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On the nonhomogeneous wavelet bi-frames for reducing
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Abstract. Ahmad and Shiekh in Filomat 34: 6(2020), have constructed dual wavelet frames
in Sobolev spaces on local fields of positive characteristic. We continued the study and pro-

vided the characterization of nonhomogeneous wavelet bi-frames. First of all we introduce

the reducing subspaces of Sobolev spaces over local fields of prime characteristics and then
provide the way to characterize the nonhomogeneous wavelet bi-frames over such fields. Our

results are better than those established by Ahmad and Shiekh.
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1. Introduction

To start with it is to be noted that a refinable structure gives birth to the classical
nonhomogeneous systems with some technical restrictions on them [16, 22, 23, 24].
The wavelet systems thus obtained have fast wavelet transform. However the corre-
spondence between them is not exact. It was Han [22, 23] who showed that the non-
stationary wavelets and nonhomogeneous wavelet systems are closely related. With
these considerations in mind, our aim in this paper is to construct and characterize
nonhomogeneous wavelet bi-frames (NWBFs) on Sobolev spaces over local fields of
positive characteristic.

Moving to the side of frames it is here worth to mention that Duffin and Schaeffer
[21] introduced frames in non-harmonic Fourier series in 1952. They were again
studied in 1986 by Daubechies and the process continued. Frames and the dual
frames have an important role to play in the characterization of signal, image and
video processing, function spaces, sampling theory and many more. Mathematically a
frame is defined in the following manner. A sequence of functions {fk}∞k=1 of Hilbert
space H is called a frame for H if there exist constants A,B > 0 such that for all
f ∈ H,

A
∥∥f∥∥2

2
≤
∞∑
k=1

∣∣〈f, fk〉∣∣2 ≤ B
∥∥f∥∥2

2
,

where A is lower bound and B is the upper one. If A = B, then we have a tight
frame. If A = B = 1, then we end up with a normalized tight frame. For more about
frames, we refer to [19, 18, 20] and the references therein.
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From 1980 a sustainable and progressive growth has occurred int the construction
wavelets and its associates on local fields of positive characteristic. Local fields are
broadly divided into the fields of zero and positive characteristics. Although their
topology is similar, their MRA (multiresolution analysis) and wavelet theories are
quite different. The construction of wavelets, wavelet frames, MRA and other re-
lated works on local fields of positive characteristics (LFPC)have been studied by
Benedetto, Behera and Jahan, Ahmad and Shah, Jiang, Li and Ji, Shukla and Mittal,
Bhat, etc in the series of works [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 25, 26, 27].
However the research on local fields is still in its infancy. Recently Ahamd and Shiekh
[1] have studied dual wavelet frames in Sobolev spaces on local fields of positive char-
acteristic. Continuing our study of frames on local fields, we introduce a compre-
hensive characterization of nonhomogeneous wavelet bi-frames in Sobolev spaces our
local fields of positive characteristic. First of all we introduce the reducing subspaces
of Sobolev spaces over local fields of prime characteristics and then characterize the
nonhomogeneous wavelet bi-frames over such fields.

The rest of the paper is tailored as follows. In Section 2, we recall some basic Fourier
analysis on local fields and also some results which are required in the subsequent
sections. In Section 3, we prove the results that are required in the characterization
of NWBFs over Local Fields.

2. Preliminaries on local fields

It is well that a field K is local if has the properties of locally compactness, non-
discreteness and totally disconnectedness. Local fields are broadly divided into the
fields of zero and positive characteristics. For characteristic zero, it becomes a field
of p-adic numbers Qp or its finite extension. When K has positive characteristic, it is
a formal Laurent series over a finite field GF (pc). We define the ring of integers over
local fields as D = {x ∈ K : |x| ≤ 1}. Due to the locally compactness, we have Haar
measure dx for K+. For the ring defined above, we have the prime ideal like B =
{x ∈ K : |x| < 1}. The residue space thus formed D/B will be isomorphic to a finite
field GF (q), where q = pc for some prime p and c ∈ N. Due to the disconnectedness
of local fields we have a prime element p of K such that B = 〈p〉 = pD. We closely
follow the results and notations of the Taibleson’s book [28]. In the rest of this paper,
we use the symbols N,N0 and Z to denote the sets of natural, non-negative integers
and integers, respectively.

