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Existence and stability results for fixed points of multivalued
F contractions and application to Volterra type non
homogeneous integral equation of second kind

Binayak S. Choudhury, Nikhilesh Metiya, T. Som, and Sunirmal Kundu

Abstract. In this paper we introduce multivalued modified F-contraction on a metric space.

This is a multivalued mapping obtained by incorporating the idea of the recently introduced

F-contraction which has attracted much attention in contemporary research. We explore the
fixed point problem associated with the above contractive mapping. We also investigate the

data dependence and stability properties of the fixed point sets associated with these multival-

ued contractions. We discuss an illustration of the main result and present an application of
the single valued version of the main theorem to a problem of an integral equation of Volterra

type. The domain of the study is fixed point theory and set valued analysis.
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1. Mathematical background and preliminaries

Our consideration in this paper is a study related to fixed points of some multivalued
operators on metric spaces. We use rational terms in our inequality. The use of
rational terms in contraction inequalities in the domain of metric fixed point theory
was initiated by Dass et al. in their work [18] in which they extended the Banach’s
contraction principle [7] by using a contractive rational inequality. After that the
rational inequalities have been used in fixed point and related problems in several
works as for instances in [6, 10, 11, 28].

Fixed points of multivalued mappings have been treated extensively in its various
aspects. An early reference in this direction is due to Nadler [31] in which the Ba-
nach contraction principle [7] is extended to the domain of setvalued analysis. Some
references of fixed point results of multivalued mappings are noted in [2, 8, 36].

In the present paper we consider a multivalued mapping on a complete metric
space. The multivalued mapping is assumed to satisfy a contraction inequality where
there are rational terms on pairs of points which are connected by a specific way. We
show that the fixed point set of this mapping is nonempty. As special cases of the
fixed point result we obtain several corollaries which are infact multivalued extension
of certain results in metric fixed point theory of ordinary functions. We consider the
problem of data-dependence and stability associated with the fixed point sets of these
mappings.
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Our result is for a α- dominated mappings. These concepts are defined here and
are conceptual extension of the admissibility condition. Various types of admissibility
conditions have been used in fixed point theory in works like [17, 20, 26].

Recently, Wardowski [37] introduced a new family of mappings so called F or
F family. Using the mapping from this family, he introduced a new contraction
condition namely F - contraction. Many researchers have generalized his concept, see
for example [3, 4, 5, 19]. This F− contraction nicely generalizes famous contraction
conditions.

In this paper, we combine the ideas mentioned above to introduce some new con-
traction conditions for multivalued mappings and corresponding fixed point theorem.
We also show that many new results in different settings can be obtained from our
result. We also discuss Data dependence and stability of fixed point sets of affrosaid
contractive mapping.

It may be mentioned here that the problem of data dependence and stability have
been discussed in works like [33, 34] and [9, 16, 29, 30] respectively in recent times.
We use the data dependence to deduce stability result for our mappings. None often
than not, such problems are discussed for multivalued mappings. This is due to
the fact that the fixed point sets of setvalued mappings are generally wider than
their singlevalued counterparts and also have more complicated structures. Several
research papers on data dependence have been published in recent literatures of which
we mention a few in references [12, 13].

Let T1, T2 : X → N(X) be two multivalued mappings, where (X, d) is a metric
space and N(X) is the set of nonempty subsets of X such that H(T1x, T2x) ≤ η, for
all x ∈ X, where η is some positive number. Then a data dependence problem is to
estimate the distance between the fixed point sets of these two mappings. The above
is meaningful only if we have an assurance of nonempty fixed point sets of these two
operators. There are also some variants of the problem.

In continuation of the data dependence result in section four, by particularly consid-
ering a special case in which both the mappings are assumed to satisfy the conditions
of the main theorem in section three, we establish a stability result for fixed point
sets of these mappings.

Stability is related to the limiting behavior of a system which, in this case, is the
relation of the fixed point sets associated with a sequence of multivalued mappings
with the limit function to which the sequence converges. There are several studies
related to stabilities of fixed point sets, some of which are noted in [14, 16, 17].

2. Introduction and mathematical preliminaries

Let (X, d) be a metric space and N(X) := the collection of all nonempty subsets of
X, CB(X) := the collection of all nonempty closed and bounded subsets of X and
K(X) := the collection of all nonempty compact subsets of X. We use the following
notations and definitions

D(x,B) = inf {d(x, y) : y ∈ B}, where x ∈ X and B ∈ CB(X),

D(A,B) = inf {d(a, b) : a ∈ A, b ∈ B}, where A,B ∈ CB(X),

H(A,B) = max {sup
x∈A

D(x,B), sup
y∈B

D(y,A)}, where A,B ∈ CB(X).
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H is known as the Hausdorff metric on CB(X) [31].

