

τρα
∣∣∣∣ψ′( τρ

`+ 1
νρ1 +

(
1− τρ

`+ 1

)
νρ2

)∣∣∣∣dτ
+

∫ 1

0

τρα
∣∣∣∣ψ′( τρ

`+ 1
νρ2 +

(
1− τρ

`+ 1

)
νρ1

)∣∣∣∣dτ.
Using the modified (h,m.s)-convexity of |ψ′|, we get∫ 1

0

τρα
∣∣∣∣ψ′( τρ

`+ 1
νρ1 +

(
1− τρ

`+ 1

)
νρ2

)∣∣∣∣dτ (9)

≤
∫ 1

0

τρα
[
hs
(

τρ

`+ 1

)
|ψ′νρ1 |+m

(
1− h

(
1− τρ

`+ 1

))s ∣∣∣∣ψ′(νρ2m
)∣∣∣∣] dτ

= |ψ′(νρ1 )|
∫ 1

0

τραhs
(

τρ

`+ 1

)
dτ +m

∣∣∣∣ψ′(νρ2m
)∣∣∣∣ ∫ 1

0

τρα
(

1− h
(

1− τ

`+ 1

))s
dτ.

In the same way∫ 1

0

τρα
∣∣∣∣ψ′( τρ

`+ 1
νρ2 +

(
1− τ

`+ 1

)
νρ1

)∣∣∣∣dτ (10)

≤ |ψ′(νρ2 )|
∫ 1

0

τραhs
(

τ

`+ 1

)
dτ +m

∣∣∣∣ψ′(νρ1m
)∣∣∣∣ ∫ 1

0

τρα
(

1− h
(

1− τ

`+ 1

))s
dτ.

From (9) and (10) we easily obtain (8). In this way the theorem is proved. �

Remark 2.13. From this result we can obtain, for ` = 0, a modified version of
the Theorem 2.3 of [28] for s−convex functions, the Theorem 2.3 of [10] for convex
functions and Theorem 2.2 and Corollary 2.3 for h−convex functions of [14]. If we
put ` = 1 we obtain the Theorem 2. and Corollary 2.2 of [58] for s−convex functions.

Refinements of the previous results, can be obtained by imposing new additional
conditions on |ψ′|.
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Theorem 2.5. Let ψ : I ⊂ R → R be a differentiable function on I◦ such that

ψ′ ∈ L1

[
νρ1 ,

νρ2
m

]
. Under the assumptions of Lemma 2.2, if |ψ′|q ∈ Ns

h,m[νρ1 ,
νρ2
m ],

q ≥ 1, then for all integers ` ≥ 0 we have the following inequality:∣∣∣∣A +
ρα(`+ 1)αΓ(α+ 1)

(νρ2 − ν
ρ
1 )α

((
ρIανρ1 +ψ

)
(
`νρ1 + νρ2
`+ 1

)−
(
ρIανρ2−ψ

)
(
νρ1 + `νρ2
`+ 1

)

)∣∣∣∣ (11)

≤ νρ2 − ν
ρ
1

`+ 1

1

(pαρ+ 1)
1
p

{
(p12C11 +mp2C12)

1
q + (p12C11 +mp1C12)

1
q

}
with A as before,

p1 =

∣∣∣∣ψ′(νρ1m
)∣∣∣∣q , p12 =

∣∣∣∣ψ′(νρ1 + νρ2
2

)∣∣∣∣q ,
p2 =

∣∣∣∣ψ′(νρ2m
)∣∣∣∣q , C11 =

∫ 1

0

hs
(

τρ

`+ 1

)
dτ,

C12 =

∫ 1

0

(
1− h

(
1− τρ

`+ 1

))s
dτ.

