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Equivalence of ”generalized” solutions for nonlinear parabolic
equations with variable exponents and diffuse measure data

Mohammed Abdellaoui and Hicham Redwane

Abstract. We prove the equivalence of suitably defined weak solutions of a nonhomogeneous
initial-boundary value problem for a class of nonlinear parabolic equations. We also develop

the notion of both ”renormalized” and ”entropy” solutions with respect to the ”generalized”

p(·)-capacity, initial datum, and diffuse measure data (which does not charge the set of null
p(·)-capacity). Conditions, under which ”generalized weak” solutions of the nonhomogeneous

problem are in fact well-defined, are also given.

Résumé. Equivalence entre les solutions ”généralisées” des équations non-linéaires

paraboliques à exposant variable et des données measures diffuses. Nous montrons

l’équivalence entre les solutions faibles d’un problème non-homogène aux limites d’une classe
d’équations non-linéaires paraboliques. Nous dévellopons aussi la notion des solutions ”renor-

malisées” et ”entropiques” par rapport à la p(·)-capacité ”généralisée”, la donnée initiale et

la mesure diffuse (qui ne charge pas les ensembles de capacité nulle). Les conditions, sous
lesquelles les solutions ”faibles généralisées” du problème non-homogène sont définies, sont

aussi étudiées.
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1. Introduction & historical context

This paper is the second one of a series where we address ”generalized weak” solutions
of the initial boundary value problem whose model example is{

ut − div(|∇u|p(x)−2∇u) = µ in (0, T )× Ω,

u(t, x) = 0 on (0, T )× ∂Ω, u(0, x) = u0(x) in Ω,
(1)

where Ω is a bounded open domain of RN with lipshitz boundary ∂Ω, N ≥ 2, T > 0
is any positive constant, p(x) : Ω 7→ [1,+∞) is a continuous, real-valued function
(the variable exponent) with p− = minx∈Ω p(x), 1 < p− < ∞, u0 ∈ L1(Ω) is an

integrable function, u 7→ −div(|∇u|p(x)−2∇u) is the p(x)-Laplace operator, and µ is
a measure with bounded variation over Q = (0, T ) × Ω which does not charge sets
of zero p(·)-capacity in accordance with Definition 2.6 (we suppose that µ depends
on time variable t). The content of this paper is an extension of the joint result [2]
with, respectively, S. Ouaro1 & U. Traoré1, where we study the existence of general-
ized solutions of (1) for every diffuse measure, and in particular the link between the

Received January 15, 2022. Accepted August 9, 2022.
1LAME, UFR, University Ouaga 1 Pr JKZ, Ouagadougou, Burkina Faso

60



EQUIVALENCE OF GENERALIZED SOLUTIONS FOR PARABOLIC EQUATIONS 61

parabolic p(·)-capacity and the absolutely continuous measures which is needed to
have existence of solutions, and were we extend the theory of capacity to generalized
Sobolev spaces in order to study some nonlinear parabolic equations (we define and
give some properties of renormalized solutions and, as a consequence, we show the
existence and uniqueness of solutions). The used main technical tools include esti-
mates, compactness and convergence results. More precisely, we study the nonlinear
parabolic problem

(PQµ )

{
ut − div(a(t, x, u,∇u)) = µ in Q = (0, T )× Ω

u = u0 on {0} × Ω u = 0 on (0, T )× ∂Ω,

based on the operator ut + A(u), where A(u) = −div(a(t, x, u,∇u)) is a Leray-Lions
operator. Since Kovacik & Rákosńık systemically studied the variable Lebesgue and
Sobolev spaces in [63], the interest in variable exponent spaces is increasing from year
to year. Indeed, many variable exponent spaces have appeared such as ”Bessel po-
tential” spaces with variable exponent, ”Morrey” and ”Hardy” spaces with variable
exponent. Variable exponent spaces have many applications in ”electrorheological”
fluid theory [86], in differential equations [54], in image restoration [30, 55, 67], and
in variable order pseudo-differential equations [87]. The study of PDEs with measure
data arouses much interest with the development of the concept of the thermal capac-
ity and the classical potential theory, we refer the readers to [38, 66, 89]. Capacities
defined in terms of function-spaces can be regarded as a very important class of par-
abolic capacities. There are already numerous results for such kind of problems, see
[7, 40, 58, 75, 93], where the functional spaces to deal with these problems are the
constant/exponent Lebesgue/Sobolev spaces.

The concept of parabolic capacities of generalized Sobolev spaces with variable
exponent was studied by [74] in order to deal with existence of ”generalized” solutions.
The monumental work [86] contains plenty of motivations for studying much kind of
spaces, see also [30, 90, 5, 6], where much of these nonlinear parabolic problems
are non-homogeneous; consequently, they are more complicated than the classical
parabolic case. The main motivation for using the notion of capacity is that it gives
optimal results for boundary regularity, then it is reasonable to work with ”entropy”
solutions or ”renormalized” solutions, which need less regularity than the usual weak
solutions; we recall that the notion of renormalized solution was introduced in [24] by
DiPerna & Lions in their studies on Boltzmann equations. This notion was adapted,
by Boccardo, Diaz, Giachetti & Murat [12], and Lions & Murat [64], to study some
nonlinear elliptic problems with Dirichlet boundary conditions; later, it was extended
to more general problems of elliptic, parabolic and hyperbolic types, see [24, 77].
At the same time the notion of entropy solution has been proposed by Bénilan &
all, in [8], for nonlinear elliptic problems. This framework was also extended to
related parabolic problems, see [18, 83]. In the two former papers [88, 25], they
have already studied the renormalized and entropy solutions for elliptic problems
with variable exponents and arbitrary L1-data, and recently Zhan & Zhou, see [95],
have established the existence and uniqueness of entropy solution via the difference
and variation methods. In [73], Ouaro & al. have combined the ideas of [94, 95] to
prove the equivalence between entropy and renormalized solutions. Recalling that,
for the study of existence of entropy/renormalized solutions for stationary problems
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with right-hand side measure, the authors use in general the techniques of measure’s
decomposition

In the context of constant exponent, the authors prove, in [18], that every diffuse
measure µ (i.e, a measure which does not charge sets of null p-capacity) belongs to

L1(Ω) +W 1,p′(Ω). A similar approach, in the context of variable exponent, is used in
[71] for elliptic problems where µ is a diffuse measure. Nonlinear parabolic problems
with measure data was studied in the context of constant exponent by many authors;
for example in [13], the authors proved existence of a ”weak” solution by approxi-
mating the measure µ with regular data (for more studies on entropy/renormalized
solutions, see [8, 9, 39, 32, 39, 30]). Note that, the authors, in [74], develop a notion
of parabolic p(·)-capacity based on the operator ut +A(u), where A is a Leray-Lions
operator; they worked with the space

Wp(·) =
{
u ∈ Lp−(0, T ;W

1,p(·)
0 (Ω) ∩ L2(Ω)),∇u ∈ Lp(·)(Q)N ,

ut ∈ L(p−)′(0, T ; (W
1,p(.)
0 (Ω) ∩ L2(Ω))′)

}
,

(2)

in order to obtain a ”representation theorem” for measures that are zero on parabolic
subsets of null capacity (denoted by M0(Q)); precisely, they prove the following
result:

Theorem 1.1. Let µ ∈ M0(Q), then there exists (f, F, g1, g2) with f ∈ L1(Q), F ∈
Lp
′(·)(Q)N , g1 ∈ L(p−)

′

(0, T ;W−1,p′(·)(Ω)) and g2 ∈ Lp−(0, T ;W
1,p(·)
0 (Ω) ∩ L2(Ω))

such that∫
Q

ϕdµ =

∫
Q

fϕdxdt+

∫
Q

F · ∇ϕdxdt+

∫ T

0

〈g1, ϕ〉dt−
∫ T

0

〈ϕt, g2〉dt, (3)

for every ϕ ∈ C∞c ([0, T ]×Ω) (the quadruplet (f, F, g1, g2) is called a ”decomposition”
of µ).

More generally, in this work, we are concerned with the proof of equivalence of
renormalized and entropy solutions, using the well-known results from the theory of
generalized capacities. Motivated by the previous papers, our aim is to prove under
which conditions we obtain the equivalence between the two formulations for evolu-
tion problems with variable exponent and diffuse measure data, see also [84] for some
possible extensions for possibly generalized porous medium equations.

Our paper is organized as follows. In Section 2 we summarize several results we
need about variable exponent spaces and measures of bounded variations, we give the
definitions of renormalized and entropy solutions for problem (PQµ ) and we state our
main result. The Section 3 is devoted to prove the equivalence between both notions
of solutions (the proof is inspired from the nonlinear compactness theory).

Notations. Throughout the paper, we assume that p(x) ∈ C+(Ω) satisfies the log-
Hölder continuity condition (also called as Dini-Lipschitz, weak-Lipschitz or 0-Hölder
conditions): we say that p(·) is log-Hölder continuous if p(·) : Ω 7→ R is a measurable
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function such that

∃C > 0 s.t |p(x)− p(y)| ≤ C

−ln|x− y|
for |x− y| < 1

2
,

1 < ess inf
x∈Ω

p(x) ≤ ess sup
x∈Ω

p(x) < N.
(4)

This condition has emerged as the right one to guarantee regularity of variable expo-
nent Lebesgue spaces, and to obtain several regularity results for Sobolev spaces with

variable exponents (in particular, C∞(Ω) is dense in W 1,p(·)(Ω) and W
1,p(·)
0 (Ω) =

W 1,p(·)(Ω) ∩W 1,1
0 (Ω)). We denote by Tk the truncation function at level k ≥ 0 and

Θk : R→ R+ its primitive function defined by
Tk(r) = min{k,max{r,−k}} =


−k if r ≤ −k,
r if |r| < k,

k if r ≥ k,

Θk(r) =

∫ r

0

Tk(s)ds =

{
r2

2 if |r| ≤ k,
k|r| − k2

2 if |r| ≥ k.

(5)

It is obvious that Θk(r) ≥ 0 and Θk(r) ≤ k|r|. We introduce the space W̃ by

W̃ =
{
u ∈ Lp−(0, T ;W 1,p(.)(Ω)) ∩ L∞(Q),∇u ∈ (Lp(·)(Q))N ;

ut ∈ L(p−)′(0, T ;W−1,p
′
(·)(Ω)) + L1(Q)

}
.

