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Abstract. Most of measures of income inequality are derived from the Lorenz curve and
many authors state that the Gini index is the best single measure of inequality. The present

paper reviews some of theoretical properties of the Lorenz curve and provides a non-parametric

estimate of the Gini index and the almost sure convergence of this estimate. And to confirm
the performance of the estimator, a simulation on real data was carried out.

2010 Mathematics Subject Classification. 62G05, 62G07 ,62G30 , 62P20, 65D30.

Key words and phrases. Lorenz curve, Gini index, Nonparametric estimation, Variable

bandwidth.

1. Introduction

It is well known that the cumulative income distribution is graphically represented by
Lorenz curve (see Figure 1). On the latter, the percentage of households is plotted on
the x-axis while the percentage of income on the y-axis. It shows for the bottom p1%
of households, what percentage p2% of the total income they possess. This theory
was initiated by Max O. Lorenz in 1905 in order to represents inequality in wealth
distribution (see Cowell [7]). If p1 = p2, then the Lorenz curve is the upward diagonal
line which means, for instance, that 50% of the households possess 50% of the total
income. Thus the straight line represents perfect equality. Any case in which the
Lorenz curve is not a straight line implies income inequality. The standard definition
of the Lorenz curve is defined in two equivalent ways. Firstly, one has to determine a
particular quantile, which means solving for z the equation:

L(F (z)) =
1

µ

∫ z

0

tf(t)dt

where

F (z) =

∫ z

0

f(t)dt and µ =

∫ ∞
0

tf(t)dt.

Secondly, using a notation popularized by Gastwirth [8], z = F−1(p), one may write
the Lorenz curve in a direct way :

L(p) =
1

µ

∫ p

0

F−1(t)dt.

If everybody had the same income, the cumulative percentage of total income
held by any bottom proportion p of the population would also be p. The Lorenz
curve would then be L(p) = p: population shares and shares of total income would
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Figure 1. The area between the equality line and the Lorenz curve.

be identical. A useful informational content of a Lorenz curve is thus its distance,
p − L(p), from the line of perfect equality in income. Compared to perfect equality,
inequality removes a proportion p−L(p) of total income from the bottom 100×p% of
the population. The larger that ” deficit ”, the larger the inequality of income. There
is thus an interest in computing the average distance between these two curves or the
surface between the diagonal p and the Lorenz curve L(p). We know that the Lorenz
curve is contained in the unit square having a normalized surface of 1. The surface of
the lower triangle is 1/2. If we want to obtain a coefficient at values between 0 and
1, we must take twice the integral of p− L(p) given by Lubrano [16]:

G = 2

∫ 1

0

(p− L(p))dp = 1− 2

∫ 1

0

L(p)dp.

which is nothing but the usual Gini coefficient. Xu [21] gives a good account of the
algebra of the Gini index. This definition above is an interpretation of the Gini index
as a surface. The alternative definition of Gini index is in form of a mean of absolute
differences. There are other formula too. All of these formula are equivalent. So
the alternative formula for Gini index G, is based on the mean difference ∆, of the
underlying distribution fonction F (x) and is given by Kendall and al. [13]. The Gini

index of the Lorenz curve L(p) generated by a distribution fonction F (x) is G =
∆

2µ
,

were:

∆ =

∫
R

∫
R
|x− y|dF (x)dF (y) (1)

where y and x are two random variables of the same distribution F . As F (x) and
1− F (x) are simply the proportions of individuals with incomes below and above x,
integrating the product of these proportions across all possible values of x gives again
the Gini coefficient, in its forms given by ∆ by (see Gastwirth [11]):

∆ = 2

∫
R
F (x)[1− F (x)]dx = 4

∫
R
x

[
F (x)− 1

2

]
dF (x)
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The formula G shows that the Gini index measures relatives inequality as it is the
ratio of a mesure of dispersion, the mean difference to the average value (µ).