Lemma 2.1 ([16]). Let B ∈ K(X), where (X, d) is a metric space. Then for every
x ∈ X there exists y ∈ B such that d(x, y) = D(x, B).

Definition 2.1. Let (X, d) be a metric space, T : X → N(X) be a setvalued
mapping. Then a point x ∈ X is called a fixed point of T if x ∈ Tx.

Fix(T ) denotes the set of all fixed points of T .

Definition 2.2. Let T : X → CB(Y ) be a multivalued mapping, where (X, ρ),
(Y, d) are two metric spaces and H is the Hausdorff metric on CB(Y ). The mapping
T is said to be continuous at x ∈ X if for any sequence {xn} in X, H(Tx, Txn)→ 0,
as n→∞ whenever ρ(x, xn)→ 0, as n→∞.

Recently, Kutbi and Sintunavarat [27] introduced the concept of the α-continuity
for multivalued mappings in metric spaces.

Definition 2.3 ([27]). Let T : X → CB(Y ) be a multivalued mapping and α :
X ×X → [0, ∞), where (X, ρ), (Y, d) are two metric spaces and H is the Hausdorff
metric on CB(Y ). The mapping T is said to have α-continuity at x ∈ X if for any
sequence {xn} in X, H(Tx, Txn) → 0 whenever ρ(x, xn) → 0 as n → ∞ and
α(xn, xn+1) ≥ 1, for all n.

Remark 2.1 ([27]). The continuity of a mapping implies its α-continuity for any
α : X ×X → [0, ∞). In general, the converse is not true.

For our study, we introduce the α-dominated mapping which is a varied version of
admissibility conditions which are quite extensively used in fixed point theory now-a-
days. It was introduced in the work of Samet et al. [35] and was further elaborated
through works like [2, 15, 20].

Definition 2.4. Let (X, d) be a metric space, T : X → X and α : X ×X → [0, ∞)
be two mappings. Then T is called α- dominated if α(x, Tx) ≥ 1, for all x ∈ X.

Definition 2.5. Let (X, d) be a metric space, T : X → N(X) and α : X × X →
[0, ∞) be two mappings. Then T is called α- dominated if α(x, u) ≥ 1, for all x ∈ X
and u ∈ Tx.

Definition 2.6 ([35]). Let (X, d) be a metric space and α : X ×X → [0, ∞). Then
X is said to have α- regular property if for every convergent sequence {xn} with limit
x in X and α(xn, xn+1) ≥ 1, for all n implies that α(xn, x) ≥ 1, for all n.

For the purpose of our works we define the following classes of functions.
Let Θ denote the class of all functions θ : [0, ∞)5 → [0, ∞) having the properties:

(i) : θ is continuous and nondecreasing in each coordinate,
(ii): φ(t) ≤ t, for all t > 0, where φ(t) = θ(t, t, t, t, t).

Let G be the collections of all mappings G : [0, ∞)5 → [0, ∞) having the following
properties
(i) : G is continuous in each coordinate,
(ii) : for all t1, t2, t3, t4, t5 ∈ [0, ∞), with t1.t2.t3.t4.t5 = 0, there exists τ > 0 such
that

G(t1, t2, t3, t4, t5) = τ .
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We introduce a generalized weak contraction. To fulfill our purpose we use the
recent technique, which was given by Wardowski [37]. For the sake of completeness,
we will discuss the basic lines [23, 24, 25].

Definition 2.7 ([32]). Let Ω be the collections of all mappings F : (0, ∞) → R
satisfying the following properties:
(i) : F is strictly increasing,
(ii) : for any sequence {an} in R+, limn→∞ an = 0 and limn→∞ F (an) = −∞ are
equivalent, (iii): there exists k ∈ (0, 1) such that limα→0+ α

kF (α) = 0.

Now we define generalized F - weak contraction in case of single and multivalued
mappings.

Definition 2.8. (X, d) be a metric space, α : X ×X → [0, ∞), T : X → X be two
mappings. Let θ ∈ Θ, F ∈ Ω, G ∈ G and τ > 0. Then T is said to be a generalized
F - weak contraction if for all x, y ∈ X with α(x, y) ≥ 1 and d(x, Tx) > 0,

G
(
d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)

)
+ F (d(Tx, Ty)) ≤ F (L(x, y)),

(2.1)

where L(x, y) = θ
(
d(x, y),

d(x, Tx) + d(y, Ty)

2
,
d(x, Ty) + d(y, Tx)

2
,

d(x, Tx) d(y, Ty)

1 + d(x, y)
,
d(x, Ty) d(y, Tx)

1 + d(x, y)

)
.