Proof. As previous result, from Lemma 2.2 we obtain∣∣∣∣∫ 1

0

τρα
[
ψ′
(
τρνρ1
`+ 1

+

(
1− τρ

`+ 1

)
νρ2

)
− ψ′

(
τρνρ2
`+ 1

+

(
1− τρ

`+ 1

)
νρ1

)]
dτ

∣∣∣∣
≤
∫ 1

0

τρα
∣∣∣∣ψ′( τρ

`+ 1
νρ1 +

(
1− τρ

`+ 1

)
νρ2

)∣∣∣∣dτ
+

∫ 1

0

τρα
∣∣∣∣ψ′( τρ

`+ 1
νρ2 +

(
1− τρ

`+ 1

)
νρ1

)∣∣∣∣dτ.
From Hölder’s inequality, we obtain∫ 1

0

τρα
∣∣∣∣ψ′( τρ

`+ 1
νρ1 +

(
1− τρ

`+ 1

)
νρ2

)∣∣∣∣dτ (12)

≤
(∫ 1

0

τpραdτ

) 1
p
(∫ 1

0

∣∣∣∣ψ′( τρ

`+ 1
νρ1 +

(
1− τρ

`+ 1

)
νρ2

)∣∣∣∣q dτ)
1
q

=
1

(pαρ+ 1)
1
p

(∫ 1

0

∣∣∣∣ψ′( τρ

`+ 1
νρ1 +

(
1− τρ

`+ 1

)
νρ2

)∣∣∣∣q dτ)
1
q

and ∫ 1

0

τρα
∣∣∣∣ψ′( τρ

`+ 1
νρ2 +

(
1− τ

`+ 1

)
νρ1

)∣∣∣∣dτ (13)

≤
(∫ 1

0

τpραdτ

) 1
p
(∫ 1

0

∣∣∣∣ψ′( τρ

`+ 1
νρ2 +

(
1− τ

`+ 1

)
νρ1

)∣∣∣∣q dτ)
1
q

=
1

(pαρ+ 1)
1
p

(∫ 1

0

∣∣∣∣ψ′( τρ

`+ 1
νρ2 +

(
1− τ

`+ 1

)
νρ1

)∣∣∣∣q dτ)
1
q
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for 1
p + 1

q = 1. Using the (h,m, s)-convexity of the second type of |ψ′|q, we obtain

from (12) and (13):∫ 1

0

∣∣∣∣ψ′( τρ

`+ 1
νρ1 +

(
1− τρ

`+ 1

)
νρ2

)∣∣∣∣q dτ (14)

≤ |ψ′(νρ1 )|q
∫ 1

0

hs
(

τρ

`+ 1

)
dτ +m

∣∣∣∣ψ′(νρ2m
)∣∣∣∣q ∫ 1

0

(
1− h

(
1− τρ

`+ 1

))s
dτ,

∫ 1

0

∣∣∣∣ψ′( τρ

`+ 1
νρ2 +

(
1− τ

`+ 1

)
νρ1

)∣∣∣∣q dτ (15)

≤ |ψ′(νρ2 )|q
∫ 1

0

hs
(

τρ

`+ 1

)
dτ +m

∣∣∣∣ψ′(νρ1m
)∣∣∣∣q ∫ 1

0

(
1− h

(
1− τ

`+ 1

))s
dτ.

Substituting (14), (15) in (12) and (13), we obtain the required inequality. �

Remark 2.14. It can be verified, without much difficulty, that the following results
can be derived from the previous result, the Theorem 2.5 of [14] for h-convex functions
with ` = 0, the Theorem 2.3 for s-convex functions of [58] ` = 1, the Theorem 3.2 for
convex functions, ` = 1, from [15], the Theorem 2.2 for (a,m)-convex functions of [48]
and the Theorem 6 for convex functions of [41] with ` = 1 and ρ = 1.

Theorem 2.6. Let ψ : I ⊂ R → R be a differentiable function on I◦ such that

ψ′ ∈ L1

[
νρ1 ,

νρ2
m

]
. Under the assumptions of Lemma 2.2, if |ψ′|q ∈ Ns

h,m[νρ1 ,
νρ2
m ],

q > 1, then for all integers ` ≥ 0 we have the following inequality:∣∣∣∣A +
ρα(`+ 1)αΓ(α+ 1)

(νρ2 − ν
ρ
1 )α

((
ρIανρ1 +ψ

)
(
`νρ1 + νρ2
`+ 1

)−
(
ρIανρ2−ψ

)
(
νρ1 + `νρ2
`+ 1

)

)∣∣∣∣ (16)

≤ νρ2 − ν
ρ
1

`+ 1
∆
{

(p12D11 +mp2D12)
1
q + (p12D21 +mp2D22)

1
q

}
with A, p1, p12 and p2 as before,

D11 =

∫ 1

0

τραhs
(

τρ

`+ 1

)
dτ, ∆ =

(
1

αρ+ 1

)1− 1
q

D12 =

∫ 1

0

τρα
(

1− h
(

1− τρ

`+ 1

))s
dτ,

D21 =

∫ 1

0

τραhs
(

1− τρ

`+ 1

)
dτ and D22 =

∫ 1

0

τρα
(

1− h
(

τρ

`+ 1

))s
dτ.

