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Some fixed point results with integral type (H,ψ)F -contraction
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Abstract. Recently, Jleli et. al. [9] introduced by the concept of a (H,φ)-fixed point, and
they establish some fixed point results for various classes of operators defined on a metric

space (M,d). This study is devoted to investigate the problem whether the existence and

uniqueness of integral type (H,ψ)F -contraction mappings on complete metric space. At the
end, we give an illustrative example.
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1. Introduction and preliminaries

Fixed point theory plays a significative role in applications to different fields of math-
ematics. Survey on fixed points of generalized contraction mappings has been the
basis of potent research attempts in fixed point theory. One of the elementary and
the most widely executed results in metric fixed point theory is Banach contraction
principle due to Banach in 1922 [3]. Banach’s Contraction Principle says that, when-
ever (M,d) is complete, then any contraction selfmap of M has a unique fixed point.
This classical fixed point theorem has been generalized by many researchers ın various
vays. One of them is integral type contraction. So, the study of fixed point theorems
of mappings satisfying contractive conditions of integral type has been a very inter-
esting field of research activity after the establishment of a theorem by A. Branciari
[4]. Afterwards, many authors obtained some fixed point theorems for several classes
of contractive mappings of integral type; see [2, 6, 7, 8, 10, 11].

In 2012, Wardowski [17] originated the idea of F−contractions and produced a fixed
point theorem involving such mappings. On the other, Jleli et. al. [9] introduced by
the concept of a (H,φ)-fixed point, and they establish some fixed point results for
various classes of operators defined on a metric space (M,d). Following this direction,
Vetro [15] and Acar [1] proved some fixed point results using (H,φ)-contraction with
F -contraction.

This study is devoted to investigate the problem whether the existence and unique-
ness of integral type (H,ψ)F -contraction mappings on complete metric space. To do
this, we first recall some fundamental definitions and notations of corresponding map-
pings and space.

Let F be the family of all functions F : R+ = [0,∞)→ R satisfying the following
conditions:
(F1) F is nondecreasing;
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(F2) for every sequence {αn} of positive numbers limn→+∞ αn = 0 if and only if
limn→+∞ F (αn) = −∞;

(F3) there exists k ∈ ( 0, 1) such that limα→0+ α
kF (α) = 0. ([17])

Definition 1.1 ([17]). Let (M,d) be a metric space and f be a self-mapping on M .
Then f is an F -contraction, if there exists F ∈ F and τ > 0 such that

a, b ∈M, d(fa, fb) > 0⇒ τ + F (d(fa, fb)) ≤ F (d(a, b)). (1)

Also, we can say that every F -contraction f is a contractive mapping,so F -contraction
is a continuous mapping .

Theorem 1.1 ([17]). Let (M,d) be a complete metric space (C.M.S). If f is an
F -contraction, then f has a unique fixed point in M.

In [9], the authors introduced a family H of functions H : [0,+∞[3→ [0,+∞[
satisfying the following conditions:

(H1) max{α, β} ≤ H(α, β, γ) for all α, β, γ ∈ [0,+∞[;
(H2) H(0, 0, 0) = 0;
(H3) H is continuous.

In the following, you can see some examples from the family of H.
(i) H(α, β, γ) = α+ β + γ for all α, β, γ ∈ [0,+∞[;

(ii) H(α, β, γ) = max{α, β}+ γ for all α, β, γ ∈ [0,+∞[;
(iii) H(α, β, γ) = α+ β + αβ + γ for all α, β, γ ∈ [0,+∞[.

Then the authors of [9] gave the following notion of (H,φ)-contraction.

Definition 1.2 ([9]). Let (M,d) be a metric space, φ : M → [0,+∞[ be a given
function and H ∈ H. Then, f : M → M is called a (H,φ)-contraction with respect
to the metric d if and only if

H(d(fa, fb), φ(fa), φ(fb)) ≤ kH(d(a, b), φ(a), φ(b)) for all a, b ∈M,

for some constant k ∈ ]0, 1[.

Now, we set

Zφ := {a ∈M : φ(a) = 0},
Ff := {a ∈M : fa = a}.

Theorem 1.2 ([9]). Let (M,d) be a complete metric space, φ : M → [0,+∞[ is a
function and H ∈ H. Assume that the following conditions hold:

(A1) φ is lower semi-continuous(l.s.c.);
(A2) f : M →M is a (H,φ)-contraction with respect to the metric d.