Definition 2.9. (X, d) be a metric space, α : X × X → [0, ∞), T : X → K(X)
be two mappings. Let θ ∈ Θ, F ∈ Ω, G ∈ G and τ > 0. Then T is said to be a
generalized multivalued F - weak contraction if for all x, y ∈ X with α(x, y) ≥ 1 and
D(x, Tx) > 0,

G
(
d(x, y), D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)

)
+ F (H(Tx, Ty)) ≤ F (M(x, y)),

(2.2)

where M(x, y) = θ
(
d(x, y),

D(x, Tx) +D(y, Ty)

2
,
D(x, Ty) +D(y, Tx)

2
,

D(x, Tx) D(y, Ty)

1 + d(x, y)
,
D(x, Ty) D(y, Tx)

1 + d(x, y)

)
.

Definition 2.10. Let (X, d) be a metric space and {Tn : X → CB(X) : n ∈ N} be a
sequence of mappings. Then the fixed point sets F (Tn) of a sequence {Tn} are called
stable if H(F (Tn), F (T ))→ 0, as n→∞, where T = lim

n→∞
Tn.

3. Main results

Theorem 3.1. Let (X, d) be a complete metric space, T : X → K(X) be a multival-
ued mapping and α : X×X → [0, ∞). Suppose that (i) (a) T is α- continuous or (b)X
has α- regular property ; (ii) T is α- dominated; (iii) there exist θ ∈ Θ, F ∈ Ω, G ∈ G
and τ > 0 such that T is a generalized F - weak contraction. Then T has a fixed point
in X.
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Proof. Let x0 ∈ X. Since Tx0 ∈ K(X), by Lemma 2.1, there exists x1 ∈ Tx0
such that D(x0, Tx0) = d(x0, x1). By the condition (ii) of the theorem, we have
α(x0, x1) ≥ 1. Again as Tx1 ∈ K(X), by Lemma 2.1, there exists x2 ∈ Tx1 such that
D(x1, Tx1) = d(x1, x2). By the condition (ii) of the theorem, we have α(x1, x2) ≥ 1.
Continuing in this process we obtain a sequence {xn} in X such that

xn+1 ∈ Txn with α(xn, xn+1) ≥ 1 and D(xn, Txn) = d(xn, xn+1), for all n ≥ 0.
(3.1)

If D(xn0
, Txn0

) = 0, for some n0 then xn0
∈ Txn0

= Txn0
, where Txn0

is the closure
of Txn0

and in such case xn0
is a fixed point of T . Therefore, we assume that

d(xn, xn+1) = D(xn, Txn) > 0, for all n ≥ 0. (3.2)

By condition (iii) and using (3.1) and (3.2), we have

G
(
d(xn, xn+1), D(xn, Txn), D(xn+1, Txn+1), D(xn, Txn+1), D(xn+1, Txn)

)
+ F (d(xn+1, xn+2))

= G
(
d(xn, xn+1), D(xn, Txn), D(xn+1, Txn+1), D(xn, Txn+1), D(xn+1, Txn)

)
+ F (D(xn+1, Txn+1))

≤ G
(
d(xn, xn+1), D(xn, Txn), D(xn+1, Txn+1), D(xn, Txn+1), D(xn+1, Txn)

)
+ F (H(Txn, Txn+1)) ≤ F (M(xn, xn+1)). (3.3)

By the properties of G and θ, we have

G
(
d(xn, xn+1), D(xn, Txn), D(xn+1, Txn+1), D(xn, Txn+1), D(xn+1, Txn)

)
= G

(
d(xn, xn+1), D(xn, Txn), D(xn+1, Txn+1), D(xn, Txn+1), 0

)
= τ (3.4)

and

M(xn, xn+1)

= θ
(
d(xn, xn+1),

D(xn, Txn) +D(xn+1, Txn+1)

2
,
D(xn, Txn+1) +D(xn+1, Txn)

2
,

D(xn, Txn) D(xn+1, Txn+1)

1 + d(xn, xn+1)
,
D(xn, Txn+1) D(xn+1, Txn)

1 + d(xn, xn+1)

)
≤ θ
(
d(xn, xn+1),

d(xn, xn+1) + d(xn+1, xn+2)

2
,
d(xn, xn+2)

2
d(xn, xn+1) d(xn+1, xn+2)

1 + d(xn, xn+1)
,
d(xn, xn+2) d(xn+1, xn+1)

1 + d(xn, xn+1)

)
≤ θ
(
d(xn, xn+1),

d(xn, xn+1) + d(xn+1, xn+2)

2
,
d(xn, xn+1) + d(xn+1, xn+2)

2
d(xn, xn+1) d(xn+1, xn+2)

1 + d(xn, xn+1)
, 0
)
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≤ θ(d(xn, xn+1),
d(xn, xn+1) + d(xn+1, xn+2)

2
,
d(xn, xn+1) + d(xn+1, xn+2)

2
d(xn+1, xn+2), 0)