(6)

We also need to define the very weak gradient of a measurable function u (where the

proof follows from [8, Lemma 2.1] due to the fact that W
1,p(·)
0 (Ω) ⊂ W

1,p−
0 (Ω)) as

follows:

Proposition 1.2. For every measurable function u, there exists a unique measurable
function v : Q 7→ RN , which we call the very weak gradient of u and we denote
v = ∇u, such that

∇Tk(u) = vχ|u|<k, almost everywhere (a.e.) in Q and for every k > 0, (7)

where χE denotes the characteristic function of a measurable set E. Moreover, if u
belongs to L1(0, T ;W 1,1

0 (Ω)), then v coincides with the weak gradient of u.

2. Preliminaries

In this section, we first state some elementary results for the generalized Lebesgue
spaces Lp(x)(Ω) and the generalized Lebesgue-Sobolev spaces Wm,p(x)(Ω). The basic
properties of these spaces can be found in [46, 47], we also introduce the notion of
nonlinear parabolic capacity with exponent variable capp(·) and then investigate the
relationships between time-space dependent measures and generalized capacities.

2.1. Variable exponent Lebesgue/Sobolev spaces. We recall some definitions
and basic properties of the generalized Lebesgue-Sobolev spaces Lp(·)(Ω), W 1,p(·)(Ω)

and W
1,p(·)
0 (Ω) where Ω is an open subset of RN . We refer to Fan & Zhao [46, 47] for

further properties on variable exponent spaces. The same spaces appear also in the
study of variational integrals with non-standard growth, see [4, 31, 91]. Another area
where these spaces have found applications is the study of electrorheological fluids,
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see the papers by Diening alone [35] and with Rüžička [42] on the role of variable
exponent in this context. To this aim, we start with a brief overview of the state of the
art concerning elliptic spaces with variable exponent and parabolic spaces modeled
upon them. First of all, let us introduce the following notations

p− := ess inf
x∈Ω

p(x) and p+ := ess sup
x∈Ω

p(x),

and given a bounded measurable function p(·) : Ω 7→ R, the critical Sobolev exponent
and the conjugate of p(·) are, respectively, defined by

p?(·) =
Np(·)
N − p(·)

and p′(·) =
p(·)

p(·)− 1
.

We define the Lebesgue spaces with variable exponent Lp(·)(Ω) as the set of all mea-
surable functions u : Ω 7→ R for which the convex modular ρp(·)(Ω) =

∫
Ω
|u|p(x)dx is

finite, i.e.,

Lp(·)(Ω) =

{
u : Ω 7→ R, u is measurable with

∫
Ω

|u(x)|p(x)dx <∞
}
.

If the exponent is bounded, i.e., if p+ <∞, we define a norm in Lp(·)(Ω), called ”the
Luxembourg norm”, by the formula

‖u‖Lp(·)(Ω) := inf

{
λ > 0, ρp(·)

(u
λ

)
dx =

∫
Ω

∣∣u(x)

λ

∣∣p(x)
dx ≤ 1

}
.

The following inequality will be used later

min
{
‖u‖p−

Lp(·)(Ω)
, ‖u‖p+

Lp(·)(Ω)

}
≤
∫

Ω

|u(x)|p(x)dx ≤ max
{
‖u‖p−

Lp(·)(Ω)
, ‖u‖p+

Lp(·)(Ω)

}
.

(8)
The space (Lp(·)(Ω), ‖ · ‖Lp(·)) is a separable Banach space. Moreover, if p− > 1,
then Lp(·)(Ω) is uniformly convex, hence reflexive, and its dual space is isomorphic to

Lp
′(·)(Ω), where 1

p(x) + 1
p′(x) = 1. Finally, we have the following Hölder’s inequality

∫
Ω

|uv|dx ≤
(

1

p−
+

1

p′−

)
‖u‖Lp(·)(Ω)‖v‖Lp′(·)(Ω), ∀u ∈ L

p(·)(Ω), ∀v ∈ Lp
′(·)(Ω) (9)

holds true. One central property on Lp(·)(Ω) is that the norm and the modular
topology coincide, i.e., ρp(·)(un)→ 0 if and only if ‖un‖Lp(·) → 0.
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t

ϕ(t) = tp(x)−2t

Figure 1. The function tp(x)−2t for p(x) = 2, 4, 6

We also define the variable Sobolev space by

W 1,p(·)(Ω) :=
{
u ∈ Lp(·)(Ω), |∇u| ∈ Lp(·)(Ω)

}
,

which is a Banach space equipped with one of the following equivalent norms
‖u‖W 1,p(·)(Ω) = ‖u‖Lp(·)(Ω) + ‖∇u‖Lp(·)(Ω),

‖u‖W 1,p(·)(Ω) = inf

{
λ > 0,

∫
Ω

(∣∣∣∣∇u(x)

λ

∣∣∣∣p(x)

+

∣∣∣∣u(x)

λ

∣∣∣∣p(x)
)
dx ≤ 1

}
.

By W
1,p(·)
0 (Ω), we denote the closure of C∞0 (Ω) in W 1,p(·)(Ω), that is,

W
1,p(·)
0 (Ω) = C∞0 (Ω)

W 1,p(·)(Ω)
.

Assuming p− > 1, the spaces W 1,p(·)(Ω) and W
1,p(·)
0 (Ω) are separable and reflexive

Banach spaces and the space W−1,p′(·)(Ω) denotes the dual of W
1,p(·)
0 (Ω). For u ∈

W
1,p(·)
0 (Ω) with p ∈ C(Ω) and p− ≥ 1, the Poincaré inequality holds, see [53], for some

constant C which depends on Ω and the function p(·). The proofs of the following
Propositions can be found, respectively, in [46, 63, 45] (see also [34] for more details).

Proposition 2.1 (The p(·)-Poincaré inequality). Let Ω be a bounded open set and
let p(·) : Ω 7→ [1,∞) satisfy (4). Then there exists a constant C, depending on p(·)
and Ω, such that the inequality

‖u‖Lp(·)(Ω) ≤ C‖∇u‖Lp(·)(Ω), (10)

holds for every u ∈W 1,p(·)
0 (Ω).

Note that the following inequality
∫

Ω
|u|p(x)dx ≤ C

∫
Ω
|∇u|p(x)dx does not hold in

general, see [46].
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Proposition 2.2 (1st Sobolev embedding). Let Ω be a bounded open set, with a Lip-
schitz boundary, and let p(·) : Ω 7→ [1,∞) satisfy (4). Then we have the following
continuous embedding

W 1,p(·)(Ω) ↪→
cont

Lp
∗(·)(Ω) with p∗(·) =

Np(·)
N − p(·)

.

Proposition 2.3 (2nd Sobolev embedding). For p(·) ∈ C(Ω) with 1 < p− ≤ p(x) ≤
p+ < N , the Sobolev embedding

W 1,p(·)(Ω) ↪→ Lr(·)(Ω), (11)

hold, for every measurable function r(·) : Ω 7→ [1,+∞) such that

ess-inf
x∈Ω

(
Np(x)

N − p(x)
− r(x)

)
> 0.

For Q := (0, T )×Ω with T > 0 and by extending the variable exponent p(·) : Ω 7→
[1,+∞) to Q = [0, T ]×Ω (by setting p(t, x) := p(x) for all (t, x) ∈ Q), one can define
the generalized Lebesgue space (which, of course, shares the same type of properties
as Lp(·)(Ω)) by

Lp(·)(Q) =

{
u : Q 7→ R measurable with

∫
Q

|u(t, x)|p(x) dxdt <∞
}
,

endowed with the norm

‖u‖Lp(·)(Q) = inf

{
λ > 0,

∫ T

0

∫
Ω

∣∣∣∣u(t, x)

λ

∣∣∣∣p(x)

dxdt ≤ 1

}
.

Moreover, if p(·) is log-Hölder continuous in Ω, so it is in Q. Indeed, if p(·) satisfies the
log-Hölder continuity condition in Ω, according to (4), there exists a non-decreasing
function ω : (0,∞) 7→ R such that lim sup

t→0+

ω(t)ln( 1
t ) < +∞ and

|p(t, x)− p(s, y)| = |p(x)− p(y)| < ω(|x− y|) ≤ ω(|(t, x)− (s, y)|),

holds for all ((t, x), (s, y)) ∈ Q×Q such that |(t, x)−(s, y)| < 1. Now, If V is a Banach
space, we will also use the standard notations for Bochner spaces, that is to say, if
1 ≤ q ≤ ∞ and T > 0 then Lq(0, T ;V ) denotes the space of strongly measurable
functions u : (0, T ) 7→ V such that t 7→ ‖u(t)‖V ∈ Lq(0, T ). Moreover, C([0, T ];V )
denotes the space of continuous functions u : [0, T ] 7→ V endowed with the norm
‖u‖C([0,T ];V = max

t∈[0,T ]
‖u(t)‖V . The following interesting density result will be used in

the study our parabolic problem.

Proposition 2.4. Let V = Lp(Ω) (or V = W 1,p(Ω)) and 1 ≤ p < ∞. Then,
D((0, T )× Ω) is dense in Lq(0, T ;V ) for any 1 ≤ q <∞.

Proof. From [41, Corollary 1.3.1], it follows that

Z :=

{
n∑
i=1

φi(x)ψi(t), n ≥ 1, φi ∈ D(Ω), ψi ∈ D(0, T )

}
⊂ D((0, T )× Ω)

is dense in Lq(0, T ;V ) for any Banach space V such that D(Ω) is dense in V and
1 ≤ q <∞. �
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Let p(·) : Ω 7→ [1,∞) be a continuous variable exponent and T > 0, the two Bochner

spaces Lp
+

(0, T ;Lp(·)(Ω)) and Lp−(0, T ;Lp(·)(Ω)) will be important in our study. In
the following we identify a function like v ∈ Lp−(0, T ;Lp(·)(Ω)) with the real-valued
function v defined by v(t, x) = v(t)(x) for almost all t ∈ (0, T ) and a.e. x ∈ Ω. In the
same way we associate to any function v ∈ Lp(·)(Q) a function v : (0, T ) 7→ Lp(·)(Ω)
by setting v(t) := v(t, ·) for a.e. t ∈ (0, T ).

