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Location of zeros of a Lacunary type polynomial

SUBHASIS DAS

ABSTRACT. For a given polynomial p(z) of degree n with real or complex coefficients, our basic
aim is to determine the smallest region in which all the zeros of p(z) lie. In the present paper,
we have obtained a result by using Lacunary type polynomial which gives the region of zeros
neither circular nor annular except in some particular cases. Our result plays an important
role to reduce the region of polynomial zeros.
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1. Introduction and statement of results

Concerning the region for the location of zeros of a polynomial

p(z) = apz™ + a1 2" Vet an_12+ay
of degree n with real or complex coefficients, the results obtained by Lagrange [9] (see
[1, Theorem 1.1, p. 19]) and Cauchy [2] (see also [10, Ch. VIII, Sect. 27, Theorem
27.1, p. 122]) are well known. In fact, applying Cauchy result on the polynomial
q(z)=z"p (%), one can easily obtain a circular region with centre origin in which no

zeros of p (z) lie when a,, # 0, and consequently, we can restate the Cauchy result as
follows.

Theorem 1.1. All the zeros of p (z) with a,, # 0 lie in the ring shaped region

1
% S ‘Z| S 7o,

where rg, v, are the unique positive roots of the equations

h(t) = |ag|t™ — |ay|t" ™' — |ag|t" ™2 — - —|an_1|t — |an| =0
and
B () = |an|t" = |an_1|t""" = |an_o|t"2 —--- —|ai|t — |ag| =0
respectively.
In the literature, there are some results (see [3, 4, 5, 6, 7, &, 11, 13]) dealing with

the refinement and improvement of the Cauchy result that have been published to
determine the circular region for estimating the location of zeros of a polynomial.

In this paper, we have obtained a result for the location of polynomial zeros by
using Lacunary type of polynomial [10, Ch. VIII, Sect. 34, pp. 156] of the form

P(z)=apz" +a 2"+ +ap_12+ay, 1<A<n
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FIGURE 1. The left side region obtain by Theorem 1.1 whereas the
right side region obtain by applying Theorem 1.2 on it.
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FIGURE 2. The left side region obtain by [3, Theorem 3] whereas the
right side region obtain by applying Theorem 1.2 on it.

Using our result we can produce a region in which the zeros of a polynomial are
simple. Also, we present some application of our result to produce more approximate
region which is explained by few examples mentioned in the section 3. More precisely,
we prove

Theorem 1.2. Let
P(z) ="+ ar2" M4 Fan_1z+an, 1< A<n, lan| # 0, ax] # 0

be a polynomial of degree m with real or complex coefficients. Then all the zeros of
P (z) lie in the following region:

() {=:12> £} i Go =0,
(i) {z:Coz+ Coz = 1}, if to = |Co| (#0),
(i) { } T to > Gl (#0),

Co > to
2—1¢0l?) | = [ (3—I¢ol?)

z .

z—!-(
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. to .
(iv) { 2 |< %) (13=1¢0l?) }’ i to < IGo] (#0),
where ty is an unique positive root of the equation

f(t) = |an|t™ — |bo| t" 2 — |b3| t" 3 — - — |bp_1|t — |bn] = 0,

n n—1 1 n—j _
b = ancp+< )an (:1” _|_..._|_< )angp J
! (p) 0T \p—1) 0 p—j) "

n—p+1 n—
+---+( 117 >anp+1C0+< 0p>anpv p=2,....m

:z+(

nan,

ar =0, k=1,2,... A= 1; o= -1 with (8) =1.
Moreover, if |b,| # 0, then zeros of P (z) lie in the following region:
() {1121 = £}, iftoth = 1,160] =0,
(11) {Z : C()Z—ng: 1}7 th0t6 = 17t0 = |<0| (# 0)7
(i) { } if toty = 1. to # o] (# 0),

:z+(

to
t3— |Co| ) (t%flc ”)

. t
) {Z G+ 0oz <1 2+ i | 2 | i) }
thOtIO > 17 % = ‘<0| (# 0)7
_ 1
(v) {21 oz +Coz > 1, |2+ — > =t
t%-\CoP) (tﬁ—Kolz)
0 0

if toth > 1,t0 = [Co| (# 0),

1

. , ¢o < 0 Co > to

DU G| B |G | 1 e = fem]
t to

th0t6 >1 ’tE) > ‘C0| (7é 0)7

— 1 -

. & || G| > | ot

(vii) < z: |z + < o \40\2> Z (/%7'(0'2) |F T (£B=1¢?) | = [(B—1¢ol?) | (7
t o

if toth > 1, 5 < [Go| (# 0) < to,

S to Co > t0
t2—1¢ol?) (t2—1¢0l?) |’