≤ θ(max {d(xn+1, xn+2), d(xn, xn+1)}, max {d(xn+1, xn+2), d(xn, xn+1)},
max {d(xn+1, xn+2), d(xn, xn+1)}, max {d(xn+1, xn+2), d(xn, xn+1)},
max {d(xn+1, xn+2), d(xn, xn+1)})

= φ(max {d(xn+1, xn+2), d(xn, xn+1)}) (3.5)

From (3.3), (3.4) and (3.5), we have

F (d(xn+1, xn+2)) ≤ F (M(xn, xn+1))− τ
≤ F (φ(max{d(xn+1, xn+2), d(xn, xn+1)}))− τ. (3.6)

Suppose that d(xn, xn+1) < d(xn+1, xn+2). Then d(xn+1, xn+2) > 0 and as τ > 0
from (3.6), we have

F (d(xn+1, xn+2)) ≤ F (φ(d(xn+1, xn+2)))− τ
≤ F (d(xn+1, xn+2))− τ < F (d(xn+1, xn+2)),

which is a contradiction. Therefore, we have d(xn+1, xn+2) ≤ d(xn, xn+1) and also
d(xn, xn+1) = D(xn, Txn) > 0. From (3.6), we have

F (d(xn+1, xn+2)) ≤ F (φ(d(xn, xn+1)))− τ ≤ F (d(xn, xn+1))− τ. (3.7)

By repeated application of (3.7), we have

F (d(xn+1, xn+2)) ≤ F (d(xn, xn+1))− τ ≤ F (d(xn−1, xn))− 2τ

≤ F (d(xn−2, xn−1))− 3τ ≤ ... ≤ F (d(x0, x1))− (n+ 1)τ. (3.8)

Also from (3.6), we have F (d(xn+1, xn+2)) < F (φ(d(xn, xn+1))), the property of F
implies that

d(xn+1, xn+2) < φ(d(xn, xn+1), for all n ≥ 0. (3.9)

Let an = d(xn, xn+1), for all n ≥ 0. Then an > 0, for all n ≥ 0 and hence taking
limit as n→∞ in (3.8) and using the property of F , we have limn→∞ F (an) = −∞,
which by the property of F implies that limn→∞ an = 0. Again from the property of
F , there exists k ∈ (0, 1) such that limn→∞ aknF (an) = 0. Therefore, from (3.8), we
have

aknF (an)− aknF (a0) ≤ −aknnτ ≤ 0, for all n > 0.

Taking limit as n → ∞ in above inequality, we have limn→∞ n akn = 0. There-
fore, there exists n1 such that n akn ≤ 1, for all n ≥ n1. Therefore, we have
an ≤ 1

n
1
k
, for all n ≥ n1. Let m > n ≥ n1. Now we have

∞∑
n=1

d(xn, xn+1) =

∞∑
n=1

an ≤
∞∑
n=1

1

n
1
k

<∞,

which implies that d(xn, xm) → 0, as m, n → ∞. Therefore, {xn} is a Cauchy
sequence in X. As (X, d) is complete, there exists x ∈ X such that

xn → x, as n→∞. (3.10)
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Suppose (i)(a) holds:
As α(xn, xn+1) ≥ 1, for all n and xn → x, as n→∞, the α− continuity of T implies
that H(Txn, Tx) → 0 as n → ∞. It follows that D(xn+1, Tx) → 0 as n → ∞, that
is, D(x, Tx) = 0, that is, x ∈ Tx = Tx, where Tx is the closure of Tx. Therefore, x
is a fixed point of T .

Suppose (i)(b) holds:
By (3.1), we have that D(xn, Txn) > 0 and α(xn, xn+1) ≥ 1, for all n ≥ 0. By (3.10)
and the assumption (i)(b), we have α(xn, x) ≥ 1, for all n > 0. Using the assumption
(iii), (3.1) and the property of F , we have for all n > 0

G(d(xn, x), D(xn, Txn), D(x, Tx), D(xn, Tx), D(x, Txn)) + F (D(xn+1, Tx))

≤ G(d(xn, x), D(xn, Txn), D(x, Tx), D(xn, Tx), D(x, Txn))

+ F (H(Txn, Tx)) ≤ F (M(xn, x)), (3.11)

where

M(xn, x) = θ
(
d(xn, x),

D(xn, Txn) +D(x, Tx)

2
,
D(xn, Tx) +D(x, Txn)

2
,

D(xn, Txn) D(x, Tx)

1 + d(xn, x)
,
D(xn, Tx) D(x, Txn)

1 + d(xn, x)

)
≤ θ
(
d(xn, x),

d(xn, xn+1) +D(x, Tx)

2
,
D(xn, Tx) + d(x, xn+1)

2
,

d(xn, xn+1) D(x, Tx)

1 + d(xn, x)
,
D(xn, Tx) d(x, xn+1)

1 + d(xn, x)

)
. (3.12)

From (3.11) using property of G, we have

F (D(xn+1, Tx)) ≤ F (M(xn, x)).