Lemma 2.5. We have the following continuous dense embeddings

Lp+(0, T ;Lp(·)(Ω))
dense
↪→ Lp(·)(Q)

dense
↪→ Lp−(0, T ;Lp(·)(Ω)). (12)

Proof. For v ∈ Lp(·)(Q), the corresponding function v : (0, T ) 7→ Lp(·)(Ω) is strongly
Bochner measurable by the Dunford-Pettis Theorem (we recall that Dunford-Pettis
Theorem ensures that a sequence in L1(D), D any bounded open subset of RN , is
weakly convergence in L1(D) if and only if it is equi-integrable), and since it is weakly
measurable and Lp(·)(Ω) is separable. Moreover, using the fact that∫ T

0

‖v(t)‖p−
Lp(·)(Ω)

dt ≤
∫ T

0

max

[∫
Ω

|v(t, x)|p(x)dx,

(∫
Ω

|v(t, x)|p(x)dx

) p−
p+

]
dt

≤
∫ T

0

∫
Ω

|v(t, x)|p(x)dxdt+ T
1− p−p+

(∫ T

0

∫
Ω

|v(t, x)|p(x)dxdt

) p−
p+

≤ max
[
|v|p−

Lp(·)(Q)
, |v|p+

Lp(·)(Q)

]
+ T

1− p−p+ max

[
‖v‖

(p−)2

p+

Lp(·)(Q)
, ‖v‖p−

Lp(·)(Q)

]
,

(13)

the embedding of Lp(·)(Q) into Lp−(0, T ;Lp(·)(Ω)) is continuous.
Now, if u ∈ Lp+(0, T ;Lp(·)(Ω)) and from the fact that Lp(·)(Ω) ↪→ L1(Ω) it follows
that u ∈ Lp+(0, T ;L1(Ω)); hence, according to [41, Proposition 1.8.1], the corre-
sponding real-valued function u : (0, T ) × Ω 7→ R is measurable and using the same
arguments as above we find the continuous embedding of Lp+(0, T ;Lp(·)(Ω)) into
Lp(·)(Q) (it is left to prove that both embeddings are dense). Now, we consider the
first embedding and we fix u ∈ Lp(·)(Q), then, since D(Q) is dense Lp(·)(Q), we
find a sequence (un) ⊂ D(Q) converging to u in Lp(·)(Q) as n → ∞. According to
Proposition 2.4 we have D(Q) is densely embedded into Lp+(0, T ;Lp+(Ω)), therefore
un ∈ Lp+(0, T ;Lp(·)(Ω)) for all n ∈ N. To prove the density of the second embed-
ding, we fix v ∈ Lp−(0, T ;Lp(·)(Ω)), and taking a standard sequence of mollifiers
(ρn)n ⊂ D(R) and extending v by zero onto R, from [41, Proposition 1.7.1], it follows
that the regularized (in time) function

(ρn ∗ v)(·) :=

∫
R
ρn(· − s)v(s)ds (14)

is in Lp+(R, Lp(·)(Ω)) for each n ∈ N, hence in Lp(·)(Q) and converges to v in
Lp−(0, T ;Lp(·)(Ω)) (see also [41, Theorem 1.7.1]). �

Now, we state two embedding theorems that will play a central role in our work;
the fist one is the well-known ”Gagliardo-Nirenberg” generalized embedding that we
state in a form general enough to our purpose.



68 M. ABDELLAOUI AND H. REDWANE

Lemma 2.6 (Gagliardo-Nirenberg generalized inequality). Let v be a function in

W
1,q(·)
0 (Ω) ∩Lρ(·)(Ω) with q and ρsatisfy the log-Hölder continuity condition (4), 1 <

q− ≤ q(x) ≤ q+ ≤ N , 1 < ρ− ≤ ρ(x) ≤ ρ+ ≤ N . Then, there exists a positive
constant C, depending on N , q(x) and ρ(x), such that

‖v‖Lγ(·)(Ω) ≤ C‖∇v‖θ(Lq(·))N ‖v‖
1−θ
Lρ(·)(Ω)

for every θ and γ(·) satisfying 0 ≤ θ ≤ 1, 1 ≤ γ(·) ≤ +∞ and 1
γ(·) = θ( 1

q(·)−
1
N )+ 1−θ

ρ(·) .

Proof. The proof follows the same lines as the proof for the case of constant exponent,
see [72, Lecture II] (see also [23, Page 147]). �

The second one is a consequence of the previous result where we give here for
completeness.

Corollary 2.7. Let v ∈ Lq−((0, T ),W
1,q(·)
0 (Ω)) ∩ L∞((0, T ), L2(Ω)), with q(x) sat-

isfies the log-Hölder continuity condition (4) and 1 < q− ≤ q(x) ≤ N . Then
v ∈ Lσ(·)(Ω) with σ(·) = q(·)N+2

N and∫
Q

|v|σ(x)dxdt ≤ C max

(
‖v‖

2q+

N

L∞(0,T ;L2(Ω)); ‖v‖
2q−
N

L∞(0,T ;L2(Ω))

)

×max

(∫
Q

|∇v|q(x)dxdt

) q+

q−

;

(∫
Q

|∇v|q(x)dxdt

) q−

q+

 .

Proof. See [44, Corollary A.1]. �

2.2. Variable exponent capacities & diffuse measures. The notion of p(·)-
capacity plays the expected role in the potential theory and in the study of Sobolev
functions in the variable exponent setting, see [51, 52, 53, 57]. In general, the p(·)-
capacity is used to measure finite properties of functions and sets. Then p(·)-capacity
enjoys the usual fine properties of capacity when 1 < p− ≤ p(x) ≤ p+ < ∞, see
[52, 33] (some of the properties remain still open for the case p− = 1). In this part,
we study Lebesgue points and quasi-continuity of Sobolev functions in the variable
exponent setting. In [50] (these are extensions of the classical results of [56]), the
authors proved that every Sobolev function has Lebesgue points outside of a set of
p(·)-capacity zero and that the precise pointwise representative of a Sobolev function
is p(·) quasi-continuous.

To continue, we need to introduce some basic tools that we need in our study.

Definition 2.1. Let p(·) : Ω 7→ [1,∞) be a variable exponent, the p(·)-capacity of a
set E ⊂ RN is defined as

Cp(·)(E) = inf

{∫
RN
|u|p(x) + |∇u|p(x)dx

}
,

where the infimum is taken over admissible functions u ∈ Sp(·)(E), where

Sp(·)(E) = {u ∈W 1,p(·)(RN ) : u ≥ 1 in an open set containing E}.

It is easy to see that if we restrict these admissible functions Sp(·)(E) to the case
0 ≤ u ≤ 1, we get the same capacity.
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Definition 2.2. We say that a claim holds p(·) quasi-everywhere (p(·)-q-e) if it holds
everywhere except in a set of p(·)-capacity zero. A function u : Ω 7→ R is said to
be p(·) quasi-continuous (p(·)-q-c) if for every ε > 0 there exists an open U with
Cp(·)(U) < ε such that u restricted to Ω\U is continuous.

A variable exponent version of the relative p(·)-capacity of the condenser has been
used in [51]. This alternative capacity of a set is taken relative to a surrounding open
subset of RN . Suppose that p+ < ∞ and p(x) satisfies the log-Hölder continuity
condition (4) and let K be a compact subset of Ω, the relative p(·)-capacity of K in
Ω is the number

capp(·)(K,Ω) = inf

{∫
Ω

|∇ϕ|p(x)dx : ϕ ∈ C∞0 (Ω) and ϕ ≥ 1 in K

}
.

We define (for different types of sets)
capp(·)(U,Ω) = sup {capp(·)(K,Ω) : K ⊂ U compact} for an open set U ⊂ Ω,

capp(·)(E,Ω) = inf {capp(·)(U,Ω) : U ⊃ E open} for an arbitrary E ⊂ Ω,

capp(·)(E,Ω) = sup {capp(·)(K,Ω) : K ⊃ E compact} for all Borel sets E ⊂ Ω.

(15)
Let us recall some quasi-properties on the function u with respect to the p(·)-capacity.

Definition 2.3. We say that u : Ω→ R is p(·) quasi-continuous (p(·)-q.c) if for ε > 0
there exists an open set A ⊂ Ω with capp(·)(A,Ω) ≤ ε such that u(Ω\A) is continuous.

Every u ∈ W 1,p(·)(Ω) has a p(·) quasi-continuous representative (p(·)-q.c.r), always,
denoted by u and which is essentially unique.

Similarly, and since we are interested in properties of solutions, we shall mainly
work with capacities of compact sets and we shall restrict our attention on some
specific results relying generalized capacities and measure spaces (more especially,
the set of bounded measures on Q which are absolutely continuous with respect to
the p(·)-parabolic capacity), but first let us state the following (general) definition.

Definition 2.4. If U ⊂ Q is an open set, we define the generalized parabolic capacity
of U as

capp(·)(U) = inf
{
‖u‖Wp(·)(0,T ), u > χU a.e. in Q

}
, (16)

where Wp(·)(0, T ) is defined in (2) (we will use the convention that inf ∅ = +∞).

Remark 2.1. For any Borelian subset B ⊂ Q, the definition of the capacity can be
extended by setting

capp(·)(B) = inf
{

capp(·)(U), U open subset of Q, B ⊂ U
}
. (17)

The following definition gives a characterization of the parabolic capacity of com-
pact sets of Q.

Definition 2.5. Let K be a compact subset of Q, the capacity of K is defined as

cap(K) = inf
{
‖u‖Wp(·)(0,T ), u ∈ C∞c (Q)(0, T ])× Ω), u > χK

}
. (18)

Now, one can deduce the following results from the previous definitions.

Proposition 2.8. As a consequence:
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(i) The parabolic capacity satisfies the ”sub-additivity” property, i.e.,

cap(E) ≤
∞∑
i=1

cap(Ei) with E = ∪∞i=1Ei, Ei = 1, 2, · · · , are arbitrary subsets of Q.

(19)
(ii) The parabolic capacity is a ”monotonic” set function, i.e.,

cap(E1) ≤ cap(E2) if E1 ⊂ E2. (20)

(iii) The parabolic capacity satisfies the standard ”limiting” result, i.e., lim
i→∞

cap(Ei) = cap(E), with E = ∪∞i=1Ei, E1 ⊂ E2 ⊂, · · · ,

lim
i→∞

cap(Ei) = cap(E), with E = ∩∞i=1Ei, E1 ⊃ E2 ⊃, · · · .
(21)

In the next, we denote byMb(Q) the space of bounded measures on the σ-algebra
of Borelian subsets of Q, byM+

b (Q) the subsets of non-negative measures ofMb(Q),
and byM0(Q) the space of bounded measures not charging sets of null p(·)-capacity.

Definition 2.6. We define M0(Q) as:

M0(Q) =
{
µ ∈Mb(Q) : µ(E) = 0 for every subset E ⊂ Q s.t. capp(·)(E) = 0

}
.

(22)
The nonnegative measures in M0(Q) will be said to belong to M+

0 (Q).

In order to better specify the nature of measures in M0(Q), we need to detail the
structure of the dual space (Wp(·)(0, T ))′.