Inequality measures in general and Gini index in particular, have been used from a
descriptive point of view. However, data available from statistical agencies frenquently
come from sample surveys; inequality indices turn out to be computed on the basis of
sample data. Therefore, it is necessary to use them not only as descriptive tools, but
also as tools for formal statistical inference. The approch to statistical inference can
be either nonparametric or parametric. A comprehensive survey of the main results
in the estimation of G according to these two approaches is in Giorgi [9]. Conti and
Giorgi [6] investigated the strong consistency of an estimator of the kernel Gini index.
The Gini coefficient can be obtained from a simple ordinary least square regression
based approach: see for instance Lerman and Yitzhaki [15], Shalit [19], Ogwang [17],
Giles [10]. Shahryar and al. [20] investigated on the Gini Coefficient estimators based
on the linearization and U-statistics methods. Also, some authors have proposed the
resampling techniques to estimate the standard error of the Gini concentration index
(see Berger [5] and Yitzhaki and Schechtman [22]).

The present paper provides a non-parametric estimator of the Gini coefficient based
on the kernel method with varying bandwith parameter. Firstly, this varying band-
with parameter will vary according to the random variables and secondly, according
to the variable x. The document is organized as follows; apart from the introduction
and the conclusion, we will first go through the construction of the estimator and the
study of its strong consistency, then a simulation study to conclude.

2. Gini index non parametric estimator

Let X1, · · · , Xn be a random sample of size n from a population X with density
function f . TheXi, for i = 1, · · ·n; n ∈ N, are independent and identically distributed
(i.i.d.) observations. The main of nonparametric density estimation is to estimate f
with as few assumptions about f as possible. One of the well known estimators of f
is the classical kernel density estimator, which we will denote by

fn(x) =
1

nh

n∑
i=1

K

(
x−Xi

h

)
, x ∈ R, (2)

where h = hn is the bandwidth sequence satisfying:

h −→ 0 and nh −→ +∞ for n large enough (3)

and K is a kernel function and is assumed to be a continuous density, symmetric with
respect to 0. The kernel K satisfies the following conditions to get the order of the
bias and variance of the classical kernel density estimator:∫

K(x)dx = 1,

∫
xK(x)dx = 0, and

∫
x2K(x)dx = σ2

K > 0. (4)

One had remarked in the literature that the estimate (2) is more local in nature
but is scarcely a reasonable estimate of a smooth density. Note that the problem of
additive form (2) is that it require the preservation of the continuity and differen-
tiability properties of K. For example, the uniform density is discontinuous, so the
kernel density estimate based on a uniform kernel function is discontinuous. Thus, a
smoother kernel function will thus lead to a smoother kernel density estimate. The
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ordinary estimate (2) does not allow for different levels of smoothing at different parts
of the density, as it is controlled by the single bandwidth h. Therefore is obviously not
optimal. Jeffrey [12] shows that the mean squared error (MSE) of f(x) at any point x
is directly related to f(x)/h and [f ′′(x)]2h4. In other words, in order to reduce MSE,
h should increase with f(x) (to reduce variance) and should decrease with f ′′(x) (to
reduce bias).

For filling this void of inadaptation, there is a way to vary h in the kernel estimator
to try to improve performance, is to choose h(Xi) as a function of the evaluation
point Xi for i ∈ {1, · · · , n}. From a practical point of view, the usual kernel density
estimator (2) is susceptible to bumpiness in the tails, since it does not adapt to local
variations in smoothness. The estimator can be generalized to allow this, by using
broader windows for the contribution of values associated with regions of low density
and narrower windows for values associated with regions of high density. The general
formula for one such estimator, the variable-bandwidth kernel estimator, is defined in
Jeffrey [12] by:

f̂n(x) =
1

nh(Xi)

n∑
i=1

K

(
x−Xi

h(Xi)

)
, x ∈ R, (5)

where h(Xi) =
hn

f1/2(Xi)
vary inversely with the underlying density, since the goal is

to smooth less where there is more structure (and more where there is less structure).
The choice of (5) is particularly advantageous, since it results in the bias of (5) be-
ing O(h4), rather than the usual (2) O(h2), while leaving the variance O(n−1h−1).
Clearly, we observe that the choice of this variable h has a great influence on the
speed of convergence of (5), which induces the rapid convergence of the estimator (6).
We can also remark that if the density function f is uniform, then the formula (5) is
reduced to (2).