Increasing property of F implies that

D(xn+1, Tx) ≤M(xn, x). (3.13)

Taking limsup as n→∞ in (3.12), we have

lim sup
n→∞

M(xn, x) = θ(0,
D(x, Tx)

2
,
D(x, Tx)

2
, 0, 0)

≤ θ(D(x, Tx)

2
,
D(x, Tx)

2
,
D(x, Tx)

2
,
D(x, Tx)

2
,
D(x, Tx)

2
) = φ(

D(x, Tx)

2
).

(3.14)

We claim that D(x, Tx) = 0. If possible, suppose that D(x, Tx) > 0, then
D(x, Tx)

2
> 0. Taking limsup as n → ∞ in (3.13) and using (3.14) and using a

property of θ, we have D(x, Tx) ≤ φ(
D(x, Tx)

2
) ≤ D(x, Tx)

2
, which is a contradic-

tion. Therefore, we have D(x, Tx) = 0, which implies that x ∈ Tx = Tx, where Tx
is the closure of Tx. Therefore, x is a fixed point of T .

Now we present a few special cases illustrating the applicability of Theorem 3.1.

Remark 3.1. In Theorem 3.1, taking α(x, y) = 1, for all x, y ∈ X and
G(t1, t2, t3, t4, t5) = τ , for all t1, t2, t3, t4, t5 ∈ [0, ∞) and choosing any one of
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(i) θ(t1, t2, t3, t4, t5) = t1,
(ii) θ(t1, t2, t3, t4, t5) = t2,
(iii) θ(t1, t2, t3, t4, t5) = t3,
(iv) θ(t1, t2, t3, t4, t5) = max {t1, t2, t3},
respectively, where τ > 0, we have the following corollaries.

Corollary 3.2. A multivalued mapping T : X → K(X), where (X, d) is a complete
metric space, has a fixed point if for all x, y ∈ X with D(x, Tx) > 0, T satisfies the
following inequality:

τ + F (H(Tx, Ty)) ≤ F (d(x, y)), where τ > 0.

Corollary 3.3. A multivalued mapping T : X → K(X), where (X, d) is a complete
metric space, has a fixed point if for all x, y ∈ X with D(x, Tx) > 0, T satisfies the
following inequality:

τ + F (H(Tx, Ty)) ≤ F
(1

2
[D(x, Tx) +D(y, Ty)]

)
, where τ > 0.

Corollary 3.4. A multivalued mapping T : X → K(X), where (X, d) is a complete
metric space, has a fixed point if for all x, y ∈ X with D(x, Tx) > 0, T satisfies the
following inequality:

τ + F (H(Tx, Ty)) ≤ F
(1

2
[D(x, Ty) +D(y, Tx)]

)
, where τ > 0.

Corollary 3.5. A multivalued mapping T : X → K(X), where (X, d) is a complete
metric space, has a fixed point if for all x, y ∈ X with D(x, Tx) > 0, T satisfies the
following inequality:

τ+F (H(Tx, Ty)) ≤ F
(

max {d(x, y),
D(x, Tx) +D(y, Ty)

2
,
D(x, Ty) +D(y, Tx)

2
}
)
,

where τ > 0.

Example 3.1. Let X = [0, ∞) and d be the usual metric on X. Let T : X → K(X),
α : X×X → [0, ∞), F : (0, ∞)→ R, G : [0, ∞)5 → [0, ∞) and θ : [0, ∞)5 → [0, ∞)
be defined respectively as follows:

Tx =
[
0,
x

8

]
, for x ∈ X, α(x, y) =

{
ex+y, if x ∈ X and y ≤ x

8 ,
0, otherwise,

F (t) = ln t, for t ∈ (0, ∞),

G(t1, t2, t3, t4, t5) =
ln 8

1 + min {t1, t2, t3, t4, t5}
, for t1, t2, t3, t4, t5 ∈ [0, ∞)

and

θ(t1, t2, t3, t4, t5) = max {t1, t2, t3}, for t1, t2, t3, t4, t5 ∈ [0, ∞).

(i) (a) As T is continuous, it is α- continuous or (b) Let {xn} be a sequence

converging to x and α(xn, xn+1) ≥ 1, for all n. Then xn+1 ≤
xn
8

, which implies

that x ≤ xn
8

, for all n, which implies that α(xn, x) ≥ 1. Hence, X has α- regular

property.