Lemma 2.9. Let g ∈ (Wp(·)(0, T ))′, then there exists g1 ∈ L(p−)′(0, T ;W−1,p′(·)(Ω)),

g2 ∈ Lp−(0, T ;V ), F ∈ (Lp(·)(Q))N and g3 ∈ L(p−)′(0, T ;L2(Ω)) such that

〈g, u〉 =

∫ T

0

〈g1, u〉dt+

∫ T

0

〈ut, g2〉+
∫
Q

F · ∇udxdt+

∫
Q

g3udxdt, ∀u ∈Wp(·)(0, T ),

(23)

where V = W
1,p(·)
0 (Ω) ∩ L2(Ω). Moreover, one can choose (g1, g2, F, g3) such that

‖g1‖L(p−)′ (0,T ;W−1,p′(·)(Ω))
+ ‖g2‖Lp− (0,T ;V ) + ‖F‖Lp′(·)(Q) + ‖g3‖L(p−)′ (0,T ;L2(Ω))

≤ C‖g‖(Wp(·)(0,T ))′ .

Proof. See [74, Lemma 4.2]. �

Before stating, in a suitable way, the decomposition theorem of elements ofM0(Q),
let us first make a remark on a basic decomposition of these measures.

Remark 2.2. Let µ ∈ M0(Q), then there exist g ∈ (Wp(·)(0, T ))′ and h ∈ L1(Q)
such that µ = g + h in the sense that∫

Q

ϕdµ = 〈g, ϕ〉+

∫
Q

hϕdxdt, (24)

for all ϕ ∈ C∞c ([0, T ]× Ω), see [74, Lemma 4.4].

The next result is a consequence of Lemma 2.9 and Remark 2.2.
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Theorem 2.10. Let µ ∈M0(Q), then there exists (f, F, g1, g2) such that f ∈ L1(Q),

F ∈ (Lp
′(·)(Ω))N , g1 ∈ L(p−)′(0, T ;W−1,p′(·)(Ω)), g2 ∈ Lp−(0, T ;V ) such that∫
Q

ϕdµ =

∫
Q

fϕdxdt+

∫
Q

F · ∇ϕdxdt+

∫ T

0

〈g1, ϕ〉dt−
∫ T

0

〈ϕt, g2〉dt, (25)

for every ϕ ∈ C∞c ([0, T ]× Ω) (the quadruplet (f, F, g1, g2) will be called a ”decompo-
sition” of µ).

Proof. The proof is a combination of the proofs of Lemma 2.9 and Remark 2.2. �

The definitions used in this paper are not limited to the case of generalized spaces
with exponent variable but they can be considered (with lack of ”homogeneity”)
in Orlicz-Sobolev (or Musielak-Orlicz ) setting. Some possible extensions involving
replacement of the space Lp(·)(Q) with more general space LΦ(Q) in which the role
played by the convex function tp(·) is assumed by more general convex functions Φ(t)
(the spaces LΦ(Q) called Orlicz spaces are studied in depth in the monograph [62]
by Krasnosel’skii & Rutickii, and also in the doctoral thesis by Luxemburg [68]; for a
more complete development, we refer to the books by Adams [1], Adams & Hedberg
[3], Musielak [70], to the Monograph of Rao & Ren [85], and to the papers by Gossez
[59, 61, 60], Gossez & Benkirane [17], Benkirane & Elmahi [15, 16], and Elmahi [43]).
More recently in [28, 29, 27] and for a class of stationary problems different to the one
we will discuss, the authors investigate the notion of generalized capacity and diffuse
measures in the framework of weight Sobolev spaces and Orlicz/Musielak spaces.

2.3. Generalized solutions and main result. It is worth pointing that problem
(PQµ ) has two main features: firstly; since the standard subjectivity theorem of Leray-
Lions operators cannot be applied, we should reason by means of the approximate
theory, introduced in [37, 69, 76, 82], by using truncations of solutions in order to get

a pseudo-monotone and a coercive differential operator in Lp−(0, T ;W
1,p(·)
0 (Ω)), then

establish some a priori estimates on u, Tk(u) and ∇u. Thus, a technical result on
the a.e. convergence of gradients leads to pass to the limit. Secondly, the right-hand
side µ of problem (PQµ ), which contains a measure term, is not an element of the dual

space Lp
′
−(0, T ;W−1,p′(·)(Ω)), therefore the solution cannot be expected to belong

to the energy space Lp−(0, T ;W
1,p(·)
0 (Ω)), so it is necessary to change the functional

setting in order to prove the equivalence result; to overcome this problem, a concept
of ”generalized” solution should be considered in this specific class. Then, we should
specify what we mean by ”generalized solution”; let us recall that for equations with
nonregular datum (say L1(Q), or more in general, measures), several notions of solu-
tions have been introduced. A notion of ”renormalized” solution when µ is a diffuse
measure was introduced in [40], and in the same paper, the existence and uniqueness
of such a solution are proved. In [39], a similar notion of ”entropy” solution is also
defined and proved to be equivalent to that of renormalized solution. A new definition
of ”renormalized-entropy” solution which, in contrast with the previous ones, is closer
to the one used for conservation laws in [10] and to the one existing in the elliptic
case in [36], is established in [80, 81]. The case of general measure in established in a
similar way in [76, 79]. Recently, these frameworks was extended to related problems
with variable exponent and measures as data in [73], where Ouaro & Ouédraogo stud-
ied a parabolic problem involving a p(x)−Laplacian type operator and obtained the
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existence/uniqueness of entropy solutions for L1−data, as well as, the integrability
results for the solution and its gradient (the proofs rely crucially on the semigroup
theory). Besides, Bendahmane et al. proved the existence/uniqueness of renormal-
ized solutions of the same problem in [26] using a priori estimates in Marcinkiewicz
spaces with variable exponents, Zhang & Zhou [95] uses a different method to prove
the equivalence of the two notions. The main idea in such formulations is to move the
attention from the solution u to its truncations Tk(u) and to use a ”truncated” version
of the equation. This is advantageous both in order to obtain a priori estimates and
because requiring Tk(u) to belong to the energy space allows to get informations about
the solution. Observe that the above problem does not admit, in general, a solution
in the sense of distributions since we cannot expect to have the fields a(t, x, u,∇u)
in L1

loc(Q)N . Indeed some assumptions are in fact crucial in order to obtain renor-
malized/entropy solutions that allow a priori estimates to hold true. To make precise
these assumptions, we assume that a : Q × R × RN 7→ RN satisfies the following
structural assumptions1:
(1) (t, x) 7→ a(t, x, s, ζ) is measurable for every (s, ζ) ∈ R× RN ;
(2) (s, ζ) 7→ a(t, x, s, ζ) is continuous for every (t, x) ∈ Q;
(3) there exist constants 0 < α ≤ β < ∞ such that for every (s, ζ) ∈ R × RN and

for a.e. (t, x) ∈ Q, we have{
a(t, x, s, ζ) · ζ ≥ α|ζ|p(x) − Λ(t, x) (26)

|a(t, x, s, ζ)| ≤ β(b(t, x) + |s|ν(x) + |ζ|p(x)−1), (27)

(4) ”a” satisfies the monotonicity condition

(a(t, x, s, ζ)− a(t, x, s, η)) · (ζ − η) > 0, (28)

for every s ∈ R and for every ζ, η ∈ RN (with ζ 6= η).
Although this class of equations is relevant for all p ∈ C(Ω) with 1 < p− ≤ p(x) ≤
p+ < N , we shall only consider the case

p− >
2N

N + 1
, (29)

the same lower bound for p− appears also in the regularity theory of parabolic equa-
tions of the p(x)-Laplacien type, see [2, 74]. To make precise our notions of solutions
we need the following definitions.

Definition 2.7. Assume that u0 ∈ L2(Ω) and f ∈ L(p−)′(0, T ;W−1,p′(·)(Ω)). A

function u ∈ C([0, T ], L2(Ω)) such that ut ∈ L(p−)
′

(0, T ;W−1,p′(·)(Ω)) and ∇u ∈
Lp(·)(Q)N is a weak solution of{

ut − div(a(t, x, u,∇u)) = f in (0, T )× Ω,

u(0, x) = u0(x) in Ω, u(t, x) = 0 on (0, T )× ∂Ω,
(30)

in Q, if it holds that

−
∫

Ω

u0ϕ(0, x)dx+

∫
Q

[−uϕt + a(t, x, u,∇u) · ∇ϕ] dxdt =

∫
Q

fϕdxdt, (31)

for every ϕ ∈ C1(Q) with ϕ(·, T ) = 0.

1”a” is said to be a Carathéodory function if assumptions (1) − (2) are satisfied.
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Proof. See [95, Lemma 2.5]. �

We are naturally led to introduce the functional space

X = {u : Ω× (0, T ) 7→ R is measurable such that Tk(u) ∈ Lp−(0, T ;W
1,p(·)
0 (Ω)),

with |∇Tk(u)| ∈ Lp(·)(Q)N , for every k > 0},
(32)

which, endowed with the norm (or, the equivalence norm)

‖u‖X := ‖∇u‖Lp(·)(Q) (or, ‖u‖X := ‖u‖
Lp− (0,T ;W

1,p(·)
0 (Ω))

+ ‖∇u‖Lp(·)(Q)),

is a separable and reflexive Banach space (the equivalence of the two norms is an
easy consequence of the continuous embedding Lp(·)(Q) ↪→

cont
Lp−(0, T ;Lp(·)(Ω)) and

the Poincaré’s inequality). The notion of the very weak gradient allows us to give the
following definition of a renormalized solution for problem (PQµ ).

Definition 2.8. A measurable function u is a renormalized solution of problem (PQµ )
if the following conditions are satisfied:
(i) u− g2 ∈ L∞(0, T ;L1(Ω)); Tk(u− g2) ∈ X for every k > 0;

(ii) lim
n→∞

∫
{(t,x)∈Q:n≤|u−g2|(t,x)≤n+1} |∇u|

p(x)dxdt = 0;

(iii) for every function ϕ ∈ C1(Q) with ϕ(·, T ) = 0 and S ∈ W 2,∞(R) which is
piecewise C1 such that S′ has a compact support,

−
∫

Ω

S(u0)ϕ(x, 0)dx−
∫
Q

S(u− g2)ϕtdxdt+

∫
Q

S′(u− g2)a(t, x, u,∇u) · ∇ϕdxdt

+

∫
Q

S′′(u− g2)a(t, x, u,∇u) · ∇(u− g2)ϕdxdt =

∫
Q

S′(u− g2)ϕdxdt

(33)
holds.

(iv) S(u− g2)(0) = S(u0) in L1(Ω).

Here is our definition of entropy solution for problem (PQµ ).