From the estimator (5) of the density function, it is obvious that we obtain an
estimators of the Gini index, which are given by:

Ĝ =
∆̂n

2µ̂n
. (6)

where

∆̂n =

∫
R

∫
R
|x− y|f̂n(x)f̂n(y)dxdy,

or

∆̂n =
1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R
|x− y|f

1/2(Xi)

hn
K

[
(x−Xi)f

1/2(Xi)

hn

]
f1/2(Xj)

hn

×K
[

(y −Xj)f
1/2(Xj)

hn

]
dxdy. (7)

and

µ̂n =

∫
R
xf̂n(x)dx =

1

n

n∑
i=1

Xi.
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In the next paragraph, we study the almost sure convergence or the strong consis-
tency of our estimator (6).

3. Convergence of the Gini index estimator

For the following, apart from the classical regularity conditions on the kernel function
K in (4) and on h (3), we adopt the following hypotheses.

3.1. Hypotheses.
(H.1) The density function f : R −→ R+ is:

a. a bounded function: ∃ 0 < m < M such that m 6 f(x) 6M ∀x ∈ R,
b. a κ-Lipschitzian function: |f(x)− f(y)| 6 κ|x− y| ∀x, y ∈ R.

c. a function such that

∫
R
f1/2(x)dx = Θf > 0.

(H.2) The Kernel K : R −→ R+ satisfies the conditions below:

a.

∫
R
|u|K(u)du = ΩK > 0, ∀u ∈ R,

b.

∫
R

∫
R
|u− v|K(u)K(v)dudv = ∆K > 0, ∀u, v ∈ R,

(H.3) The variable bandwidth parameter h satisfies: hnκ
√
MΩK 6 2m2, ∀n ∈ N.

These pre-enumerated hypotheses make it possible to study the strong consistency
of the estimator ∆̂ (7), which induces that of Ĝ (6).

3.2. Almost sure convergence. Suppose X1 · · ·Xn be i.i.d random variables of
a distribution F . Consider a parametric function θ for which there is an unbiased
estimator. The parametric function θ may be represented as

θ = E[φ(X1, · · · , Xm)] =

∫
· · ·
∫
φ(x1, · · · , xm)dF (x1) · · · dF (xm),

where φ = φ(x1, · · · , xm) is function of m(m 6 n) i.i.d random variables, called the
kernel for θ. For any kernel φ, the corresponding U-statistic for estimating of θ on the
basis of a random sample of size n is obtained by averaging the kernel φ symmetrically
over the observations

Un = U(X1, · · · , Xm) =
1

Cmn

∑
c

φ(Xi1 · · ·Xi1),

where
∑
c

denotes summation over the Cmn combinations of m distinct elements

{i1 · · · im} from {1, · · · , n}. In particular cases, we have:

Lemma 3.1. For n large enough, we have
•

µ̂n = U1 =
1

n

n∑
i=1

Xi −→ µ = E(X) =

∫
xdF (x) p.s., (8)

where φ(x) = x.
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•

U2 =
2

n(n− 1)

n∑
i=1

n∑
j=1

|Xi−Xj | −→ ∆ = E(|X1−X2|) =

∫ ∫
|x1−x2|dF (x1)dF (x2) p.s.,

(9)
where φ(x1, x2) = |x1 − x2|.

Proof. This proof can easily be found in Lehmann [14] and Pranab [18]. �

The following lemma plays an important role in the convergence of the estimator.

Lemma 3.2. Under hypothesis (H.1), the function f−1/2 is δκ-Lipschitzian, that is
to say: ∣∣∣∣ 1

f1/2(x)
− 1

f1/2(y)

∣∣∣∣ 6 δκ|x− y| ∀x, y ∈ R, where δκ =
κ
√
M

2m2
.

Proof. Indeed, it suffices to note that:∣∣∣∣√x−√yx− y

∣∣∣∣ =
1√

x+
√
y
6

1

2
√
ε
∀x, y > ε > 0, (10)

and ∣∣∣∣ 1x − 1

y

∣∣∣∣ =

∣∣∣∣ 1

xy

∣∣∣∣ |x− y| 6 1

ε2
|x− y| ∀x, y > ε > 0. (11)

From the inequalities (10), (11) and under the hypothesis (H.1), we can write∣∣∣∣ 1

f1/2(x)
− 1

f1/2(x)

∣∣∣∣ 6
√
M

2

∣∣∣∣ 1

f(x)
− 1

f(y)

∣∣∣∣
6

√
M

2m2
|f(x)− f(y)|

6
κ
√
M

2m2
|x− y|.