Then
(i) Ff ⊂ Zφ;

(ii) f is a φ-Picard operator;
(iii) for all a ∈M and for all n ∈ N we have

d(fna, ς) ≤ kn

1− k
H(d(fa, a), φ(fa), φ(a)),

where {ς} = Ff ∩ Zφ = Ff .
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Recently, Vetro ([15]) generalized Theorem1.2 by combining H-functions with F -
contraction and show that every F -contraction is an F -H-contraction such that H ∈
H defined by H(a, b, c) = a + b + c for all a, b, c ∈ [0,+∞[, and φ : M → [0,+∞[
defined by φ(a) = 0 for all a ∈M . After Vetro [15], Acar [1] introduced the concept of
rational type F -H-contraction and proved that on a complete metric space, rational
type F -H-contraction has a unique fixed point.

2. Main results

In this section, firstly, we defined integral type (H,ψ)F -contraction and then give
some results for this type mapping. At the ent, we give an illustrative example.

Definition 2.1. Let (M,d) be a metric space and f : M → M be a mapping. We
say that f is an integral type (H,ψ)F -contraction if there exist F ∈ F , H ∈ H, τ > 0
and ψ : M → [0,+∞[ such that

τ + F

(∫ H(d(fa,fb),ψ(fa),ψ(fb))

0

ϕ(t)dt

)
≤ F

(∫ H(d(a,b),ψ(a),ψ(b))

0

ϕ(t)dt

)
(2)

for all a, b ∈M with

H(d(fa, fb), ψ(fa), ψ(fb)) > 0

where ϕ : R+ → R+ is Lebesque integrable mapping which is summable, nonnegative

and
ε∫
0

ϕ(t)dt > 0 for each ε > 0.

Lemma 2.1. Let (M,d) be a metric space and f be an integral type (H,ψ)F -contraction.
If {an} is a Picard sequence starting at a0 ∈M , then

lim
n→+∞

H(d(an−1, an), ψ(an−1), ψ(an)) = 0,

and hence

lim
n→+∞

d(an−1, an) = 0 and lim
n→+∞

ψ(an) = 0.

Proof. By replacing the contradiction in [15, (3.2)] with contradiction (2) and follow-
ing the proof of [15, Lemma 3.1], we immediately have the desired result. �

Theorem 2.2. Let (M,d) be a complete metric space and f be an integral type
(H,ψ)F -contraction with a lower semicontinuous function ψ : M → [0,+∞[ such
that (2) holds. Then f has a unique fixed point ς such that ϕ(ς) = 0.

Proof. First, let’s show the uniqueness of the fixed point. On the contrary, assume
that the fixed point is not unique and ς, w ∈M such that ς = fς, w = fw and ς 6= w.
Using (2), we obtain

F

(∫ H(d(ς,w),ψ(ς),ψ(w))

0

ϕ(t)dt

)
= F

(∫ H(d(fς,fw),ψ(fς),ψ(fw))

0

ϕ(t)dt

)

≤ F

(∫ H(d(ς,w),ψ(ς),ψ(w))

0

ϕ(t)dt

)
− τ < F

(∫ H(d(ς,w),ψ(ς),ψ(w))

0

ϕ(t)dt

)
.

So, this is a contradiction and then w = ς. Hence, the fixed point is unique.
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Let us now show the existence of the fixed point. Create the {an} sequence starting
at a0 ∈M . If ak−1 = ak for some k ∈ N, then ς = ak−1 = ak = fak−1 = fς, that is,
ς is a fixed point of f such that ϕ(ς) = 0. So, by Lemma 2.1 and the property (H1) of
the function H, we have ϕ(ς) = 0. In that case, we assume that an−1 6= an for every
n ∈ N.

Now, we prove that {an} is a Cauchy sequence. By Lemma 2.1, we say that

0 < hn−1 = H(d(an−1, an), ϕ(an−1), ϕ(an))→ 0 as n→ +∞.

The property (F3) of the function F ensures that there exists k ∈ (0, 1) such that
hknF (hn)→ 0 as n→ +∞. Using (2) with a = an−1 and b = an, we get

F

(∫ H(d(an,an+1),ψ(an),ψ(an+1)

0

ϕ(t)dt

)
≤ F

(∫ H(d(an−1,an),ψ(an−1),ψ(an))

0

ϕ(t)dt

)
− τ

...

≤ F

(∫ H(d(a0,a1),ψ(a0),ψ(a1))

0

ϕ(t)dt

)
− nτ

(3)

for all n ∈ N. Denote

δn =

∫ H(d(an,an+1),ψ(an),ψ(an+1))

0

ϕ(t)dt

for n = 0, 1, 2, · · · . Then δn > 0 for all n and bu using (3)

F (δn) ≤ F (δn−1)− τ ≤ · · · ≤ F (δ0)− nτ for all n ∈ N.

So, we get

0 = lim
n→+∞

hknF (δn) ≤ lim
n→+∞

hkn(F (δ0)− nτ) ≤ 0,

and then,

lim
n→+∞

δknn = 0.