(ii) For all x ∈ X and y ∈ Tx, we have y ≤ x

8
and hence α(x, y) ≥ 1. Therefore,

T is α- dominated.
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(iii) Let x, y ∈ X with α(x, y) ≥ 1 and D(x, Tx) > 0. Then x ∈ (0, ∞) and

y ≤ x

8
and for those value of x, y ∈ X, we have H(Tx, Ty) =

| x− y |
8

=
d(x, y)

8
≤

1

8
M(x, y), that is,

ln(H(Tx, Ty)) ≤ ln(M(x, y))− ln 8

≤ ln(M(x, y))− ln 8

1 + min {d(x, y), D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)}
,

which implies that

ln 8

1 + min {d(x, y), D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)}
+ ln(H(Tx, Ty))

≤ ln(M(x, y)),

that is, G(d(x, y), D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)) + F (H(Tx, Ty)) ≤
F (M(x, y)).
Then T is generalized F - weak contraction. Hence all the conditions of Theorem 3.1
are satisfied and T has a fixed point 0 ∈ X.

4. Data dependence of fixed point sets

In this section, we investigate the data dependence result of fixed point sets of the set
valued contractions mentioned in section 3. For this section we consider the following
assumption:

(A): Ψ(t) =
∑∞
n=0 φ

n(t) <∞, where φ(t) = θ(t, t, t, t, t, t).

Theorem 4.1. Let (X, d) be a complete metric space, Tj : X → K(X), j = 1, 2 be
two multivalued mappings and α : X×X → [0, ∞). Suppose that the assumptions of
Theorem 3.1 holds for the function T2 and the space X. Then Fix(T2) is nonempty.
Also suppose that Fix(T1) is nonempty, the assumption (A) holds and there exists a
η > 0 such that H(T1x, T2x) ≤ η, for all x ∈ X. Then sup

z∈Fix(T1)

D(z, F ix(T2)) ≤ Ψ(η).

Proof. From theorem 3.1, the set of fixed points of T2 are nonempty, that is,
Fix(T2) 6= ∅. By the assumption of the theorem, Fix(T1) is nonempty. Let x0
be a fixed point of T1, that is, x0 ∈ Fix(T1), that is, x0 ∈ T1x0. Then by Lemma 2.1,
there exists x1 ∈ T2x0 such that D(x0, T2x0) = d(x0, x1). By the assumption (ii),
we have α(x0, x1) ≥ 1. Again as T2x1 ∈ K(X), by Lemma 2.1, there exists x2 ∈ T2x1
such that D(x1, T2x1) = d(x1, x2). By the assumption (ii), we have α(x1, x2) ≥ 1.
Continuing in this process, we obtain a sequence {xn} ⊆ X such that

xn+1 ∈ T2xn with α(xn, xn+1) ≥ 1 and D(xn, T2xn) = d(xn, xn+1), for all n > 0.

Arguing similarly as in the proof of Theorem 3.1, we can show that
• the inequality (3.9) is satisfied,
• {xn} is a Cauchy sequence in X,
• there exists u ∈ X such that xn → u as n→∞.



10 B.S. CHOUDHURY, N. METIYA, T. SOM, AND S. KUNDU

• u is a fixed point of T2, that is, u ∈ T2u.
By repeated application of (3.9), we have

d(xn+1, xn+2) < φ(d(xn, xn+1) < φ2(d(xn−1, xn) < ... < φn+1(d(x0, x1). (4.1)

From the definition of η, we have

d(x0, x1) = D(x0, T2x0) ≤ H(T1x0, T2x0) ≤ η. (4.2)

By (4.1) and (4.2), we have

d(x0, u) ≤
n∑
i=0

d(xi, xi+1) + d(xn+1, u) ≤
n∑
i=0

φi(d(x0, x1)) + d(xn+1, u).

Taking limit as n → ∞ in the above inequality and using (4.2) and the property of
φ, we have

d(x0, u) ≤
∞∑
i=0

φi(d(x0, x1)) ≤
∞∑
i=0

φi(η) = Ψ(η).

Thus given arbitrary x0 ∈ Fix(T1), we can find u ∈ Fix(T2) for which d(x0, u) ≤
Ψ(η). Hence, it follows that D(x0, F ix(T2)) ≤ Ψ(η). As x0 ∈ Fix(T1) is arbitrary,
we have sup

z∈Fix(T1)

D(z, F ix(T2)) ≤ Ψ(η). This completes the proof of the theorem.

5. Stability of fixed point sets

In this section, we investigate the stability result of fixed point sets of the set valued
contractions mentioned in Section 3 with the help of data dependence result, discussed
in previous section. For this section we take the following assumption

(B): Suppose that for a ∈ X and any convergent sequence {yn} in X with limit
y ∈ X,

α(a, yn) ≥ 1, for all n ∈ N implies that α(a, y) ≥ 1.