�

Theorem 3.3. Under the assumptions (H.1), (H.2) and (H.3), we have

|∆̂n −∆| −→ 0 p.s, when n −→ +∞.

Proof.

∆̂n =
1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R
|x− y|f

1/2(Xi)

hn
K

[
(x−Xi)f

1/2(Xi)

hn

]
f1/2(Xj)

hn
K

[
(y −Xj)f

1/2(Xj)

hn

]
dxdy

=
1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R

∣∣∣∣ uhn
f1/2(Xi)

− vhn
f1/2(Xj)

+ (Xi −Xj)

∣∣∣∣K(u)K(v)dudv

=
1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R

∣∣∣∣(Xi −Xj) +
hn

f1/2(Xi)
(u− v) +

(
1

f1/2(Xi)
− 1

f1/2(Xj)

)
vhn

∣∣∣∣K(u)K(v)dudv

6
1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R

[
|Xi −Xj |+

hn
f1/2(Xi)

|u− v|+
∣∣∣∣ 1

f1/2(Xi)
− 1

f1/2(Xj)

∣∣∣∣ |v|hn]K(u)K(v)dudv.
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From the Lemma 3.2 and assumptions (H.1) - (H.2) we deduce

∆̂n 6
1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R

[
|Xi −Xj |+

hn
f1/2(Xi)

|u− v|+ δκ|Xi −Xj ||v|hn
]
K(u)K(v)dudv

=
1

n2

n∑
i=1

n∑
j=1

[
|Xi −Xj |+

hn
f1/2(Xi)

∫
R

∫
R
|u− v|K(u)K(v)dudv

+hnδκ|Xi −Xj |
∫
R
|v|K(v)dv

]
6

1

n2

n∑
i=1

n∑
j=1

[
|Xi −Xj |+

hn√
m

∆K + hnδκΩK |Xi −Xj |
]

6
1

n(n− 1)

n∑
i=1

n∑
j=1

(1 + hnδκΩK)|Xi −Xj |+
hn√
m

∆K

Using hypothesis (H.3) and noticing that |a− b| 6 | |a| − |b| |, this leads to

|∆̂n − U2| 6 hn
∆K√
m
. (12)

Thus, considering the first limit of equality (3), we get |∆̂n − U2| −→ 0 p.s.
Moreover, the triangular inequality allows us to write

|∆̂n −∆| 6 |∆̂n − U2|+ |U2 −∆|.

Relation (9) of Lemma 3.1 completes the proof of the theorem. �

Corollary 3.4. Under the assumptions of Theorem 3.3, we have

|Ĝn −G| −→ 0 p.s, when n −→ +∞.

Proof.

|Ĝn −G| =
1

2

∣∣∣∣∣∆̂n

µ̂n
− ∆

µ

∣∣∣∣∣ 6 1

2

[
1

µ̂n
|∆̂n −∆|+

∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣∆]
From relation (8) of Lemma 3.1 we get

∣∣∣∣ 1µ − 1

µ̂n

∣∣∣∣ −→ 0 p.s.

And finally Theorem 3.3 completes the proof of this corollary. �

Corollary 3.5. Under the assumptions of Theorem 3.3, Ĝn is an asymptotically
unbiased estimator i.e.,

E(Ĝn) = G a.s. as the sample size tends to infinity.

Proof. From the expression

∆̂n =
1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R

∣∣∣∣hn( u

f1/2(Xi)
− v

f1/2(Xj)

)
+ (Xi −Xj)

∣∣∣∣K(u)K(v)dudv,

using Fubini’s theorem, we can write,

E(∆̂n) =
1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R
E
[∣∣∣∣hn( u

f1/2(Xi)
− v

f1/2(Xj)

)
+ (Xi −Xj)

∣∣∣∣]K(u)K(v)dudv,
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by noting that |a + b| 6 |a| + |b|, |a − b| 6 |a| + |b| and by considering the fact that
the random variables are i.i.d., we have

E(∆̂n) 6
1

n2

n∑
i=1

n∑
j=1

∫
R

∫
R
E
[
hn(|u|+ |v|)E

[
f−1/2(X)

]
+ E|Xi −Xj |

]
K(u)K(v)dudv,

hypothesis (H.1) c, leads to

E(∆̂n) 6
1

n2

n∑
i=1

n∑
j=1

E|Xi −Xj |+ Θfhn

∫
R

∫
R

(|u|+ |v|)K(u)K(v)dudv.