For any function f ∈ L1(K), the classical Fourier transform denoted by f̂(ω) is
defined as

F
{
f(x)

}
= f̂(ω) =

∫
K

f(x)χω(x) dx.

Note that

f̂(ω) =

∫
K

f(x)χω(x)dx =

∫
K

f(x)χ(−ωx) dx.

Definition 2.1. For k ∈ N0, the translation operator Tu(k) : L2(K) → L2(K) is
defined by

Tu(k)ψ(·) = ψ (· − u(k))
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and the dilation operator Dψ(·) : L2(K)→ L2(K) by

Dψ (·) = ψ
(
p−1·

)
.

For s ∈ K, we define the Sobolev space Hs(k) as the space of all tempered distri-
butions f such that

‖f‖2Hs(k) =

∫
K

|f̂(ω)|2
(
1 + ‖ω‖2

)2
dω <∞,

where ‖ · ‖ denotes the Euclidean norm on K. The inner product for f, g ∈ Hs(k) is
given by

〈f, g〉Hs(k) =

∫
K

f̂(ω)ĝ(ω)
(
1 + ‖ω‖2

)2
dω,

It is to be noted that for each f ∈ Hs(k) and g ∈ H−s(k), we have

〈f, g〉Hs(k) =

∫
K

f̂(ω)ĝ(ω)dω.

The spaces Hs(k) and H−s(k) form a pair of dual spaces over local fields of positive
characteristic.

For a distribution f, j ∈ N0, s, k ∈ K, we can write

fj,k = qj/2f
(
p−jω − u(k)

)
and fj,k = q−js/2f

(
p−jω − u(k)

)
Given L ∈ N, let us suppose that ψ0 ∈ Hs(K) be a tempered distribution and
Ψ = {ψ1, · · · , ψL} ⊂ Hs(K) be a finite set of tempered distributions. We denote
the homogeneous wavelet system Xs(Ψ) and the nonhomogeneous wavelet system
Xs(ψ0,Ψ) in Hs(K) respectively by

Xs(Ψ) =
{
ψs`,j,k : j ∈ N0, k ∈ K, 1 ≤ ` ≤ L

}
and

Xs(ψ0,Ψ) = {ψ0,0,k : k ∈ K}
{
ψs`,j,k : j ∈ N0, k ∈ K, 1 ≤ ` ≤ L

}
Ahamd and Shiekh [1] have constructed dual wavelet frames in Sobolev spaces on local
fields. We use the lemmas and results proved by them to obtain the characterization
of NWBFs over local fields of positive characteristic.

3. Characterization of NWBFs over local field

In this section, we provide the characterization of NWBFs in (FHs(Ω), FH−s(Ω)).
Firstly we need following two lemmas.

Lemma 3.1. Given s ∈ K, let {Tu(k)ψ0 : k ∈ N0} ∪ {Tu(k)ψ` : k ∈ N0, 1 ≤ ` ≤ L}
be a Bessel sequence in Hs(K). Then
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∑
k∈N0

|〈g, ψ0,0,k〉|2 +

L∑
`=1

∞∑
j=0

∑
k∈N0

∣∣〈g, ψs`,j,k〉∣∣2
=

∫
K

|ĝ(ω)|2
∣∣∣ψ̂0(ω)

∣∣∣2 +

L∑
`=1

∞∑
j=0

m−2js
∣∣∣ψ̂`(p−jω)

∣∣∣2
 dω

+

∫
K

ĝ(ω)
∑
k∈N0

ĝ (ω + u(k))

×

ψ̂0(ω)ψ̂0 (ω + u(k)) +

L∑
`=1

k∑
j=0

m−2jsψ̂`(p
−jω)ψ̂` (ω + u(k))