Lemma 5.1. Let (X, d) be a metric space and α : X × X → [0, ∞). Let {Tn :
X → K(X) : n ∈ N} be a sequence of α- dominated mappings converging to a
mapping T : X → K(X). Suppose that the assumption (B) holds and there exist
θ ∈ Θ, a continuous function F ∈ Ω, G ∈ G and τ > 0 such that each Tn, (n ∈ N)
is α- dominated and generalized F - weak contraction. Then T is α-dominated and
generalized F - weak contraction.

Proof. First we prove T is α-dominated. Let x ∈ X and y ∈ Tx. Since Tn → T ,
as n → ∞, there exists a sequence {yn} in X such that yn ∈ Tnx and yn → y, as
n → ∞. Since Tn is α-dominated, for every n ∈ N, it follows that α(x, yn) ≥ 1, for
every n ∈ N. By assumption (B), it follows that α(x, y) ≥ 1. Hence T is α-dominated.

Next we prove that T is a generalized F - weak contraction. Let x, y ∈ X such
that α(x, y) ≥ 1 and D(x, Tx) > 0. As the sequence {Tn} is converging to T ,
D(x, Tx) > 0 implies that there exists n0 such that D(x, Tnx) > 0, for all n ≥ n0.
As each Tn is generalized F - weak contraction, for x, y ∈ X with α(x, y) ≥ 1, we
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have for all n ≥ n0 that

G(d(x, y), D(x, Tnx), D(y, Tny), D(x, Tny), D(y, Tnx)) + F (H(Tnx, Tny))

≤ F
(
θ
(
d(x, y),

D(x, Tnx) +D(y, Tny)

2
,
D(x, Tny) +D(y, Tnx)

2
,

D(x, Tnx) D(y, Tny)

1 + d(x, y)
,
D(x, Tny) D(y, Tnx)

1 + d(x, y)

))
.

Since the sequence {Tn} converges to T and G, θ and F are continuous, taking limit
as n→∞ in the above inequality, we have

G(d(x, y), D(x, Tx), D(y, Ty), D(x, Ty), D(y, Tx)) + F (H(Tx, Ty))

≤ F
(
θ
(
d(x, y),

D(x, Tx) +D(y, Ty)

2
,
D(x, Ty) +D(y, Tx)

2
,

D(x, Tx) D(y, Ty)

1 + d(x, y)
,
D(x, Ty) D(y, Tx)

1 + d(x, y)

))
.

Therefore, T is a generalized F - weak contraction.

Theorem 5.2. Let (X, d) be a complete metric space, {Tn : X → K(X) : n ∈ N}
be a sequence of mappings converging uniformly to T : X → K(X) and α : X ×X →
[0, ∞). Suppose that all the assumptions of Theorem 3.1 hold for each Tn, (n ∈ N)
and the space X. Then Fix(Tn), (n ∈ N) are nonempty. Let F ∈ Ω be continuous
and the assumption (B) holds. Then Fix(T ) is nonempty. Also suppose that the
assumption (A) holds and Ψ(t)→ 0, as t→ 0. Then limn→∞H(Fix(Tn), F ix(T )) =
0, that is, the fixed point sets of Tn are stable.

Proof. By Theorem 3.1, we have Fix(Tn) 6= ∅, for every n ∈ N. Again, by Lemma
5.1 and Theorem 3.1, it follows that Fix(T ) 6= ∅. Let ηn = supx∈X H(Tnx, Tx),
for n ∈ N. By Theorem 4.1, we have sup

zn∈Fix(Tn)

D(zn, F ix(T )) ≤ Ψ(ηn) and

sup
z∈Fix(T )

D(z, F ix(Tn)) ≤ Ψ(ηn), for all n ∈ N. Then it follows that

H(Fix(Tn), F ix(T )) ≤ Ψ(ηn), for every n ∈ N. (5.1)

Since Tn → T uniformly, we have ηn → 0, as n→∞. Taking limit as n→∞ in (5.1)
and using the property of Ψ, we have

lim
n→∞

H(Fix(Tn), F ix(T )) ≤ lim
n→∞

Ψ(ηn) = 0,

that is, limn→∞H(Fix(Tn), F ix(T )) = 0, that is, the fixed point sets of Tn are
stable.

6. Application to the solution of nonlinear integral equation

Every singleton subset of (X, d) is a member of K(X), that is, {x} ∈ K(X), for every
x ∈ X. We can treat a mapping T : X → X as a multivalued mapping in which case
Tx is a singleton set for every x ∈ X. Hence the following result is a special case of
Theorem 3.1 when T is a single valued mapping.
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Theorem 6.1. Let (X, d) be a complete metric space, T : X → X be a single
valued mapping and α : X ×X → [0, ∞) be a mapping. Suppose that (i) (a) T is α
continuous or (b) X has α- regular property; (ii) T is α- dominated ; (iii) there exist
θ ∈ Θ, F ∈ Ω, G ∈ G and τ > 0 such that T is generalized F− weak contraction.
Then T has a fixed point in X.