So,
∑+∞
n=1 δn is convergent series. From (H1),

∑+∞
n=1 d(an, an+1) is convergent series.

Hence {an} is a Cauchy sequence. Then there exists ς ∈M such that

lim
n→+∞

an = ς.

Because (M,d) is complete. By (2), we have

0 ≤ ψ(ς) ≤ lim inf
n→+∞

ψ(an) = 0,

that is, ψ(ς) = 0. Now, show that ς is a fixed point of f . Clearly, ς is a fixed point of
f if there exists a subsequence {ank

} of {an} such that ank
= ς or fank

= fς, for all
k ∈ N. For the rest, we can suppose that an 6= ς and fan 6= fς for all n ∈ N. Then,
taking a = an and b = ς and using (2), we obtain that

τ + F

(∫ H(d(fan,fς),ψ(fan),ψ(fς))

0

ϕ(t)dt

)
≤ F

(∫ H(d(an,ς),ψ(an),ψ(ς))

0

ϕ(t)dt

)
.
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Since τ > 0, this inequality leads to for all n ∈ N∫ H(d(fan,fς),ψ(fan),ψ(fς))

0

ϕ(t)dt) <

∫ H(d(an,ς),ψ(an),ψ(ς))

0

ϕ(t)dt,

and so

H(d(fan, fς), ψ(fan), ψ(fς)) < H(d(an, ς), ψ(an), ψ(ς))

for all n ∈ N. Then, we obtain

d(ς, fς) ≤ d(ς, an+1) + d(fan, fς)

≤ d(ς, an+1) +H(d(fan, fς), ψ(fan), ψ(fς))

< d(ς, an+1) +H(d(an, ς), ψ(an), ψ(ς)) (4)

for all n ∈ N. Once and for all, letting n → +∞ in 4 and using continuity of H in
(0, 0, 0), we get d(ς, fς) ≤ H(0, 0, 0) = 0, that is, ς = fς. �

Example 2.1. Let M = [0, 1] endowed with the metric d(a, b) = |a− b| for all
a, b ∈M. Consider the mapping f : M →M defined by

f(a) =

{
a
2 ; a ∈ [0, 1)

3
4 ; a = 1

.

Then f is an integral type (H,ψ)-contraction with respect to the function F (a) = ln a,
H(a, β, γ) = α+ β + γ, ψ(a) = a and ϕ(t) = t.Indeed,

Case 1. For 0 < a ≤ b < 1 or 0 = a < b < 1 , we have

F

(∫ H(d(fa,fb),ψ(fa),ψ(fb))

0

ϕ(t)dt

)
= F

(∫ H(d(0, b2 ),ψ(0),ψ(
b
2 ))

0

tdt

)

= F

(∫ b

0

tdt

)
= ln

(
b2

2

)
and

F

(∫ H(d(a,b),ψ(a),ψ(b))

0

ϕ(t)dt

)
= F

(∫ H(d(0,b),ψ(0),ψ(b))

0

tdt

)

= F

(∫ 2b

0

tdt

)
= ln

(
2b2
)
.

Case 2. For a ∈ [0, 1] and b = 1, we have

F

(∫ H(d(fa,fb),ψ(fa),ψ(fb))

0

ϕ(t)dt

)
= F

(∫ 3
2

0

tdt

)
= ln

(
9

8

)
and

F

(∫ H(d(a,b),ψ(a),ψ(b))

0

ϕ(t)dt

)
= F

(∫ 2

0

tdt

)
= ln (2) .

This shows that f is integral type (H,ψ)F -contraction with 0 < τ < ln 16
9 therefore,

all conditions of theorem are satisfied and so f has a fixed point in M .
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Corollary 2.3. Let (M,d) be a complete metric space and let f be an integral type
(H,ψ)-contraction with a lower semicontinuous function ψ : M → [0,+∞[ such that
(2) holds, that is∫ H(d(fa,fb),ψ(fa),ψ(fb))

0

ϕ(t)dt ≤ k

∫ H(d(a,b),ψ(a),ψ(b))

0

ϕ(t)dt, k ∈ (0, 1).

Then f has a unique fixed point ς such that ψ(ς) = 0.

Corollary 2.4. Let (M,d) be a complete metric space and let f be an (H,ψ)-
contraction with a lower semicontinuous function ψ : M → [0,+∞[ such that (2)
holds, that is

H(d(fa, fb), ψ(fa), ψ(fb)) ≤ kH(d(a, b), ψ(a), ψ(b)), k ∈ (0, 1).

Then f has a unique fixed point ς such that ψ(ς) = 0.
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