Definition 2.9. A measurable function u is an entropy solution of problem (PQµ ) if:
(a) Tk(u− g2) ∈ X for every k > 0;
(b) t ∈ [0, T ] 7→

∫
Ω

Θk(u− g2 − φ)(t, x)dx is a continuous function for all k ≥ 0 and

all φ ∈ W̃ ;
(c) ∫

Ω

Θk(u− g2 − φ)(t, x)dx−
∫

Ω

Θk(u− g2 − φ)(0, x))dx

+

∫ T

0

〈φt, Tk(u− g2 − φ)〉dt+

∫
Q

a(t, x, u,∇u) · ∇Tk(u− g2 − φ)dxdt

≤
∫
Q

fTk(u− g2 − φ)dxdt+

∫
Ω

G1 · ∇(Tk(u− g2 − φ))dxdt,

(34)

for all k ≥ 0 and φ ∈ W̃ with φ/Γ = 0.

Our main result is the following:
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Theorem 2.11. Assume that condition (29) holds. Then, the renormalized solution
of problem (PQµ ) is equivalent to the entropy solution of the same problem.

Remark 2.3. Thanks to the decomposition result (25), if µ is absolutely continuous
with respect to the generalized p(·)-capacity (these are called soft measures), it admits
a splitting (f, F, g1 = −div(G1), g2) in the sense of distributions, for some f ∈ L1(Q),

F ∈ Lp′(·)(Q)N , g1 ∈ Lp
′
−(0, T ;W

1,p′(·)
0 (Ω)) and g2 ∈ Lp−(0, T ;V ) (recall that this

decomposition is not uniquely determined and the renormalization argument can be
applied to the difference u− g2).

3. The proof of the main result

Now we are ready to prove the main result. Some of the reasoning is based on the
ideas developed in [82, 83, 95].

Proof. Step 1. The renormalized solution u is also an entropy solution. We first in-
troduce some essential regularity results following the equation in the sense of distri-
bution (33); notice that, thanks to our regularity assumptions and the choice of S, all
terms in (33) are well defined since Tk(u−g2) belongs to X, for every k > 0, and since
S′ has compact support. Indeed by taking M such that Supp S′ ⊂] −M,M [, since
S′(u−g2) = S′′(u−g2) = 0 as soon as |u−g2| ≥M , we can replace, in (33), ∇(u−g2)
by ∇TM (u−g2) ∈ (Lp(·)(Q))N and ∇u by ∇(TM (u−g2))+∇g2 ∈ (Lp(·)(Q))N (recall
that ν(x) ≤ p(x)− 1). Moreover, according to the assumption (27) and the definition

of ∇u (i.e., ∇u = ∇(u− g2) +∇g2), we have |a(t, x, u,∇u)|χ{|u−g2}|<M ∈ Lp
′(x)(Q).

We also have, for all S as above, S(u− g2) = S(TM (u− g2)) ∈ X, and

S′(u− g2)f ∈ L1(Q);

S′(u− g2)G1 ∈ Lp
′(·)(Q);

S′(u− g2)a(t, x, u,∇u) ∈ (Lp
′(·)(Q))N ;

S′′(u− g2)a(t, x, u,∇u) · ∇(u− g2) ∈ L1(Q);

S′′(u− g2)G1 · ∇(u− g2) ∈ L1(Q).

(35)

Thus, by equation (33), (S(u− g2))t belongs to the space X ′ + L1(Q), and therefore
S(u− g2) belongs to C([0, T ];L1(Ω)) (see [25, Lemma 3.2] which is inspired from the
result [77, Theorem 1.1]) then one can say that the initial datum is achieved in a
weak sense, that is, S(u− g2)(0) = S(u0) in L1(Ω) for every renormalization S. Note

also that, since S(u − g2)t ∈ X
′

+ L1(Q), we can use in (33) not only test functions
in C∞0 (Q) but also in X ∩ L∞(Q). In the following, we make a constant use of the
function Sn : R 7→ R defined by

Sn(s) =

∫ s

0

hn(r)dr, with hn(s) = 1− |T1(s− Tn(s))|, (36)

and which satisfies{
Sn(r) = Sn(Tn+1(r)), ‖S′n‖L∞(R) ≤ 1, (37)

SuppS′n ⊂ [−(n+ 1), n+ 1], S′′n = χ[−n−1;−n] − χ[n;n+1]. (38)
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Now, one can use Tk(v − ϕ)θε as test function in (33) for k > 0, where v = u − g2,

ϕ ∈ W̃ , θε(t) = 1 − ( (t−t1)+

ε ) with t1 ∈]0, T ] and S = Sn. We note that, if M :=
k + ‖ϕ‖L∞(Q), then

Tk(v − ϕ)θε = Tk(TM (v)− ϕ)θε ∈ X ∩ L∞(Q), (39)

and∫ T

0

〈Sn(v)t, Tk(v − ϕ)θε〉dt+

∫
Q

S′′n(v)a(t, x, u,∇u) · ∇vTk(v − ϕ)θεdxdt

+

∫
Q

S′n(v)a(t, x, u,∇u) · ∇(Tk(v − ϕ))θεdxdt =

∫
Q

S′n(v)fTk(v − ϕ)θεdxdt

+

∫
Q

S′′n(v)F · ∇vTk(v − ϕ)θεdxdt+

∫
Q

S′n(v)F · ∇(Tk(v − ϕ))θεdxdt

+

∫
Q

S′′n(v)G1 · ∇vTk(v − ϕ)θεdxdt+

∫
Q

S′n(v)G1 · ∇(Tk(v − ϕ))θεdxdt.

(40)

Since S′′n(s) = 0 for |s| /∈ [n;n+ 1], one can write

S′′n(v)a(t, x, u,∇u) · ∇vTk(v − ϕ)

= S′′n(v)a(t, x, u,∇u) · ∇(Tn+1(v))Tk(v − ϕ) ∈ L1(Q),
(41)

and
S′′n(v)G1 · ∇vTk(v − ϕ) = S′′n(v)G1 · ∇(Tn+1(v))Tk(v − ϕ) ∈ L1(Q). (42)

Since θε → χ[0,t1] and is bounded by 1 as ε → 0, using Lebesgue dominated conver-
gence theorem in equality (40), we obtain∫ t1

0

∫
Ω

(Sn(v))t, Tk(v − ϕ)dxdt+

∫ t1

0

∫
Ω

S′n(v)a(t, x, u,∇u) · ∇(Tk(v − ϕ))dxdt

+

∫ t1

0

∫
Ω

S′′n(v)a(t, x, u,∇u) · ∇vTk(v − ϕ)dxdt

=

∫ t1

0

∫
Ω

fS′n(v)Tk(v − ϕ)dxdt+

∫ t1

0

∫
Ω

S′n(v)F · ∇(Tk(v − ϕ))dxdt

+

∫ t1

0

∫
Ω

S′′n(v)F · ∇vTk(v − ϕ)dxdt+

∫ t1

0

∫
Ω

S′n(v)G1 · ∇(Tk(v − ϕ))dxdt

+

∫ t1

0

∫
Ω

S′′n(v)G1 · ∇vTk(v − ϕ)dxdt.

(43)
For n large enough (n ≥ M) we have Tk(v − ϕ) = Tk(Sn(v) − ϕ) (since Sn(s) = s
on [−M,M ], |Sn(s)| ≥M and sign(Sn(s)) = sign(s) outside [−M,M ]), (Sn(v))(t1)−
ϕ(t1, ·)→ v(t1, ·)− ϕ(t1, ·) in L1(Ω), Sn(u0)→ u0 in L1(Ω) and S′n(v)→ 1 a.e. in Q
as n→ +∞. So that thanks to the following Lemma.

Lemma 3.1 (Integration by parts formula). Let f : R 7→ R be a continuous piecewise
C1-function such that f(0) = 0 and f ′ is zero outside a compact set of R. Let us

denote F (s) =
∫ s

0
f(r)dr and if u ∈ X is such that ut ∈ X

′
+L1(Q) and ψ ∈ C∞(Q),

then we have∫ T

0

〈ut, f(u)ψ〉 =

∫
Ω

F (u(T ))ψ(T )dx−
∫

Ω

F (u(0))ψ(0)dx−
∫
Q

ψtF (u)dxdt,
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where 〈·, ·〉 denotes the duality pairing between X
′
+ L1(Q) and X ∩ L∞(Q).

Proof. The proof follows the same lines of [39, Lemma 7.1] (see also [78, Lemma
6.10]). �

Remark 3.1. A similar generalization of the integration by parts formula can be
found in [21] and it plays a crucial role in order to find more estimates for entropy
solutions and to get useful a priori estimates of approximate solutions to the equation
(43) below.

By using the integration by parts formula formula, we get∫
Ω

Θk(Sn(v)(t1)− ϕ(t1))dx−
∫

Ω

Θk(Sn(u0)− ϕ(0))dx

+

∫ t1

0

∫
Ω

ϕtTk(v − ϕ)dxdt+

∫ t1

0

∫
Ω

S′n(v)a(t, x, u,∇u) · ∇(Tk(v − ϕ))dxdt

+

∫ t1

0

∫
Ω

S′′n(v)a(t, x, u,∇u) · ∇vTk(v − ϕ)dxdt =

∫ t1

0

∫
Ω

fS′n(v)Tk(v − ϕ)dxdt

+

∫ t1

0

∫
Ω

S′n(v)F · ∇(Tk(v − ϕ))dxdt+

∫ t1

0

∫
Ω

S′′n(v)F · ∇vTk(v − ϕ)dxdt

+

∫ t1

0

∫
Ω

S′n(v)G1 · ∇(Tk(v − ϕ))dxdt+

∫ t1

0

∫
Ω

S′′n(v)G1 · ∇vTk(v − ϕ)dxdt.