Taking into account that E|Xi −Xj | = ∆, using Jensen’s inequality expectation and
Fubini’s theorem, hypothesis (H.2) a, lead to

E|∆̂n −∆| 6 2ΘfΩKhn,

or

E|∆̂n −∆| = O(hn). (13)

By applying linearity of the expectation, the last equality (13) and Lemma 3.1 to the
following relation

|Ĝn −G| =
1

µ
|∆̂n −∆|+

∣∣∣∣ 1

µ̂n
− 1

µ

∣∣∣∣ ∆̂n,

we have

E|Ĝn −G| −→ 0 a.s. when n −→∞.
In particular,

E(Ĝn) −→ E(G) = G a.s. when n −→∞.
�

4. Applications

4.1. Gini index and Lorenz curves generated by some common distribu-
tions. The table below proposes theoretical expressions of the Lorenz curve and of
the Gini index for certain usual probability laws.

Distribution Formula of F (x) Lorenz curve L(p) Gini index G

Equal 1[µ,+∞[(x) p 0

Exponential 1− e−λx, x > 0 p+ (1− p)ln(1− p) 1
2

Shifted Exponential 1− e−θ(x−a), x > a > 0 p+ 1
1+θa

(1− p)ln(1− p) 1
2(θa+1)

General Uniform
x− a
θ

, a < x < a+ θ
ap+ θp2

2

a+ θ
2

θ

3(2a+ θ)

Pareto 1−
(
β

x

)α−1

, x > β > 0, α > 2 1− (1− p)
α−2
α−1

1

2α− 3

Table 1: Some Gini index and Lorenz curves.
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Among the above probability laws, only the Pareto and exponential (shifted) dis-
tributions satisfy the hypotheses (H.1), (H.2) and (H.3). In addition, we can notice
that the exponential distributions (shifted) give a theoretical Gini index strictly lower
(for the shifted exponential distribution) or equal (for the exponential distribution) to
0.5, that is to say that the Gini index theoretical result from the two above-mentioned
distributions, gives an almost equal distribution of income (because its value is closer
to 0). Thus exponential (shifted) distributions do not allow us to make a good judg-
ment on the real data we have. However, the Pareto distribution gives a Gini index
between 0 and 1 and it is also a distribution that is very useful in the literature for
studies on inequalities.

4.2. Application to real data. The data we have was collected on the World Bank
website [23]. We collected data on adjusted net national income from 45 countries in
Africa (sub-Saharan Africa) and 185 countries around the world. The data collected
is the only data that exists on the site since not all countries have it. The probability
law considered is the Pareto distribution which has two parameters α and β. The two
parameters of the Pareto distribution being unknown, in order not to choose these
two parameters at random for our study, we chose to estimate the two parameters by
the maximum likelihood method and these two unbiased and convergent estimators
will represent the parameters α and β for the Pareto distribution in our study. The
following table provides the expressions of the two parametric estimators and their
characteristics.

Parameters ρ MLE estimators ρ̂n E(ρ̂n) σ2(ρ̂n)

α α̂n =

(n− 1)

1 +
n

n∑
i=1

log

(
Xi

β

)
+ 1

n
α

(α− 1)2

n− 2

β β̂n =

[
1−

1

n(α− 1)

]
X(1) β

β2

n(α− 1)(n(α− 1)− 2)

Table 2: Maximum Likehood Estimators of Pareto distribution parameters.

Since in the expressions of α̂n and β̂n the parameters α and β are unknown, in

practice, we choose as estimators of α and β the quantities α̂∗n and β̂∗n defined by:

α̂∗n =

(n− 1)

1 +
n

n∑
i=1

log

(
Xi

X(1)

)
+ 1

n
and β̂∗n =

[
1− 1

n(α̂∗n − 1)

]
X(1).