+ = ,
(-10i) |~ | (-1
if toty > 1,t0 < [Gol (# 0),
() {21 & <Jel <th ). if toth > 1,160 =0,
where t(, is an unique positive Toot of the equation

() = o] t™ — b1 t" 7 = |byo| t" 2 — - — |bo|t2 — |an| = 0.

(viii) € z: z+(

Using Theorem 1.2, we can easily obtain a region in which the zeros of P(z) are
simple.

Theorem 1.3. Let
P(z) = apz" +a2" N4t an_1z+an, 1< A<n, |an—1] # 0
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be a polynomial of degree n with real or complex coefficients. Then the zeros of P (2)
are simple in the following region:

M) {z:1sl < £} # 6 =0,

(ll) {Z : QQZ—F@Z < 1}7 th() = |<O| (75 0))
(iii) { CE o B } if to > |G| (# 0),
(v) { rter IRl rery } o < 16l (#0).
where tg is an unique positive root of the equation

F () = |an_a[t" = |bo| "3 — |b3| t"™* — -+ — |bp_a|t — |by_1| =0,

n—1 n—2 _ . n—j—1 _

n— n—p-—1
++p< 1p)an—pCO+(p+1)( g )a‘n—P—h p:277n_17

S i |<|)

:z+( >

2an—2 . 0
=0, k=1,2,...,A—1; = ——F— with =1.
af ) ) ) ) CO (n — 1) a1 we (0)

Moreover, if |b,—1| # 0, then zeros of P (z) are simple in the region:

) {z:1l > dfu{zslel < &} i toth = Liaol =0,

(ii) {Z 2oz + Coz > 1} U {Z 2 Coz + (uz < 1} iftot/ =1,ty = |C:0| (7& 0),

(111){ o ICI) }U{
if toty = 1,t0 # [Col (#

; ) Yy ) [

(iv) {z:Cz+ Gz >1}U {z : ‘z + (tg*|(20|2)
Z‘ftOtl > 17 tl/ ‘C0| (# 0)7

t2— |Co| )
b

V) {z:Cz+Gz<1}Uz: 2+ o <
(F-1wl) | | (100
if toty, > 1,19 = [Co| (#0),
(vi) {z: |z 4+ — > : u{z:z+ | < 2“2},
(F-tol) |~ | (-1l (5-1ol)| = [ (#5=col®)
0
if toth > 1, - > Go] (0),
— 1 —
.. . o 0 U . o Lo
(vii) §2: |2+ ( W) < ( W) {Z T @oer)| < | @oier) }
th0t6 > 17 t6 < ‘CO| (# 0) < tO!
. Co to
(viii) {z BT CERR)

ift0t6 > 1,1t < |C0| (75 0)
(ix) {z: 2] < %}U{z 12| > ), if toth > 1,]Co| =0,

2_t0 Pl
(2—1¢01?)

>

<

. e |

2_t0 Pl
(£2—1¢01?)

to
(t2—1¢o?)

o"i‘»-

c\""

z—i—(

t

}U z:lz+ o < ‘o
(,2 \40\2) (%4@2)



388 S. DAS

where t(, is an unique positive root of the equation
F1 () = 1bpoa [t = b 772 = b "7 — o — [b2| t* — |ay—1| = 0.
For example, we consider a class of polynomials define by
Q={P,(z)=2"""—(n+1)z+n:neN},
where NV is a set of natural numbers. With the help of Theorem 1.3, we can say that
the zeros of any polynomial of ) are simple in the region
{z:]z]| <1}U{z: 2] > 1},

which can be seen by observing that to = 1, t;, = 1 and (o = 0 respectively. We
also observe that z = 1 is only a multiple zero of multiplicity 2 for each polynomial
of Q.

Here we note that for A = 1, P(z) reduces to p(z). So our results are also applicable
for the polynomial p(z).

2. Proof of Theorems

Proof of Theorem 1.2. First of all, we consider a transformation
1
(=L1(), L() = -

from z-plane to (-plane. Using this transformation, P (z) becomes

P (é) _ Tg(f), T(C) = anC" + an_1C" "'+ + axC + ag

in the (- plane.