(44)
Since |S′′n(s)| ≤ 1 and S′′n(s) 6= 0 only if |s| ∈ [n, n+ 1], using (27) one can write∣∣∣∣∫ t1

0

∫
Ω

S′′n(v)a(t, x, u,∇u) · ∇vTk(v − ϕ)dxdt

∣∣∣∣ ≤ k ∫
{n≤|v|≤n+1}

|a(t, x, u,∇u) · ∇v|dxdt

≤ k
∫
{n≤|v|≤n+1}

β
(
b(t, x) + |u|ν(x) + |∇u|p(x)−1

)
|∇v|dxdt

≤ k
[ ∫
{n≤|v|≤n+1

p(x)− 1

p(x)

(
|b(t, x)|p

′(x) + |u|ν(x)p′(x) + |∇u|(p(x)−1)p′(x)
)
dxdt

+

∫
{n≤|v|≤n+1

1

p(x)
|∇v|p(x)dxdt

]
≤ k

[ ∫
{n≤|v|≤n+1}

p+ − 1

p−

(
|b(t, x)|p

′(x) + |u|ν(x)p′(x) + |∇u|p(x)
)
dxdt

+

∫
{{n≤|v|≤n+1}

C

p−
(|∇u|p(x) + |∇g|p(x))dxdt

]
(45)

Observe that, thanks to (26) and of Definition 2.8(ii), and using Young’s inequality
one can easily show that there exists a positive constant M such that

1

n

∫
{n≤|v|≤n+1}

|∇u|p(x)dxdt ≤M. (46)

On the other hand, using the definition of v, we get∫
Q

|∇Tk(v)|p(x)dxdt ≤ C
∫
{|v|≤k}

|∇u|p(x)dxdt+ C. (47)
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Hence we have to control the first term on the right hand side of (47) ; using (46) we
have∫
{|v|<k}

|∇u|p(x)dxdt ≤
[log2k]+1∑
n=0

∫
{2n≤|v|<2n+1}

|∇u|p(x)dxdt+

∫
{0≤|v|<1}

|∇u|p(x)dxdt

≤M
[log2k]+1∑
n=0

2n + C = M(2[log2k]+2 − 1) + C

≤ C(k + 1),

(48)
which, together with (47), yields∫

Q

|∇Tk(v)|p(x)dxdt ≤ C̃(k + 1) (49)

where C̃ is a positive constant not depending on k. We can improve this kind of
estimate by using the Gagliardo-Nirenberg inequality. Indeed, this way, we obtain∫

Q

|Tk(v)|p−+
p−
N dxdt ≤ Ck (50)

and so, we can write

kp−+
p−
N meas{|v| ≥ k} ≤

∫
{|u|≥k}

|Tk(v)|p−+
p−
N dxdt ≤

∫
Q

|Tk(v)|p−+
p−
N dxdt ≤ Ck;

(51)
then,

meas{|v| ≥ k} ≤ C

kp−−1+
p−
N

.

Therefore, v is uniformaly bounded in the Marcinkiewicz space Mp−−1+
P−
N (Q); that

implies, since in particular p− >
2N
N+1 , that v is uniformaly bounded in Lq(x)(Q) for

all 1 ≤ q(x) < p− − 1 + p−
N . Note that νp′(x) < p− − 1 + 1

N then |v|νp(x) ∈ L1(Q),
and by the fact that meas({n ≤ |v| < n+ 1})→ 0, we have by (45)∣∣∣∣∫ t1

0

∫
Ω

S′′n(v)a(t, x, u,∇u) · ∇vTk(v − ϕ)dxdt

∣∣∣∣→ 0 as n→ +∞, (52)

and ∣∣∣∣∣
∫ t1

0

∫
Ω

S′′n(v)G1 · ∇vTk(v − ϕ)dxdt| ≤ k
∫
{n≤|v|≤n+1}

|G1||∇v

∣∣∣∣∣ dxdt
≤ k

[∫
{n≤|v|≤n+1}

p− − 1

p+
|G1|p

′(x)dxdt+

∫
{n≤|v|≤n+1}

1

p−
|∇v|p(x)dxdt

] (53)

Similarly∣∣∣∣∣
∫ t1

0

∫
Ω

S′′n(v)F · ∇vTk(v − ϕ)dxdt| ≤ k
∫
{n≤|v|≤n+1}

|F ||∇v

∣∣∣∣∣ dxdt
≤ k

[∫
{n≤|v|≤n+1}

p− − 1

p+
|F |p

′(x)dxdt+

∫
{n≤|v|≤n+1}

1

p−
|∇v|p(x)dxdt

] (54)
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Now, since meas({n ≤ |v| < n+ 1})→ 0; this implies that
∣∣∣∣∫ t1

0

∫
Ω

S′′n(v)G1 · ∇vTk(v − ϕ)dxdt

∣∣∣∣→ 0 as n→ +∞,∣∣∣∣∫ t1

0

∫
Ω

S′′n(v)F · ∇vTk(v − ϕ)dxdt

∣∣∣∣→ 0 as n→ +∞.
(55)

Passing to the limit in (43) as n→ +∞, we obtain∫ t1

0

∫
Ω

vtTk(v − ϕ)dxdt+

∫ t1

0

∫
Ω

a(t, x, u,∇u) · ∇(Tk(v − ϕ))dxdt

=

∫ t1

0

∫
Ω

fTk(v − ϕ)dxdt+

∫ t1

0

∫
Ω

F · ∇(Tk(v − ϕ))dxdt

+

∫ t1

0

∫
Ω

G1 · ∇(Tk(v − ϕ))dxdt,

(56)

for all t1 ∈ (0, T ). �

Proof. (2) The entropy solution u is also a renormalized solution. Our aim here is to
prove that the entropy solution is also a renormalized solution of (PQµ ). The proof of
this result consist in two steps. First, we prove the behavior of the energy of u on
the set where u is very large, secondly we obtain other properties on solutions. We
need then to recall the following definition of a time-regularization of Tk(v), which
was first introduced in [65], then used in several papers afterwards (see in particular
[14, 20]. Let zν be a sequence of functions such that

zν ∈W 1,p(·)
0 (Ω) ∩ L∞(Ω), ‖zν‖L∞(Ω) ≤ k,

zν → Tk(u0) a.e. on Ω as ν tends to infinity,

1

ν
‖zν‖W 1,p(·)

0 (Ω)
→ 0 as ν tends to infinity.

(57)

Then, for fixed k > 0 and ν > 0, we denote by Tk(v)ν the unique solution of the
problem 

∂Tk(v)ν
∂t

= ν(Tk(v)− Tk(v)ν) in the sense of distributions,

Tk(v)ν(0) = zν in Ω.
(58)

Then Tk(v)ν belongs to X ∩L∞(Q) and (Tk(v)ν)t belongs to X, and it can be proved
(see also [19]) that, up to a subsequence,{

Tk(v)ν → Tk(v) strongly in X and a.e.in Q,

‖Tk(v)ν‖L∞(Q) ≤ k ∀ν > 0.
(59)

For h > 0, we use (Th(v))ζ defined by{
(Th(v)ζ)t = ζ(Th(v)− (Th(v))ζ) ∈ L∞(Q) ⊂ X

′
+ L1(Q),

(Th(v))ζ(0) = zζ ,
(60)
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as test function in (34) to get

∫
Ω

Θk(v − (Th(v)ζ))(T )dx−
∫

Ω

Θk(u0 − zζ)dx∫ T

0

∫
Ω

(Th(v)ζ)tTk(v − (Th(v)ζ))dt+

∫
Q

a(t, x, u,∇u) · ∇(Tk(v − (Th(v)ζ)))dxdt

≤
∫
Q

fTk(v − (Th(v)ζ))dxdt+

∫
Q

F · ∇(Tk(v − (Th(v)ζ)))dxdt

+

∫
Q

G1 · ∇(Tk(v − (Th(v)ζ)))dxdt

(61)
From the definition of Θk and the properties of (Th(v)ζ) and since

sign (v − (Th(v)ζ)) = sign (Th(v)− (Th(v)ζ)) = sign ((Th(v)ζ)t)

we obtain 
∫

Ω

(v − (Th(v)ζ))(T )dx ≥ 0,∫
Q

((Th(v)ζ))tTk(v − (Th(v)ζ))dxdt ≥ 0
(62)

Moreover, since (Th(v)ζ) converges to Th(v) strongly in X and a.e. in Q as ζ tends
to infinity, we have

lim
ν→∞

Tk(v − (Th(v)ζ)) = lim
ν→∞

Tk(Tk+h(v)− (Th(v)ζ)) = Tk(Tk+h(v)− Th(v)),

then

Tk(v − (Th(v)ζ))→ Tk(v − Th(v)) strongly in X and a.e. in Q. (63)

By means of Lebesgue’s theorem and by the fact that |a(t, x, u,∇u)|χ{|v|<k+h} ∈
Lp
′(·)(Q), and since ∇Tk(v − (Th(v)ζ)) = 0 if |v| > h + k, we can conclude using

(62)-(63) that

∫
Q

a(t, x, u,∇u) · ∇Tk(v − (Th(v)ζ))dxdt

≤
∫

Ω

Θk(u0 − Th(u0))dx+

∫
Q

fTk(v − Th(v))dxdt

+

∫
Q

G1 · ∇(Tk(v − Th(v)))dxdt+

∫
Q

F · ∇(Tk(v − Th(v)))dxdt
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Next, we split the integral in the sets {|v| ≤ h} and {|v| > h} and we obtain (by
recalling that v − Th(v) = 0 on {|v| ≤ h})∫

{h≤|v|≤h+k}
α|∇u|p(x) − Λdxdt ≤

∫
{h≤|v|≤h+k}

a(t, x, u,∇u) · ∇vdxdt

≤
∫
{h≤|v|≤h+k}

a(t, x, u,∇u) · ∇vdxdt+

∫
{h≤|v|≤h+k}

a(t, x, u,∇u) · ∇g2dxdt

≤
∫
Q

a(t, x, u,∇u) · ∇Tk(v − Th(v))dxdt+

∫
{h≤|v|≤h+k}

a(t, x, u,∇u) · ∇g2dxdt

≤ k
∫

Ω

|u0 − Th(u0)|dx+ k

∫
{|u|≥h}

|f |dxdt

+

∫
{h≤|v|≤h+k}

|G1||∇v|dxdt+

∫
{h≤|v|≤h+k}

|F ||∇v|dxdt

+ C

∫
{h≤|v|≤h+k}

(|b|+ |u|ν(x) + |∇u|p(x)−1)|∇g2|dxdt,

that is,

α

∫
{h≤|v|≤h+k}

|∇u|p(x)dxdt ≤ k
∫
{|u0|≥h}

|u0|dxdt+ k

∫
{|v|>h}

|f |dxdt

+

∫
{h≤|v|≤h+k}

1

p′−
|G1|p

′(x)dxdt+

∫
{h≤|v|≤h+k}

1

p−
|∇u+∇g2|p(x)dxdt

+

∫
{h≤|v|≤h+k}

1

p′−
|F |p

′(x)dxdt+

∫
{h≤|v|≤h+k}

1

p−
|∇u+∇g2|p(x)dxdt

+
C

p′−

∫
{h≤|v|≤h+k}

|b|p
′(x) + |u|ν(x)p′(x)dxdt+

C

p′−

∫
{h≤|v|≤h+k}

|∇u|p(x)

+

∫
{h≤|v|≤h+k}

C

p−
|∇g2|p(x)dxdt+

∫
{h≤|v|≤h+k}

Λdxdt.