Fixed point theorems in metric spaces have several applications in integral equation
( see [1, 21, 22] and references there in). In this section, we present an application
of Theorem 6.1 to establish the existence of integral equation. Here we prove the
existence of a solution of an integral equation using Theorem 6.1.

We consider nonlinear Volterra type non homogeneous integral equation of second
kind as follows

x(t) = f(t) +

∫ h(t)

g(t)

K(t, s, x(s)) ds, (6.1)

where the unknown function x(t) takes real values, for t, s ∈ [a, b].
Let X = C([a, b]), where a < b be the space of all real valued continuous functions

defined on [a, b]. It is well known that C([a, b]) endowed with the metric

dτ (x, y) = max
t∈[a, b]

| x(t)− y(t) | .e−|τ t|, for τ ≥ 0 (6.2)

is a complete metric space.
Define a mapping T : X → X by

T (x)(t) = f(t) +

∫ h(t)

g(t)

K(t, s, x(s)) ds, for all t ∈ [a, b]. (6.3)

We designate the following assumptions by A1, A2 and A3:

A1 : f, g, h ∈ C([a, b]) and K : [a, b]× [a, b]× R→ R is a continuous function

and τ > 0.

A2 : | K(t, s, x)−K(t, s, y) |≤ e−τ | x− y |, for all x, y ∈ X whenever

| x− Tx |> 0 and for all t, s ∈ [a, b].

A3 :

∫ h(t)

g(t)

e|τ s|ds ≤ e|τ t|.

Theorem 6.2. Let (X, dτ ) = C([a, b], dτ ), T, f, g, h, K(t, s, x) satisfy the as-
sumptions A1, A2 and A3. Then nonlinear Volterra type integral equation (6.1) has
a solution x ∈ C([a, b]).

Proof. Let us define a mapping α : X ×X → [0,∞) by α(x, y) = 1, for x, y ∈ X. It
is clear that the mapping T : X → X defined by (6.3) is a α- dominated mapping and
X has α- regular property. By assumptions A1, A2 and A3, for all x, y ∈ C([a, b])
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with α(x, y) = 1 and dτ (x, Tx) > 0, that is for | x−Tx |> 0, we have for all t ∈ [a, b]

| Tx(t)− Ty(t) |

=|
∫ h(t)

g(t)

K(t, s, x(s))−K(t, s, y(s)) ds |=
∫ h(t)

g(t)

| K(t, s, x(s))−K(t, s, y(s)) | ds

≤
∫ h(t)

g(t)

e−τ | x(s)− y(s) | ds = e−τ
∫ h(t)

g(t)

| x(s)− y(s) | ds [by A2]

= e−τ
∫ h(t)

g(t)

e|τ s|× | x(s)− y(s) | e−|τ s| ds ≤ e−τ
∫ h(t)

g(t)

e|τ s| × dτ (x, y) ds

= e−τ dτ (x, y) ×
∫ h(t)

g(t)

e|τ s| ds ≤ e−τ dτ (x, y) × e|τ t| [by A3].

Thus, we have

| Tx(t)− Ty(t) | e−|τ t| ≤ e−τ dτ (x, y),

which implies that

dτ (Tx, Ty) eτ ≤ dτ (x, y)

≤ max
{
dτ (x, y),

dτ (x, Tx) + dτ (y, Ty)

2
,
dτ (x, Ty) + dτ (y, Tx)

2
,

dτ (x, Tx) dτ (y, Ty)

1 + dτ (x, y)
,
dτ (x, Ty) dτ (y, Tx)

1 + dτ (x, y)

}
= Nτ (x, y).

Taking τ > 0 and θ ∈ Θ, F ∈ Ω, G ∈ G as

F (t) = ln t, for all t ∈ (0, ∞), G(t1, t2, t3, t4, t5) = ln τ, for all t1, t2, t3, t4, t5 ∈ [0, ∞),

and θ(t1, t2, t3, t4, t5) = max {t1, t2, t3, t4, t5}, for all t1, t2, t3, t4, t5 ∈ [0, ∞)

respectively, we obtain

G
(
dτ (x, y), dτ (x, Tx), dτ (y, Ty), dτ (x, Ty), dτ (y, Tx)

)
+ F (dτ (Tx, Ty))

≤ F (Nτ (x, y)),

which implies that T is generalized F - weak contraction. Therefore, all conditions of
Theorem 6.1 are satisfied. Therefore, Theorem 6.1 applies to T , which guarantee the
existence of a fixed point x in X. That is, x is a solution of nonlinear Volterra type
non homogeneous integral equation (6.1) in C([a, b]).
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