Here all the coefficients of P (z) are finite with |a,| # 0 and zeros of P (z) are reciprocal
of zeros of T (¢) which give 0, 0o, neither a zero of P (z) nor T (¢). Now we construct
an Entire Linear Transformation from (-plane to n-plane define by

n=1L(), L'(¢) = ¢~ G,
where the complex number ( is to be determined for which the polynomial T (¢) in

the (-plane becomes R (n) under the transformation n = L’ (¢) in the n-plane with
the property that the coefficient of 7™~ in R (n) is absent. Clearly

R(n) = ann™ +bin™ " +ban" 2+ + by_1n + by,

n n—1 _ n—j iy
b, = an<p+< >an_ Cp 1+...+< .>an_,cp J
: <p> 0T \p—1) p—j) "7

n—p+1 n-—
+...+< f )arb_p+1<0+( 0p>an_p7 p=1,2,...,n

where

ar=0,k=1,2,...,(A\— 1) with (8) 1.

an—1
nany

As by =0 i.e., nayo + an—1 = 0 which gives (; = — , and consequently we have

R (77) = annn + 5277”72 +-+ bn—ln + bn
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Again for some |n| > 0,

)
[R(m)] = lan] [n]" = [b2l [n]""" = = [ba—1| [n] — [bn]-
Now, we introduce a function
F () = lan]t™ = [bo|t" 72 — - — [bu1 |t — [b] -

By Descartes’ rule of sign, f () = 0 has an unique positive root, say to, which shows
that

f@)>0if t > t.

Consequently, all the zeros of R (n) lie in the circular region

In| < to.

As the inverse transformation ¢ = L'~ (n) = n+ (o of n = L' ({) = { — {p is an entire
linear and it preserves the shape, so we get all the zeros of T () lie in the circular
region

D¢ =Gl <to
with the boundary I'p : | — {o| = to in the (-plane.
Now, the circle I'p can be written as
= = = 2
¢C— o6 = GoC + [Gol” = 15,
For finding the image of the circle I'p under z = L= () = %, we replace ¢ by < in
the above equation and consequently we get

11_?01_@7 2 —1¢ol®.

For to # |Col,
% z+ G zZ= L .
(B-16oF)  (B-16F) (13-l

Adding both sides by (ﬁ‘gfigo\)z’ we have

= ¢olo _ 1 ¢olo
t3— \c | )Z“L (t3—1¢ol?)” — (t3~1¢0l?) + (2—1¢ol?)”

_ 1 [$o]?
oF (H (i3 r 2)) = e ) (” = e )) M CETRRNCEEDE

or, < \Co\ > < 402)> - (t%—\tzolzf

2z +

zz+(t2 \CI)Z+(

<o _ to

on E T atier) | T |@ieP)
=

Rl S e |¢|> BRIk

In case of ty = |(ol,
C()Z‘ng: 1
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So, the image of I'p under z = L™' (¢) = ¢ is L™" (I'p) = A, where

So to
t5—1¢ol?) (t3-1col)
Coz+Coz=1 a straight line if to = |(o] .

z—i-(

A\ a circle if to # |Co|,

Clearly the zeros of P (z) lie in L=! (D) in the z-plane where L=! (D) is the image
of D under z = L=! (¢). Now we determine all the possibilities of L~=! (D) which is
depend on (y and ty as follows.

(i) For (o = 0, the image of I'p under z = L1 ({) is

1
A:|z|:% (astg >0, sotg # |Col) -

As 0 € Int (D) and the image of 0 goes to oo under z = L1 (¢), it imply

L' (D)= {z: |z| > 1}.
to
(#9) For to = |(o| (# 0), in this case,
A Coz+ (oz = 1.