Using the log-Hölder criterion and Young’s inequality, we have∫
{h≤|v|≤h+k}

α|∇u|p(x)dxdt ≤ k
∫
{|u0|≥h}

|u0|dx+ k

∫
{|v|≥h}

|f |dxdt

+ C

(∫
{h≤|v|≤h+k}

|G1|p
′(x)

∫
{h≤|v|≤h+k}

|F |p
′(x) + |∇g2|p(x) + |b|p

′(x) + |u|ν(x)p′(x)dxdt

)

+
α

2

∫
{h≤|v|≤h+k}

|∇u|p(x)dxdt+

∫
{h≤|v|≤h+k}

Λdxdt.

We have to prove that |u|ν(x)p′(x) ∈ L1(Q). To this aim, we use the definition of
entropy solution with k = 1 and ϕ = 0 to get (where Θ1(s) ≥ |s| − 1)

t ∈ [0, T ]→
∫

Ω

Θ1(u− g2)(t, x) is a continuous function,

then the integral satisfies∫
Ω

|v(t, x)|dx ≤
∫

Ω

(1 + Θ1(v))(t, x)dx ≤ meas(Ω) + C.
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Therefore, we conclude that v ∈ L∞(0, T ;L1(Ω)). Now, again by taking ϕ = 0 as a
test function in (34) we obtain∫

Q

a(t, x, u,∇u)∇Tk(v)dxdt ≤
∫

Ω

Θk(u0)dx+

∫
Q

fTk(v)dxdt

+

∫
Q

G1 · ∇Tk(v)dxdt+

∫
Q

F · ∇Tk(v)dxdt.

(64)

By definition of Θk, we have Θk(s) ≤ k|s|, using |Tk(s)| ≤ k, inequality (64) becomes∫
Q

a(t, x, u,∇u)∇Tk(v)dxdt ≤k‖u0‖L1(Ω) + k‖f‖L1(Q)

+ C
[
‖G1‖Lp′(x)(Q) + ‖F‖Lp′(x)(Q)

]
‖∇Tk(v)‖Lp(x)(Q).

Since ∫
{|v|≤k}

a(t, x, u,∇u)∇udxdt =

∫
{|v|≤k}

a(t, x, u,∇u) · ∇Tk(v)dxdt

+

∫
{|v|≤k}

a(t, x, u,∇u) · ∇g2dxdt,

and using assumptions (26)-(27) and Poincarré’s inequality, this yields

α

∫
{|v|≤k}

|∇u|p(x)dxdt−
∫
{|v|≤k}

Λ(t, x)dxdt

≤
∫
Q

a(t, x, u,∇u) · ∇Tk(v)dxdt+

∫
{|v|≤k}

β(b(t, x) + |u|ν(x) + |∇u|p(x)−1)|∇g2|dxdt

≤
∫
Q

a(t, x, u,∇u)∇Tk(v)dxdt

+ β
(
‖b(t, x)‖Lp′(x)(Q) + ‖u‖p(x)−1

Lp(x)({|v|≤k}) + ‖∇u‖p(x)−1

Lp(x)({|v|≤k})

)
‖∇g2‖Lp(x)(Q)

≤
∫
Q

a(t, x, u,∇u)∇Tk(v)dxdt+ βC
(
‖b‖Lp′(x)(Q) + ‖Tk(v)‖p(x)−1

Lp′(x)(Q)

+ ‖g2‖p(x)−1

Lp(x)(Q)
+ ‖∇Tk(v)‖p(x)−1

Lp(x)(Q)
+ ‖∇g2‖p(x)−1

Lp(x)(Q)

)
‖∇g2‖Lp(x)(Q)

≤
∫
Q

a(t, x, u,∇u) · ∇Tk(v)dxdt+ βC
(
‖b‖Lp′(x)(Q) + C ′‖∇Tk(v)‖p(x)−1

Lp(x)(Q)

+ ‖g2‖p(x)−1

Lp(x)(Q)
+ ‖∇Tk(v)‖p(x)−1

Lp(x)(Q)

)
‖∇g2‖Lp(x)

Now, let us come back to (64), for C ′ = C(β,C, ‖b‖Lp′(x)(Q), ‖g2‖Lp(x)(Q), ‖∇g2‖Lp(x)(Q)),

we have ∫
Q

|∇Tk(v)|p(x)dxdt ≤ C
∫
{|v|≤k}

|∇u|p(x)dxdt+ C

∫
Q

|∇g2|p(x)dxdt

≤ C
∫
Q

a(t, x, u,∇u) · ∇Tk(v)dxdt+ C
(
‖∇Tk(v)‖p(x)−1

Lp(x)(Q)
+ C ′

)
≤ C

[
k‖u0‖L1(Ω) +K‖f‖L1(Q) + C‖G1‖Lp′(x)(Q)‖∇Tk(v)‖Lp(x)(Q)

]
+ C

(
‖∇Tk(v)‖p(x)−1

Lp(x)(Q)
+ 1
)
≤ C(k + 1).

(65)
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According to the Gagliardo-Nirenberg result, see Lemma 2.6, we deduce from (65)
that |u|ν(x)p(x) ∈ L1(Q), note also that

α

2

∫
{h≤|v|≤h+k}

|∇u|p(x)dxdt ≤ k
∫
{|u0|≥h}

|u0|dx+ k

∫
{|v|≥h}

|f |dxdt

+ C

∫
{h≤|v|≤h+k}

(
|G1|p

′(x) + F |p
′(x) + |∇g2|p(x) + |b|p(x) + |u|ν(x)p(x) + Λ

)
dxdt

Since meas({|v| ≥ h})→ 0 as h→∞, then

∫
{h≤|v|≤h+k}

|∇u|p(x)dxdt→ 0 as h→∞.

�

Now, we are ready to prove that the entropy solution u satisfies all other prop-
erties of the renormalized solution. First we introduce the functions ã(t, x, ζ) =

a(t, x, u(t, x), ζ) and b̃ = b+ |u|ν(x) such that

b̃ ∈ Lp
′(x)(Q), |ã(t, x, ζ)| ≤ β(b̃+ |ζ|p(x)−1).

Then, we consider the following auxiliary problems


ũt − div(ã(t, x,∇ũ)) = µ in ]0, T [×Ω,

ũ(t, x) = 0 on ]0, T [×∂Ω,

ũ(0, x) = u0(x) in Ω.

(66)

By employing the arguments in [2], we easily find a renormalized solution ũ of problem
(66). Our aim is to prove the uniqueness of ũ (i.e. u = ũ). We will divide the proof
into several steps where some of the reasoning is based on the ideas developed in
[2]. Let ṽ = ũ − g2, since ũ is a renormalized solution of (66), we have Sn(ṽ) ∈ E.
Choosing Tk(v − Sn(ṽ)) as a test function in (34) and (66) and using the fact that

Tk(Tk+n+1(v)− Sn(ṽ)) ∈ Lp−(0, T ;W
1,p(·)
0 (Ω)) ∩ L∞(Q), we get

∫
Ω

Θk(v − Sn(v))(T )dx−
∫

Ω

Θk(u0 − Sn(u0))dx

+

∫ T

0

〈(Sn(ṽ))t, Tk(v − Sn(ṽ))〉 dt+

∫
Q

ã(t, x,∇u) · ∇(Tk(v − Sn(ṽ)))dxdt

≤
∫
Q

fTk(v − Sn(ṽ))dxdt+

∫
Q

G1 · ∇(Tk(v − Sn(ṽ)))dxdt+

∫
Q

F · ∇(Tk(v − Sn(ṽ)))dxdt

(67)
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and

∫ T

0

〈(Sn(ṽ))t, Tk(v − Sn(ṽ))〉 dt

=

∫
Q

fS′n(ṽ)Tk(v − Sn(ṽ))dxdt+

∫
Q

S′n(ṽ)G1 · ∇(Tk(v − Sn(ṽ)))dxdt

+

∫
Q

S′′n(ṽ)G1 · ∇ṽTk(v − Sn(ṽ))dxdt+

∫
Q

S′n(ṽ)F · ∇(Tk(v − Sn(ṽ)))dxdt

+

∫
Q

S′′n(ṽ)F · ∇ṽTk(v − Sn(ṽ))dxdt−
∫
Q

S′′n(ṽ)ã(t, x,∇ũ)∇ṽTk(v − Sn(ṽ))dxdt

−
∫
Q

S′n(ṽ)ã(t, x,∇ũ)∇(Tk(v − Sn(ṽ)))dxdt,

which implies, since S′′n(s) = 0 if s /∈ [n, n+ 1] and |S′′n| ≤ 1, that

∣∣∣∣∫
Q

S′′n(ṽ)G1 · ∇ṽTk(v − Sn(ṽ))dxdt−
∫
Q

S′′n(ṽ)ã(t, x,∇ũ) · ∇ṽTk(v − Sn(ṽ))dxdt

∣∣∣∣
≤ Ck

∫
{n≤|ṽ|≤n+1}

(
|G1|p

′(x) + |F |p
′(x) + |∇g2|p(x) + |∇ũ|p(x)

)
+ Ck

∫
{n≤|ṽ|≤n+1}

(
b̃p
′(x) + |∇g2|p(x) + |∇ũ|p(x)

)
dxdt

≤ ω1(n) →
n→+∞

0.

Thus,

∫ T

0

〈(Sn(ṽ))t, Tk(v − Sn(ṽ))〉 dt

≥ −ω1(n) +

∫
Q

fS′n(ṽ)Tk(v − Sn(ṽ))dxdt+

∫
Q

S′n(ṽ)G1 · ∇(Tk(v − Sn(ṽ)))dxdt

+

∫
Q

S′n(ṽ)F · ∇(Tk(v − Sn(ṽ)))dxdt−
∫
Q

S′n(ṽ)ã(t, x,∇ũ) · ∇(Tk(v − Sn(ṽ)))dxdt.