 (1)

for g ∈ D

Proof. From [1], we have

∑
k∈N0

|〈g, ψ0,0,k〉|2 +

L∑
`=1

∞∑
j=0

∑
k∈N0

∣∣〈g, ψs`,j,k〉∣∣2
=

∫
D

∣∣∣∣∣∑
k∈N0

ĝ (ω + u(k)) ψ̂0 (ω + u(k))

∣∣∣∣∣
2

dω

+

L∑
`=1

∞∑
j=0

mj(d−2s)
∫
D

∣∣∣∣∣∑
k∈N0

ĝ
(
pj(ω + u(k))

)
ψ̂` (ω + u(k))

∣∣∣∣∣
2

dω

=

∫
D

(∑
k∈N0

ψ̂0 (ω + u(k)) ĝ (ω + u(k))

)(∑
k∈N0

ĝ (ω + u(k)) ψ̂0 (ω + u(k))

)
dω

+

L∑
`=1

∞∑
j=0

mj(d−2s)
∫
D

(∑
k∈N0

ψ̂` (ω + u(k)) ĝ (pj(ω + u(k)))

)

×

(∑
k∈N0

ĝ
(
pj(ω + u(k))

)
ψ̂` (ω + u(k))

)

=

∫
D

(∑
k∈N0

ψ̂0 (ω + u(k)) ĝ (ω + u(k))

)
E0(ω)dω

+

L∑
`=1

∞∑
j=0

mj(d−2s)
∫
D

(∑
k∈N0

ψ̂` (ω + u(k)) ĝ (pj(ω + u(k)))

)
E`,jdω

= R1 +R2, (2)

where E0(·) =
∑
k∈N0

ĝ (ω + u(k)) ψ̂0 (ω + u(k)) and

E`,j(·) =
∑
k∈N0

ĝ
(
pj(ω + u(k))

)
ψ̂` (ω + u(k)). Since {Tu(k)ψ0 : k ∈ N0} is a Bessel

sequence in Hs(K) and g ∈ D, it follows that |E0(·)| ≤ [ĝ, ĝ]
1
2
−s(·)[ψ̂0, ψ̂0]

1
2
−s(·) < ∞
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by [1]. Therefore∫
D

∣∣∣∣∣∑
k∈N0

ĝ (ω + u(k)) ψ̂0 (ω + u(k))E0(ω)

∣∣∣∣∣ ≤ ||E0||L∞(D)

∫
D

[ĝ, ĝ]
1
2
−s(ω)[ψ̂0, ψ̂0]

1
2
−s(ω) <∞,

hence by Fubini-Tonelli theorem∫
D

(∑
k∈N0

ψ̂0 (ω + u(k)) ĝ (ω + u(k))

)(∑
k∈N0

ĝ (ω + u(k)) ψ̂0 (ω + u(k))

)
dω

=

∫
D

ψ̂0(ω)ĝ(ω)
∑
k∈N0

ĝ (ω + u(k)) ψ̂0 (ω + u(k))dω

Moreover ∫
K

|ψ̂0(ω)ĝ(ω)|
∑
k∈N0

|ĝ (ω + u(k)) ψ̂0 (ω + u(k))|dω

≤
∫
supp(ĝ)

(∑
k∈N0

|ĝ (ω + u(k)) ψ̂0 (ω + u(k))

)2

dω

≤
∫
supp(ĝ)

[ĝ, ĝ]−s(ω)[ψ̂0, ψ̂0]s(ω)dω

<∞.
Since [ĝ, ĝ]−s(ω)[ψ̂0, ψ̂0]s(·) is essentially bounded by [1], we have

R1 =

∫
K

ψ̂0(ω)ĝ(ω)
∑
k∈N0

ĝ (ω + u(k)) ψ̂0 (ω + u(k))dω

=

∫
K

|ψ̂0(ω)|2|ĝ(ω)|2dω

+

∫
K

ψ̂0(ω)g(ω)
∑
k∈N0

ĝ (ω + u(k)) ψ̂0 (ω + u(k))dω (3)