Clearly (y € Int (D) and its image under z = L~ (¢) in the z-plane is

S
G |6
Also, B Zm—— )
o GO \.of S ) %G o)
N _ o ) _ + =2>1,
Co20 + Co%o C0<|<o|2> <0<|C0|2> of " loP T

which shows that o
L1 (D) = {Z 2oz + oz > 1} .
(44) For the case of tg > |(o| (# 0), we have

At Co _ to

(B-10l) | [(B-16P)|

Since 0 € Int (D) and the image of 0 goes to oo under z = L~ (¢), it give

Co > to

(&-1c0l*) | (13- 16F)

Al g Co _ to

(B-10l) | [(B-16P)|

Clearly 0 € Ext (D) and the image of 0 goes to co under z = L1 (¢), we get

L 'D)={z:|z+

(iv) For tg < |Co| (# 0), we have

(o < to

(B=1col)| | (B -1cf)

L'(D)={z:|z+
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In case of b,, # 0, we construct a polynomial in the n-plane define by

Sn)=n"R (;)

= by 4 by 1™ o 4+ b+ ay,

On |n| >0,
n n—1 n—2 2
1S ()] = 1bal " = [bn-al 0" = [bnz|[n]""" = -+ = |b2] [n]” — |an].
Consider the equation
(@) = bp| t™ — |bp_1|t" " — |bpa|t" % — - — |bo| t? — |a,| = 0.

Clearly f’ (t) = 0 has exactly one positive root, say t{,, and so
f'(t) > 0 when t > t{,
which gives the zeros of S (1) lie in the region
In| < to,
and therefore, all the zeros of R (1) must be contained in the annular region

1

tT < |77‘ <ty

0

in the n-plane.

Now, using the shape preserving property of an Entire Linear Transformation { =
L'=Y(n) = n+ (o, we can easily say that the zeros of T (¢) should lie in the region

1
QZF§|C_CO|§tO
0

with boundaries

1
FD:\C—Co|=t0andl‘gz|§—<0\:t7
0

in the (- plane.
Clearly, the images of I'p and I'q under z = L™ (¢) = % are given by L= (I'p) = A
and L~ (I'q) = A respectively, where

CT) . to . .
A 2+ CEED e a circle if tg # (o],
Coz+ Gz =1 a straight line if to = [{o] -
and
1
¢o — £ i if 1
2+ - a circle if = # |(ol,
A= (ﬁ*KUF) (t%flcoﬁ) o
70 0
Coz +Coz =1 a straight line if ti, = |Co] -
0

Also, the image of  under z = L~ () is denoted by L1 (Q) which contains all the
zeros of P (z) in the z-plane.
Now we discuss about all the possibilities of L=! () that depend on the values of
to, t(, Co and the region

1

Q:—
t

< ¢ — ol < to
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which are as follows.
(1) For toty = 1 and || = 0, in this case I'p = T'q : |¢] = to (as to > 0, to # |ol),
and Q : |¢| = to. So all the zeros of P (z) lie in

L‘l(Q):{z:|z|:tlo}.

(1) For toty = 1 and tg = [(o| (£ 0), we get I'p = Tq = Q : |¢ — (o] = ¢ and the
image of the boundary I'p under z = L~ (¢) becomes L~ (I'p) = A, where
A:Cz+Cz=1
and therefore,
L7NQ) ={z:Cz+(oz=1}.
(#41) For tot(, = 1 and tg # [Co| (£ 0), in this case T'p = Tq = Q : | — (o] = tp and
L=1 (T'p) = A, where

A:|z+ % = to

(B-16F)| | (8- lal)

Lil(Q): z:lz+ So = to

(B-16P)| (53~

(iv) For toty > 1 and 7 = |(o| (# 0), the images of
0

and so

1
Ip:|¢—Col =to andI’Q:|§—(0\:t7
0
under the transformation z = L~1 (¢) are
Co to

R A o | I [

(as to > 3 = [Co| ie., to # |Col), a circle and
0

_ — 1
L' (To) =A:¢oz+ Gz =1 (as 7= |C0|>,
0
a straight line in the z-plane.
Clearly 0 € Int (I'p) and the image of 0 under z = L~ (¢) goes to oo, which give

¢ > to
(B-16)| | (8- 1%F)

Again the image of (y € Int (I'q) under z = L=! (¢) in the z-plane becomes

1 G
20:—:

Co |Co|2

L*l(m): 2: |zt
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and putting z = z in the expression (yz + (oZ, we have

— Co Co ¢l Colo
+ =+ =2 1.
G0+ G0 = <|<o|> C°<|<o|> of el

Therefore,
L~ (Ext To) ) —{z:Gz+ Gz <1}

Now using the properties of Mobius Transformation, we have
L@ = Lt (Int (FD)) nL! (Ea:t (FQ))