Proof. As before, from the Lemma 2.2 we have:∣∣∣∣∫ 1

0

τρα
[
ψ′
(
τρνρ1
`+ 1

+

(
1− τρ

`+ 1

)
νρ2

)
− ψ′

(
τρνρ2
`+ 1

+

(
1− τρ

`+ 1

)
νρ1

)]
dτ

∣∣∣∣
≤
∫ 1

0

τρα
∣∣∣∣ψ′( τρ

`+ 1
νρ1 +

(
1− τρ

`+ 1

)
νρ2

)∣∣∣∣dτ
+

∫ 1

0

τρα
∣∣∣∣ψ′( τρ

`+ 1
νρ2 +

(
1− τρ

`+ 1

)
νρ1

)∣∣∣∣dτ.
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and using well known power mean inequality, we have∫ 1

0

τρα
∣∣∣∣ψ′( τρ

`+ 1
νρ1 +

(
1− τρ

`+ 1

)
νρ2

)∣∣∣∣dτ (17)

≤
(

1

αρ+ 1

)1− 1
q
(∫ 1

0

τρα
∣∣∣∣ψ′( τρ

`+ 1
νρ1 +

(
1− τρ

`+ 1

)
νρ2

)∣∣∣∣q dτ)
1
q

and ∫ 1

0

τρα
∣∣∣∣ψ′( τρ

`+ 1
νρ2 +

(
1− τ

`+ 1

)
νρ1

)∣∣∣∣dτ (18)

≤
(

1

αρ+ 1

)1− 1
q
(∫ 1

0

τρα
∣∣∣∣ψ′( τρ

`+ 1
νρ2 +

(
1− τ

`+ 1

)
νρ1

)∣∣∣∣q dτ)
1
q

.

Using the modified (h,m, s)-convexity of |ψ′|q, we get∫ 1

0

τρα
∣∣∣∣ψ′( τρ

`+ 1
νρ1 +

(
1− τρ

`+ 1

)
νρ2

)∣∣∣∣qdτ (19)

≤
∫ 1

0

τρα
[
hs
(

τρ

`+ 1

)
|ψ′(νρ1 )|q +m

(
1− h

(
1− τρ

`+ 1

))s ∣∣∣∣ψ′(νρ2m
)∣∣∣∣q] dτ

= |ψ′(νρ1 )|q
∫ 1

0

τραhs
(

τρ

`+ 1

)
dτ +m

∣∣∣∣ψ′(νρ2m
)∣∣∣∣q ∫ 1

0

τρα
(

1− h
(

1− τρ

`+ 1

))s
dτ.

Similarly∫ 1

0

τρα
∣∣∣∣ψ′( τρ

`+ 1
νρ2 +

(
1− τ

`+ 1

)
νρ1

)∣∣∣∣qdτ (20)

≤ |ψ′(νρ2 )|q
∫ 1

0

τραhs
(

1− τρ

`+ 1

)
dτ +m

∣∣∣∣ψ′(νρ1m
)∣∣∣∣q ∫ 1

0

τρα
(

1− h
(

τρ

`+ 1

))s
dτ.

If we put (19) and (20), in (17) and in (18), it allows us to obtain the inequality
(16). In this way the proof is completed. �

Remark 2.15. The Theorem 2.9 of [28] can be obtained from Theorem 2.5 putting
` = 0 and considering s−convex functions. Additionally, the following results: The-
orem 3.1 of [15] for convex functions and ` = 1, Theorem 2.8 of [14] for h-convex
functions and ` = 0, Theorem 5 of [4], Theorem 9 of [36], Theorem 7 [51], Theorem
2.3 of [48] for (a,m)-convex functions and ` = 1, and the Theorem 5 of [41] for convex
functions, ` = 1 and ρ = 1, can be obtained as particular cases from the previous.

Remark 2.16. For ` = 1 and ρ = 1 this result complements Theorem 6 of [44] for
convex functions con ` = 0.