In order to complete the proof, we need to calculate R2. Let us define g̃ by ˆ̃g(·) =
ĝ((p)j ·). Then as g ∈ D and [1], we have

[ĝ((p)j ·), ĝ((p)j ·)](·) ≤ C
Thus

|Ei,j(·)| ≤ [ĝ((p)j ·), ĝ((p)j ·)]
1
2
−s(·)[ψ̂`, ψ̂`]

1
2
s <∞.

Hence

R2 =

L∑
`=1

∑
j = 0∞mj(d−2s)

∫
K

ψ̂`(ω)g(pjω)
∑
k∈N0

ĝ
(
pj(ω + u(k))

)
ψ̂` (ω + u(k))dω

Taking A a bounded set in K such that supp(ĝ) ⊂ A. So by [1], we get

A ∩ (A+ pju(k)) = ∅ for (j, k) /∈ A1 ×A2 with k 6= 0,

where A1 ⊂ N0 and A2 ⊂ N0 \ {0} are two finite sets. Therefore

R2 =

L∑
`=1

∑
j∈A1

mj(d−u(s))
∫
K

ψ̂`(ω)g(pjω)
∑
k∈A2

ĝ
(
pj(ω + u(k))

)
ψ̂` (ω + u(k))dω
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Denote S =
⋃
k∈A2∩{0}(

⋃
j∈A1

(
pjA+ u(k)

)
). Therefore, for each (j, k) ∈ A1 × A2,

we have ∫
K

∣∣∣ψ̂`(ω)g(pjω)ĝ
(
pj(ω + u(k))

)
ψ̂` (ω + u(k))

∣∣∣ dω
≤ ||ĝ||2L∞(K)

∫
p−jA

|ψ̂`(ω)ψ̂`(ω + u(k))|dω

≤ ||ĝ||2L∞(K)

(∫
p−jA

|ψ̂`(ω)|2dω
) 1

2
(∫

p−jA

|ψ̂`(ω + u(k))|2
) 1

2

dω

≤ ||ĝ||2L∞(K)

∫
S

|ψ̂`(ω)|2dω

Note that 1 ≤ (maxω∈A(1 + |ω|2)−s)(1 + |ω|2)s for ω ∈ A. Thus∫
K

∣∣∣ψ̂`(ω)g(pjω)ĝ
(
pj(ω + u(k))

)
ψ̂` (ω + u(k))

∣∣∣ dω
≤
(

max
ω∈A

(1 + |ω|2)−s
)
||ĝ||2L∞(K)

∫
A

|ψ̂`(ω)|2(1 + |ω|2)sdω

≤
(

max
ω∈A

(1 + |ω|2)−s
)
||ĝ||2L∞(K)||ψ`||

2
Hs(K)

<∞

On combining the formula given above, we get

R2 =

∫
K

L∑
`=1

∞∑
j=0

mj(d−u(s))|ψ̂`(ω)|2|ĝ(pjω)|2dω

+

∫
K

L∑
`=1

∞∑
j=0

mj(d−u(s))ĝ(pjω)ψ̂`(ω)
∑
k∈N0

ĝ
(
pj(ω + u(k))

)
ψ̂` (ω + u(k))dω

=

∫
K

L∑
`=1

∞∑
j=0

m−u(js)|ψ̂`(p−jω)|2|ĝ(ω)|2dω

+

∫
K

L∑
`=1

∞∑
j=0

m−u(js)ĝ(ω)ψ̂`(p
−jω)

∑
k∈N0

ĝ
(
ω + p−ju(k))

)
ψ̂` (p−jω + u(k))dω

=

∫
K

L∑
`=1

∞∑
j=0

m−u(js)|ψ̂`(p−jω)|2|ĝ(ω)|2dω

+

∫
K

ĝ(ω)
∑
k∈N0

ĝ (ω + u(k))