Now, since Θk is nonnegative and using (67) we have

∫
Q

(ã(t, x,∇u)− S′n(ṽ)ã(t, x,∇ũ)) · ∇(Tk(v − Sn(ṽ)))dxdt

≤
∫
Q

(1− S′n(ṽ))fTk(v − Sn(ṽ))dxdt+

∫
Q

(1− S′n(ṽ))G1 · ∇(Tk(v − Sn(ṽ)))dxdt

+

∫
Q

(1− S′n(ṽ))F · ∇(Tk(v − Sn(ṽ)))dxdt+

∫
Ω

Θk(u0 − Sn(u0))dx+ ω1(n).
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The left hand side can be split as

∫
Q

(ã(t, x,∇u)− S′n(ṽ)ã(t, x,∇ũ)) · ∇(Tk(v)− Sn(ṽ)))dxdt

=

∫
{|ṽ|≤n}

(ã(t, x,∇u)− S′n(ṽ)ã(t, x,∇ũ)) · ∇(Tk(v − Sn(ṽ)))dxdt

+

∫
{|ṽ|>n}

ã(t, x,∇u)∇(Tk(v − Sn(ṽ)))dxdt

−
∫
{|ṽ|>n}

S′n(ṽ)ã(t, x,∇ũ) · ∇(Tk(v − Sn(ṽ)))dxdt,

and for every positive integer n, we know that on the set {|ṽ| ≤ n}:

Sn(ṽ) = ṽ, S′n(ṽ) = 1

and

∇(Tk(v − Sn(ṽ))) = χ{|v−Sn(ṽ)|≤k}(∇v − S′n(ṽ)∇ṽ)

= χ{|v−ṽ|≤k}(∇u−∇ũ)χ{|ṽ|≤n} = χ{|u−ũ|≤k}(∇u−∇ũ)χ{|ṽ|≤n},

then ∫
{|ṽ|≤n}

(ã(t, x,∇u)− S′n(ṽ)ã(t, x,∇ũ)) · ∇(Tk(v − Sn(ṽ)))dxdt

=

∫
{|ṽ|≤n}

χ{|u−ũ|≤k}(ã(t, x,∇u)− ã(t, x,∇ũ)) · (∇u−∇ũ)dxdt

Recalling that on the set {|ṽ| ≥ n} we have n ≤ |Sn(ṽ)| ≤ n+1, and if |v−Sn(ṽ)| ≤ k,
then
|v| ≤ k+ |Sn(ṽ)| ≤ k+n+ 1 and |v| ≥ |Sn(ṽ)|−k ≥ n−k. Now, since S′n = 0 outside
[−n− 1, n+ 1] and |S′n| ≤ 1, we get

∣∣∣∣∣
∫
{|ṽ|>n}
ã(t, x,∇u)∇(Tk(v − Sn(ṽ)))dxdt

∣∣∣∣∣ =

∣∣∣∣∣
∫
{|ṽ|>n,|v−Sn(ṽ)|≤k}

ã(t, x,∇u)(∇v − S′n(ṽ)∇ṽ)dxdt

∣∣∣∣∣
≤

∣∣∣∣∣
∫
{|ṽ|>n,|v−Sn(ṽ)|≤k}

ã(t, x,∇u) · ∇vdxdt

∣∣∣∣∣+

∣∣∣∣∣
∫
{|ṽ|>n,|v−Sn(ṽ)|≤k}

S′n(ṽ)ã(t, x,∇u) · ∇ṽdxdt

∣∣∣∣∣
≤ β

∫
{n−k≤|v|≤n+k+1}

(
b̃+ |∇u|p(x)−1

)
|∇v|+ β

∫
{n≤|ṽ|≤n+1,n−k≤|v|≤n+k+1}

(b̃+ |∇u|p(x)−1)|∇ũ|dxdt

≤ C
∫
{n−k≤|v|≤n+k+1}

(
b̃p
′(x) + |∇u|p(x) + |∇g2|p(x)

)
dxdt+ C

∫
{n<|ṽ|≤n+1}

|∇ũ|p(x)dxdt

= ω2(n) →
n→∞

0.
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By the same procedures and for every Sn and S′n be defined as before, we have∣∣∣∣∣
∫
{|ṽ|>n}

S′n(ṽ)ã(t, x∇ũ) · ∇(Tk(v − Sn(ṽ)))dxdt

∣∣∣∣∣
≤ β

∫
{n<|ṽ|≤n+1,|v−Sn(ṽ)|≤k}

(
b̃+ |∇ũ|p(x)−1

)
(|∇v|+ |∇ṽ|) dxdt

≤ C
∫
{n<|ṽ|≤n+1,n−k≤|v|≤n+k+1}

(
b̃p
′(x)) + |∇ũ|p(x) + |∇g2|p(x) + |∇u|p(x)

)
dxdt

= ω3(n) →
n→∞

0.

Then we have (with ω4(n) →
n→∞

0)∫
Q

(ã(t, x,∇u)− S′n(ṽ)ã(t, x,∇ũ))∇(Tk(v − Sn(ṽ))dxdt

≥
∫
{|ṽ|≤n}

χ{|ṽ|≤n}χ{|u−ũ|≤k} (ã(t, x,∇u)− ã(t, x,∇ũ)) (∇u−∇ũ)dxdt− ω4(n).

Noting that equality (with ω5(n) →
n→∞

0)∫
{|ṽ|≤n}

χ{|u−ũ|≤n} (ã(t, x,∇u)− ã(t, x,∇ũ)) · (∇u−∇ũ)dxdt

≤ ω5(n) + k

∫
Q

|f ||1− S′n(ṽ)|dxdt+

∫
Q

|G1||1− S′n(ṽ)||∇(Tk(v − Sn(ṽ))|dxdt

+

∫
Q

|F ||1− S′n(ṽ)||∇(Tk(v − Sn(ṽ))|dxdt+ k

∫
Ω

|u0 − Snu0)|dx.

Recall that Sn(s) → s as n → ∞, |Sn(s)| ≤ |s|, S′n → 1 and |S′n| ≤ 1, so that the
dominated convergence theorem gives∫

Ω

|u0 − Sn(u0)|dx+

∫
Q

|f |(1− S′n(ṽ))dxdt→ 0 as n→∞.

Moreover, S′n = 1 on [−n, n], S′n = 0 outside [−n − 1, n + 1] and 0 ≤ S′n ≤ 1 imply
that ∫

Q

|G1||1− S′n(ṽ)||∇(Tk(v − Sn(ṽ)))|dxdt

≤
∫
{|ṽ|>n}

|G1||∇(Tk(v − Sn(ṽ))|dxdt

≤
∫
{|ṽ|>n,|v−Sn(ṽ)|≤k}

(|G1||∇v|+ |G1||S′n(ṽ)||∇ṽ|dxdt

≤ C
∫
{n−k≤|v|≤n+k+1}

(|G1|p
′(x) + |∇u|p(x) + |∇g2|p(x))

+ C

∫
{n<|ṽ|≤n+1}

(|G1|p
′(x) + |∇ũ|p(x) + |∇g2|p(x)dxdt

= ω6(n) →
n→∞

0.
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It follows that∫
Q

χ{|ṽ|≤n}χ{|u−ũ|≤k}(ã(t, x,∇u)− ã(t, x,∇ũ)) · (∇u−∇ũ)dxdt

≤ ω7(n) →
n→∞

0.

Since χ{|u−ũ|≤k}(ã(t, x,∇ũ) − ã(t, x,∇ũ)) · (∇u − ∇ũ) is nonnegative and applying
Fatou’s lemma, we obtain

∫
Q

χ{|u−ũ|≤n}(ã(t, x,∇u)− ã(t, x,∇ũ)) · (∇u−∇ũ)dxdt ≤ 0,∫
Q

χ{|u−ũ|≤k} (ã(t, x,∇u)− ã(t, x,∇ũ)) (∇u−∇ũ)dxdt = 0 a.e. on Q.

Then,

(ã(t, x,∇u)− ã(t, x,∇ũ)) · (∇u−∇ũ) = 0 a.e. on Q,

which implies that

∇u = ∇ũ a.e. on Q,

that is,

∇v = ∇ṽ a.e. on Q.

To conclude, we shall prove that u = ũ. To this aim, let us consider Wn = T1(Tk(v)−
Tk(ṽ)) ∈ Lp−(0, T ;W

1,p(·)
0 (Ω)). We have ∇wn = χ{|Tk(v)−Tk(ṽ)|≤1}(χ{|v|≤n}∇v −

χ{|ṽ|≤n}∇ṽ) and that

∇wn =


0 on {|v| ≤ n, |ṽ| ≤ n} ∪ {|v| > n, |ṽ| > n},
χ{|v−Tk(ṽ)|≤1}∇v on {|v| ≤ n, |ṽ| > n},
−χ{|ṽ−Tk(v)|≤1}∇v on {|v| > n, |ṽ| ≤ n}.

But, if |s| > n, |z| ≤ n and |z − T1(s)| ≤ 1 then n− 1 ≤ |z| ≤ n, which implies that∫
Q

|∇wn|p(x)dxdt ≤
∫
{n−1≤|v|≤n}

|∇v|p(x)dxdt+

∫
{n−1≤|ṽ|≤n}

|∇ṽ|p(x)dxdt

≤ C
∫
{n−1≤|v|≤n}

(|∇u|p(x) + |∇g2|p(x))dxdt

+ C

∫
{n−1≤|ṽ|≤n}

(|∇ũ|p(x) + |∇g2|p(x))dxdt.

Since Wn → 0 in Lp−(0, T ;W
1,p(·)
0 (Ω)) and in D′(Q), then using the a.e. convergence

wn to T1(v − ṽ), we conclude that

Wn → T1(v − ṽ) in D′(Q).

Then

T1(v − ṽ) = 0 i.e., v = ṽ on Q.

Then u = ũ, that is u is a renormalized solution of the parabolic problem (2), and
this concludes the proof of Theorem 1.1.
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[79] F. Petitta, A. Porretta, On the notion of renormalized solution to nonlinear parabolic equations

with general measure data, Journal of Elliptic and Parabolic Equations 1 (2015), 201–214.

[80] F. Petitta, A. Ponce, A. Porretta, Approximation of diffuse measures for parabolic capacities,
C. R. Math. Acad. Sci. Paris 346 (2008), no. 3-4, 161–166.

[81] F. Petitta, A. C. Ponce, A. Porretta, Diffuse measures and nonlinear parabolic equations, J.
Evol. Equations 11 (2011), no. 4, 861–905.

[82] A. Prignet, Remarks on existence and uniqueness of solutions of elliptic problems with right

hand side measures, Rend. Mat. 15 (1995), 321–337.
[83] A. Prignet, Existence and uniqueness of entropy solutions of parabolic problems with L1 data,

Nonlinear Analysis: T.M.A. 28 (1997), 1943–1954.

[84] H. Redwane, Nonlinear parabolic equation with variable exponents and diffuse measure data,
J. Nonl. Evol. Equ. Appl. (6) (2019), 95–114.

[85] M.M. Rao, Z.D. Ren, Theory of Orlicz Spaces, Monographs and Textbooks in Pure and Applied

Mathematics 146, Marcel Dekker, New York, 1991.
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Hassan 1, B.P. 764, Settat, Morocco
E-mail address: redwane_hicham@yahoo.fr

mohammed.abdellaoui3@usmba.ac.ma
redwane_hicham@yahoo.fr

	1. Introduction & historical context
	2. Preliminaries
	2.1. Variable exponent Lebesgue/Sobolev spaces
	2.2. Variable exponent capacities & diffuse measures
	2.3. Generalized solutions and main result

	3. The proof of the main result
	References