For the simulations, we have selected four kernel functions, two of which have
compact support and the others defined on R. The smoothing parameter h(•) is

chosen such that hn =

[
R(K)

σ4
KR(f̂ ′′n )

]1/9

n−1/9 or more simply hn = O(n−1/9) where
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the notation follows the convention R(g) =

∫
g2(x)dx for appropriate functions g.

For the determination of hn, the estimator f̂n used is based on a different bandwidth
from the one that is appropriate for the estimation and is estimated from the data
(see Jeffrey[12]).

The different kernel functions used are grouped together in the following table:

Kernel name Formula of K(u)

Epanechnikov
3

4

(
1− u2

)
1|u|61

Cosine
π

4
cos
(π

2
u
)

1|u|61

Gaussian
1
√

2π
exp

(
−

1

2
u2
)

Logistic
1

exp(−u) + 2 + exp(u)

Table 3: Some usefull Kernels.

Using the Matlab software, we obtain the following results, shown in Table 4 below.
Recall that the values of the parameters α and β come from the samples collected

and are such that α ' α̂∗n and β ' β̂∗n. For these two values obtained, we tried to
construct the Lorenz curve given by Figure 2 for the two types of samples (n = 45
and n = 185). Then, we calculated the theoretical Gini index G given by the formula

G =
1

2α− 3
, in order to compare it with the estimated Gini index, noted Ĝn.

n K(u) α β µ̂n ∆̂n Ĝn G Bias(Ĝ∗n, G)

Epanechnikov 4.2175e+07 0.7237 0.0455

Cosine 4.3574e+07 0.7477 0.0215
45 2.1500 1.8352e+05 2.9138e+07 0.7692

Gaussian 4.4001e+07 0.7550 0.0142

Logistic 4.4164e+07 0.7578 0.0114

Epanechnikov 1.3266e+11 0.8916 0.0013

Cosine 1.3265e+11 0.8915 0.0014
185 2.0599 3.8915e+06 7.4388e+10 0.8930

Gaussian 1.3283e+11 0.8928 0.0002

Logistic 1.3279e+11 0.8926 0.0004

Table 4: Simulation results.

4.3. Interpretation of results and commentary. Table 4 shows that for n = 45
(sample africa), convergence is slow while with n = 185 (sample world) almost four
times the size of sample africa, convergence is rapid. Moreover, we can observe in both
situations that the choice of the kernel has a slight influence on the convergence of the
Gini estimator, since one can notice that the kernels with compact support, provide
a slower convergence compared to the others. In other words, we can summarize that
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Figure 2. Theorical Lorenz curves for Africa and World.

the size of the sample and the choice of the kernel contribute to a faster convergence
without forgetting the choice of the smoothing parameter which is of great importance.
In view of the results obtained, we can notice that the adjusted net national incomes
are distributed unequally in the two cases but the inequality obtained with the 185
countries of the world is more severe. This result is predictable because only about
20 countries hold most of the income in the world.

5. Conclusion

The nonparametric estimator of the Gini index studied in this manuscript allowed us
to see the importance of the variable smoothing parameter which played a primordial
role in this study, especially with regard to the speed of convergence. Choosing the
variable smoothing parameter makes it possible to take into account the variability
of the data collected, even if the theoretical calculations and especially the computer
programming are heavier with this choice (variable smoothing parameter), neverthe-
less it contributes to very good convergence and faster of the estimator compared
to the constant smoothing parameter which is much more used in the literature (see
Agbokou and al.[1, 2, 3, 4]). Regarding the simulations, we planned to take several
samples but for lack of a calculator, we decided to select only the two samples (Africa



40 K. AGBOKOU AND Y. MENSAH

and the world) to evaluate the performance of our estimator and in view of the re-
sults obtained, we conclude that this Gini estimator is efficient even if it can still
be improved so that with n = 50, convergence is faster. In our next study, we will
compare the estimator of the Gini index with variable smoothing parameter to the
Zenga index with a constant smoothing parameter. In a brief way, let us recall that
the main objective of this work is to highlight the rapid convergence using a variable
bandwidth in terms of simulations and to see if there is a conformity with the theory.
Future work will focus on asymptotic normality (Central Limit Theorem) to get an
idea of the behavior of the estimator in terms of bias and variance and in addition to
study the adequacy with simulations.
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