3. Conclusions

In this paper, using the generalized integral operator Katugampola, we obtained some
integral inequalities that generalize a number of results available in the literature. It
should be emphasized that the results obtained are valid for various classes of convex
functions, for example, for h−convex functions, m−convex and s−convex functions
in the second sense, defined on a closed interval of non–negative real numbers. These
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results can be extended to the case of (h,m, s)−convex modified functions of the first
type.
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considérée par Riemann, J. Math. Pures App. 9 (1893), 171–216.

[19] C. Hermite, Sur deux limites d’une intégrale définie, Mathesis 3 (1883).
[20] J. Hernández, On some new integral inequalities related with the Hermite-Hadamard inequality

via h−convex functions, MAYFEB Journal of Mathematics 4 (2017), 1–12.
[21] C.J. Huang, G. Rahman, K.S. Nisar, A. Ghaffa, and F. Qi, Some inequalities of the Hermite-

Hadamard type for k-fractional conformable integrals, AJMAA 16 (2019), no. 1, 1–9.

https://doi.org/10.1186/s13660-017-1318-y
https://doi.org/10.1186/s13660-017-1318-y
https://doi.org/10.1186/s13660-017-1318-y
https://doi.org/10.1186/s13660-017-1318-y
https://doi.org/10.21008/j.0044-4413.2020.0007
https://doi.org/10.21008/j.0044-4413.2020.0007
https://doi.org/10.15393/j3.art.2020.8270
https://doi.org/10.15393/j3.art.2020.8270
https://doi.org/10.1186/s13660-018-1677-z
https://doi.org/10.24193/subbmath.2018.4.04


382 B. BAYRAKTAR AND J. NÁPOLES

[22] H. Hudzik and L. Maligranda, Some remarks on s−convex functions, Aequationes Math. 48

(1994), no. 1, 100–111.

[23] R. Hussain, A. Ali, G. Gulshani, A. Latif, and K. Rauf, Hermite-Hadamard type inequalities
for k−Riemann-Liouville fractional integrals via two kinds of convexity, Australian Journal of

Mathematical Analysis and Applications 13 (2016), no. 1, 1–12.

[24] D.A. Ion, Some estimates on the Hermite-Hadamard inequality through quasi-convex functions,
Annals of University of Craiova, Math. Comp. Sci. Ser. 34 (2007), 82–87.

[25] H. Kadakal, On refinements of some integral inequalities using improved power-mean inte-

gral inequalities, Numer. Methods Partial Differential Eq. 36 (2020), no. 6, 1555–1565. DOI:
10.1002/num.22491

[26] M.A. Khan and Y. Khurshid, Hermite-Hadamar’s inequalities for η−convex functions via con-
formable fractional integrals and related inequalities, Acta Mathematica Universitatis Comeni-

anae 90 (2021), no. 2, 157–169. DOI: 10.1002/num.22491

[27] U.S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real
numbers and to midpoint formula, Applied Mathematics and Computation 147 (2004), 137–146.

[28] N. Mehreen and M. Anwar, Integral inequalities for some convex functions via generalized

fractional integrals, Journal of Inequalities and Applications 2018 (2018), Article 208. DOI:
10.1186/s13660-018-1807-7

[29] V.G. Mihesan, A generalization of the convexity, Seminar on Functional Equations, Approx.

and Convex., Cluj-Napoca (Romania), 1998.
[30] S. Mubeen and G.M. Habibullah, k−fractional integrals and application, Int.J. Contemp. Math.

Sciences 7 (2012), no. 2, 89–94.

[31] M. Muddassar, M.I. Bhatti, and W. Irshad, Generalisation of integral inequalities of Hermite-
Hadamard type through convexity, Bull. Aust. Math. Soc. 88 (2013), no. 2, 320–330.
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[33] J. Nápoles, J.M. Rodŕıguez, and J.M. Sigarreta, On Hermite-Hadamard type inequalities for

non-conformable integral operators, Symmetry 11 ( 2019), 1108.
[34] M.A. Noor, K.I. Noor, and M.U. Awan, Generalized fractional Hermite-Hadamard inequalties,

Miskolc Mathematical Notes 21 (2020), no. 2, 1001–1011. DOI: 10.18514/MMN.2020.1143
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