L∑
`=1

κ(k)∑
j=0

m−u(js)ψ̂`(p
−jω)ψ̂` (p−jω + u(k))dω (4)

using the definition of κ(k). Hence using (2), (3) and (4), we get (1). This completes
the proof of the lemma.
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Lemma 3.2. Given s ∈ K, let Xs(ψ0; Ψ) and X−s(ψ̃0; Ψ̃) be a Bessel sequences in
Hs(K) and H−s(K), respectively. Then for all f, g ∈ D, we have

∑
k∈N0

〈f, ψ̃0,0,k〉〈ψ0,0,k, g〉+

L∑
`=1

∞∑
j=0

∑
k∈N0

〈f, ψ̃−s`,j,k〉〈ψ
s
`,j,k, g〉

=

∫
K

f̂(ω)ĝ(ω)

ψ̂0(ω)
ˆ̃
ψ0(ω) +

L∑
`=1

∞∑
j=0

ψ̂`(p
−jω)

ˆ̃
ψ`(p−jω)

 dω

+

∫
K

ĝ(ω)
∑
k∈N0

f̂(ω + u(k))

×

ψ̂0(ω)
ˆ̃
ψ0(ω + u(k)) +

L∑
`=1

κ(k)∑
j=0

ψ̂`(p
−jω)

ˆ̃
ψ`(p−j(ω + u(k))

 dω (5)

Proof. As Xs(ψ0; Ψ) and X−s(ψ̃0; Ψ̃) are Bessel sequences in Hs(K) and H−s(K),
respectively, the expression in (5) is meaningful. Proceeding in a similar fashion as in
Lemma 3.1, we have

∑
k∈N0

〈f, ψ̃0,0,k〉〈ψ0,0,k, g〉+

L∑
`=1

∞∑
j=0

∑
k∈N0

〈f, ψ̃−s`,j,k〉〈ψ
s
`,j,k, g〉

=

∫
K

ψ̂0(ω)ĝ(ω)
∑
k∈N0

f̂(ω + u(k))
ˆ̃
ψ0(ω + u(k))dω

+

L∑
`=1

∞∑
j=0

qj
∫
K

ψ̂`(ω)ĝ(pjω)
∑
k∈N0

f̂(pj(ω + u(k)))
ˆ̃
ψ`(ω + u(k))dω

= I1 + I2. (6)

Note that

|ψ̂0(·)ĝ(·)|
∑
k∈N0

|f̂(·+ u(k))
ˆ̃
ψ0(·+ u(k))| ≤ [f̂ , f̂ ]

1
2
s (·)[ ˆ̃

ψ0, ψ̃0]
1
2
−s(·)[ĝ, ĝ]

1
2
−s(·)[ψ̂0, ψ0]

1
2
s (·),

is bounded due to Lemma 2.2. Hence∫
K

|ψ̂0(ω)ĝ(ω)|
∑
k∈N0

|f̂(ω + u(k))
ˆ̃
ψ0(ω + u(k))|dω

≤
∫
supp(ĝ)

|ψ̂0(ω)ĝ(ω)|
∑
k∈N0

|f̂(ω + u(k))
ˆ̃
ψ0(ω + u(k))|dω <∞

Therefore

I1 =

∫
K

f̂(ω)ĝ(ω)ψ̂0(ω)
ˆ̃
ψ0(ω) +

∫
K

ψ̂0(ω)ĝ(ω)
∑
k∈N0

f̂(ω + u(k))
ˆ̃
ψ0(ω + u(k))dω. (7)
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To complete the proof of the lemma, we need to discuss I2. Let’s break it into two
parts, for k = 0 and k 6= 0. Hence by Cauchy-Schwartz inequality and [1], we have

L∑
`=1

∞∑
j=0

|ψ̂`(p−jω)
ˆ̃
ψ`(p−jω)|

≤

 L∑
`=1

∞∑
j=0

m−2js|ψ̂`(p−jω)|2
 1

2
 L∑
`=1

∞∑
j=0

m2js| ˆ̃ψ`(p−jω)|2
 1

2

≤ B1B2. (8)