Co to

CErRINICEER

v) For toty, > 1 and tg = (o] (# 0), the images of
0

z:lz+ Loz + Gz <1

1
D:\C—Co|=t0andl“9;|g_<0‘:t7
0

under z = L1 (¢) are given by
LY Tp)=A:(z+Coz=1 (as to = |(o)
and

= 1
L Tg) = A |e g 0 = o

(% - |<o|) (7~ 10oF)

(aS to = |Co| > ! # |Co|>

t” t’

respectively. Now the image of (o € Int (I'p) under z = L~ () goes to zy = %

_ Co Co oo oo
. LGy
Cozo + CoZo = <|<0| > CO<|C0| ) 1Gl* 16l ]

which imply

and

L~ (Int(FD ) — {z: G20+ oz > 1}

Again 0 € Ext (I'g) and the image of 0 under z = L~ ({) goes to oo which give

— & i
' (Ext(rﬂ)) U (% ol ) ) (t’2 [Col )
and therefore,
L@ = L (Ti(p)) L (Bat (Tw))
_ 1
Co to

>

(Z-10l) | | (- 16P)

z:Coz0 + CoZo > 1, |2z +



394 S. DAS

(vi) For toty > 1 and % > |Co| (% 0), the images of

1
FD:\C—C0|=t0andI’Q:|C—(0\:t7
0

under z = L™ (¢) are

G B to 1

L' (Tp)=A:|z+ = <ast>,,t7é|C|)
’ (-1el)| [(B-tof)] \77 BT

and

— 1
L' To)=A:|z+ (t% _CO<0|2) = (t% _t6|<02) (as 1516 # |Co|)

respectively. In this case, we see that 0 belongs to Int (I'p) as well as Int (I'q) whose
image under z = L1 (¢) goes to co. Therefore,

G

(B-16P)| | (B~ 1cF)

% "

(& —1ol) | | (3 - 16F)

L—l(m): PR

and

A

L_l(W(FQ)): z:i|z+

and hence,
L7 (Q)

= 1 (Tt (Tp)) N2~ (Bt (7))

_ 1
Co to

to
) |2+ <
(t%7|40|2) (t%_KOl?) <t%2_|<0‘2>
0 0

(vig) For tot(, > 1 and % < |¢o| (£ 0) < to, the images of

N

= VAN

&
SR D
1
¢ =Gl =to and T'a 2 [¢ = Go| =
0
under z = L™ (¢) are

L' (Tp)=A:|z+ o = o (as to # [Col) ,

(B-1ol)| (& -1c)

and
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respectively. Since 0 € Int (I'p) and the image of 0 under z = L~ ({) goes to oo, it
imply

Co > to

(Z-10P)| | (- 10P)

Again, 0 € Ext (I'g) and the image of 0 under z = L~ ({) goes to oo, which give

L—l(m): PRar

1

Co A

(7 - 1col*) - (7~ 1col*)

L_l(W(FQ)): z:i|z+

2%
—r (m) iz~ (Eat (Ta))

1

7
o

to - <o >
Fier| 2 |[wem | [ (-1a?) |~ | (1)
0 0
(vidi) For toty > 1 and to < |(o| (# 0), the images of

1
D:\C—Co|=t0andFQ;|<_§0‘:tT
0

- z

:z—i—(

under z = L™ (¢) are

L'Tp)=A:|z+ = | (as to # |Col)

and

LT A © || 7 <,1 )
L™ (Tq)=A z+(t/2 \C0|) (t,2 |(0\) a5t67é|§0|

respectively. Clearly 0 belongs to Ext (I'p) as well as Fxt (I'g) and its image under
z = L71(¢) goes to co. Therefore,

Co < to

(B-16P)| | (8- 1c8)

(o i

(%= 16P) | | (3~ 1oP)

L*l(m): 2i |zt

and

\%

L_l(W(FQ)): z:i|z+

Consequently, we get

171(@) = 17 (Tnt (Tp)) n 2 (Bt (Ta))

— — 1
Co to Co A
< ,lz+ 0

(B-16P)| | (B~ 1c)

=< z:|z+
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(iz) For toty > 1 and || = 0, the images of
1
FD2|<|:t0 andFQ:|§|=—,
to
under z = L™ (¢) are
1
L™ (Tp)=A:|z] = 7 @sto# [Sol) 5
and
1
L' (Tq)=A:|z| =t <as n + C0|)
0

respectively.
As 0 belongs to Int (I'p) as well as Int (I'g) and the image of 0 under z = L~ (()

goes to oo, it imply
— 1
L (Int (FD)) - {z 2| > t}
0

L7 (Bat(Ta)) = (= 12| < th)

and

respectively and so,

1@ = 7 (Tei(Tp)) Nzt (Bat (o))

1 /
z:—<|z| <tgyp-
to

This completes the proof. O

Proof of Theorem 1.3. Clearly, the derivative of P (z) with respect to z is given by
P'(2) =napz""' + (n — \) az""M 4 (n—=X-1) axe12" N2 4 202 4 an_y

Using Theorem 1.2 on P’ (z), we can easily say that P’ (z) has no zeros in the following
region:

(i) {z: |z] < i}, if (o =0,
(ii) {Z : CO«Z""@Z < 1}7 if to = [Co| (£ 0),
(iii) {z: } if to > [Col (# 0),

) {5 o+ | || b it <1l (0),

where ty is an unique positive root of the equation

Co to
SN oty | Ik e ey

>

ZJr(

f(t) = |an_1|t"_1 — ‘bg‘tn_?) — |b3|tn_4 — s — |bn_2|t— |bn_1| = 0,
n—1 n—2 _ . n—j—1 i
bp = < » >an_1cg+2<p_1)an_2cg 1++(]+1)< pi] >an—j—1<g J
n — n—p—1
+---+p( lp)an—pCo+(p+1)( g )an_p_l,pZZ--.,n—l;
2an72 . 0
=0, k=1,2,....A—1; = ————=  with =1.
ag ) CO (Tl — 1) a1 w1 <0)

Moreover, if |b,—1| # 0, then P’ (z) has no zeros in the region:
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{ 2] > 2 } { -|z|<i} if tot) = 1,|Co| = 0,
{ OZ+C()Z>].}U{Z <02+COZ<].} lftot —1t0:|C0‘(750),

<iii> { :\zmz &y | | e }U{ et mem| < [mEem }
if toty = 1, to # |Go| (# 0),
(iv) {z:(oz+C705> I}U{z: ‘Z—F (t%—ﬂog(ﬂz) < (tﬁ—tloc“o|2) }7
if totg > 1, 3 = |¢ol (# 0),
: Gz <1 : . %
(v) {z:Gz+Cz<1}US2 Z+<t/z «l?) ) (-leol?)

if toth > 1,t0 = |Co| (£ 0),

<o 0 to

, _
(vi) §z:|z+ <1/2 \Co\2> > <1/2 |co|2) U{z: SN vy | Ik e ey }7
if t0t6 >1 ,t/U > |<0‘ (7& 0)7

to

1
s ) So 7 )
1 z:|z < Uqgz:|z < R
S =0 = Rl e
0
if oty > 1, i <ol (# 0) < to,

cee . to
(viii) {z CEE)
if toty > 1,%0 < |Co| (# 0),
(ix) {z 2| < %}U{z 2] > ), if toth > 1,]Co| = O,

where t, is an unique positive root of the equation

1
/7
to

R aa s | M ewr

t

25§—|C0|2)

er( o

f/ (t) = |bn_1‘tn_1 — |bn_2| tn_2 — ‘bn_3| tn_g — s = |b2| t2 — |an_1| =0.

Consequently, we conclude that P (z) has no multiple zeros in the above region and
this gives the desired result. O

3. Some application of our result

In this section, we present some application of our result. To illustrate this, we
consider two polynomials in which one having no gaps and the other to be a lacunary
type. At first we consider a polynomial

p(z) = 2% — 22° — 932* + 4842% + 221922 — 183302 + 38025
having no gaps. Here,

n==6,a0=1,a1 = —2,a9 = —93, a3 = 484,
ay = 2219, a5 = —18330, ag = 38025.
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FIGURE 3. The left side region obtain by [11, Theorem 3.1] whereas
the right side region obtain by applying Theorem 1.2 on it.
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FIGURE 4. The left side region obtain by 1.1 or [3, Theorem 3]
whereas the right side region obtain by applying Theorem 1.2 on
it.

For estimating the region with the help of Theorem 1.2, we calculate
b1 = 0,by = —1462.6667, b3 = 408.3358, by = 38.3024, b5 = —6.0230,

_ 1
bs = 0.5313, Go = G = 0.0803, t0 = 0.3035, tf = 18.1416, - = 0.0551.
0

Using Theorem 1.2, all the zeros of p (z) lie in the region
{2 ]z — 23.5166 > 16.1345, |2 + 0.9381| > 3.5434} .