Therefore ∫
K

|f̂(ω)ĝ(ω)|
L∑
`=1

∞∑
j=0

|ψ̂`(p−jω)
ˆ̃
ψ`(p−jω)|

≤ B1B2

∣∣∣supp(f̂) ∩ supp(ĝ)
∣∣∣ ‖f̂‖L∞(K)‖ĝ‖L∞(K)

<∞
Fix a compact set A ∈ K such that supp(f̂) ∩ supp(ĝ) ⊂ A. Using [1], it follows that

A ∩ (A+ pju(k)) = ∅ for (j, k) /∈ A1 ×A2 with k 6= 0 (9)

where A1 ⊂ N0 and A2 ⊂ N0 \ {0} are two finite sets. With the same argument as
applied to R2, we have∫

K

|ĝ(pjω)f̂(pj(ω + u(k)))ψ̂`(ω)
ˆ̃
ψ`(ω + u(k))|dω

≤ ‖ĝ‖L∞(K)‖f̂‖L∞(K)

(∫
p−jA

|ψ̂`(ω)|2
) 1

2
(∫

p−jA

| ˆ̃ψ`(ω + u(k))|2
) 1

2

≤ ‖ĝ‖L∞(K)‖f̂‖L∞(K)

(∫
T

|ψ̂`(ω)|2
) 1

2
(∫

T

| ˆ̃ψ`(ω + u(k))|2
) 1

2

≤ ‖ĝ‖L∞(K)‖f̂‖L∞(K)

(
max
ω∈T

(1 + |ω|2)

)−s/2
×
(

max
ω∈T

(1 + |ω|2)

)s/2
‖ψ`‖Hs(K)‖ψ̃`‖H−s(K)

<∞ (10)

for (j, k) ∈ A1 ×A2, where T =
⋃
k∈A2∪{0}(

⋃
j∈A1

p−jA+ u(k)). Using (8) and (10),
we get

I2 =

L∑
`=1

∞∑
j=0

∫
K

ĝ(ω)ψ̂`(p
−jω)

∑
k∈N0

f̂(ω + pju(k))
ˆ̃
ψ`(p−j(ω + u(k)))dω

=

∫
K

L∑
`=1

∞∑
j=0

ĝ(ω)ψ̂`(p
−jω)

∑
k∈N0

f̂(ω + pju(k))
ˆ̃
ψ`(p−j(ω + u(k)))dω

=

∫
K

ĝ(ω)
∑
k∈N0

f̂(ω + u(k))

L∑
`=1

κ(k)∑
j=0

×ψ̂`(p−jω)
ˆ̃
ψ`(p−j(ω + u(k)))dω
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On combining (6), (7) and (11), we get (5), which completes the proof of the lemma.
We now state the theorem which will characterize NWBFs in (FHs(Ω), FH−s(Ω)).

We are working on the proof and will be provided in the subsequent articles

Theorem 3.3. Given s ∈ K, let FHs(Ω) and FH−s(Ω) be reducing subspaces of

Hs(K) and H−s(K), respectively, ψ0 ∈ Hs(K), ψ̃0 ∈ H−s(K) and Ψ ∈ Hs(K), Ψ̃ ∈
H−s(K). Suppose that Xs(ψ0,Ψ) and X−s(ψ̃0, Ψ̃) are Bessel sequences in FHs(Ω)

and FH−s(Ω), respectively. Then Xs(ψ0,Ψ);X−s(ψ̃0, Ψ̃) is an NWBFs in
(FHs(Ω), FH−s(Ω)) if and only if

ψ̂0(·) ˆ̃
ψ0(·+ u(k))

L∑
`=1

κ(k)∑
j=0

ψ̂`(p
−j ·) ˆ̃

ψ`(p−j(·+ u(k))) = δ0,k a.e. on Ω. (11)
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