Also, the regions obtain by previous well-known results are as follows:
(i) |2|] < 35.5587, by Sun and Hsieh [13, Theorem 1]
(ii) |z] < 17.1240, by Jain [8, Theorem 1]
(iii) |z| < 12.2624, by Rahmanand and Schmeisser [12, Theorem 8.3.1]
(iv) |2] < 10.7572, by Melman [11, Theorem 3.1] (which is smallest)
(v) |z| < 17.4951, by Batra, Mignotte and Stefanescu [1, Theorem 3.1]
)

(vi) 1.6125 < |2| < 13.3208, by Theorem 1.1
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(vii) 1.4816 < |z — §| < 12.3111, by Das [3, Theorem 3].

Among them the best and distinct regions were given by

1.6125 < |z| < 13.3208, by Theorem 1.1,

1.4816 < |z — 1| < 12.3111, by Das [3, Theorem 3],

|z| < 10.7572, by Melman [11, Theorem 3.1]

respectively. Now if we apply our result on the regions obtained from Theorem 1.1,
[3, Theorem 3] and Melman’s result, then the regions of zeros of p (z) are found to be
{z 1|z — 23.5166| > 16.1345, |z + 0.9381] > 3.5434,1.6125 < |z| < 13.3208},

{#: |z —23.5166] > 16.1345, |2 + 0.9381| > 3.5434,1.4816 < |z — | < 12.3111},

{z : |z —23.5166| > 16.1345, |z + 0.9381] > 3.5434, |z| < 10.7572}

respectively. The effect of the above results on the regions of zeros of p(z) are shown
in the picture (see Fig 1, Fig 2 and Fig 3 respectively marked by shaded area).

Now we consider a Lacunary type polynomial

P (2) = 2° — 872% 4 5642% — 13402 4 1200.
Here,
n=>5ay=1,a1 =0,a0 = —87,a3 = 564, ay = —1340, a5 = 1200.
For finding the region with the help of Theorem 1.2, we calculate
b1 = 0,by = —34.5333, b3 = 23.5351, by = 0.7529, b5 = 0.2763,

_ 1
Go = o = 0.2233, g = 0.3200, 1 = 11.4078, - = 0.0877.
0

Since i < |¢o| < to, using Theorem 1.2, all the zeros of P (z) lie in the region

{z: |z —5.2031| > 2.0776, |z + 4.2071| > 6.0446} .

Now we find the regions obtain by other well-known results as follows:
(i) |2|] <12.8349, by Sun and Hsieh [13, Theorem 1]

(ii) |z < 12.0051, by Jain [8, Theorem 1]
(iii) |z| < 12, by Rahmanand and Schmeisser [12, Theorem 8.3.1, pp. 253]
(iv) |z| < 17.5895, by Batra, Mignotte and Stefanescu [, Theorem 3.1]
(v) |z| <12, by Melman [11, Theorem 3.1] (smallest one)
(vi) 0.6802 < |z| < 12, by Das [3, Theorem 3] or Theorem 1.1.
Among these regions we see that the best and distinct regions are 0.6802 < |z| < 12
(by Theorem 1.1 or [3, Theorem 3]) and |z| < 12 (by Rahman and Schmeisser or
Melman) respectively. Again if we apply our result in Theorem 1.1 or [3, Theorem
3], and the result obtained by Rahman and Schmeisser or Melman, then the regions
of zeros of P (z) become

{21 ]z — 5.2931| > 2.0776, |z + 4.2071| > 6.0446,0.6802 < |2| < 12},

{21 ]z — 5.2931| > 2.0776, |z + 4.2071| > 6.0446, | 2| < 12}
respectively. Here we also show the effect of the above results on the regions of zeros
of P (z) in the picture (see also Fig 4 and Fig 5 respectively).

4. Conclusion

Our basic aim was to refine the smallest possible region for the zeros of a polynomial.
Clearly the region obtained from Theorem 1.2 is neither circular nor annular except
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FIGURE 5. The left side region obtain by [3, Theorem 3] whereas the
right side region obtain by applying Theorem 1.2 on it.

in some particular cases. So if we applying our result in Theorem 1.2 on the regions
obtained from many well-known results then the region of zeros may be reduced.
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