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1. Introduction

The notion of “statistical metric space” now known as Probabilistic metric space (in
short PM space) was introduced by Menger [26] in 1942, as an important generaliza-
tion of metric spaces. In PM space he used the distance between two points u and v
as a distribution function Fuv instead of a non-negative real number.

After Menger, several mathematicians like Schwiezer and Sklar [32, 33, 34, 35],
Tardiff [40], Thorp [41] and many others, contributed a lot in the study of probabilistic
metric spaces. A through discussion on the development of probabilistic metric spaces
can be found in the well known book of Schwiezer and Sklar [36]. Many topologies
are constructed on a PM space, but the strong topology is one, getting most of the
importance to date and we are using it in this paper.

On the otherhand, the idea of statistical convergence was introduced as a general-
ization to the usual notion of convergence of real number sequences independently by
Fast [12] and Schoenberg [31], using the concept of natural density of subsets of N,
the set of all natural numbers. A set K ⊂ N has natural density d(K) if

d(K) = lim
n→∞

|K(n)|
n

where K(n) = {j ∈ K : j ≤ n} and |K(n)| represents the number of elements in K(n).
A real number sequence x = {xk}k∈N is called statistically convergent to L ∈ R if

for every ε > 0, d(B(ε)) = 0 or lim
n→∞

(C1χB(ε)
)n = 0 where B(ε) = {k ∈ N : |xk − L| ≥

ε} and C1 is the Cesaro matrix of order 1.
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After the seminal works of Šalát [28] and Fridy [14], many more works on this
convergence notion have been done which can be seen in [15, 27, 39].

In 1981, the concept of natural density was generalized to the notion of A-density
by Freedman et al. [13], using an arbitrary non-negative regular summability matrix
A in place of the Cesaro matrix C1. An N × N matrix A = (ank), ank ∈ R is
called a regular summability matrix if for any convergent sequence x = {xk}k∈N

of real numbers with limit ξ, lim
n→∞

∞∑
k=1

ankxk = ξ, and A is called non-negative if

ank ≥ 0, ∀n, k. The well-known Silverman-Toepliz’s theorem asserts that an N × N
matrix A = (ank), ank ∈ R is regular if and only if the following three conditions are
satisfied:
(i) ‖A‖ = sup

n

∑
k

|ank| <∞,

(ii) lim
n→∞

ank = 0 for each k,

(iii) lim
n→∞

∑
k

ank = 1.

Throughout the paper we take A = (ank) as an N×N non-negative regular summa-
bility matrix unless or otherwise mentioned.

A set M⊂ N is said to have A density δA(M) if

δA(M) = lim
n→∞

∑
m∈M

anm.

The notion of statistical convergence was extended to the notion of A-statistical
convergence by Kolk [17], using the notion of A-density.

A sequence x = {xk}k∈N of real numbers is said to be A-statistically convergent
to L ∈ R if for every ε > 0 we have

δA({k ∈ N : |xk − L| ≥ ε}) = 0, or, lim
n→∞

∑
|xk−L|≥ε

ank = 0.

In this case we write stA- lim
k→∞

xk = L. The notion of A-statistical limit point and

A-statistical cluster point were introduced by Connor et al. in [4] and these notions
were extensively studied in [6, 7].

Further, the idea of statistical convergence was extended to I-convergence by
Kostyrko et al. [18] using the notion of an ideal I of subsets of N. A non-empty
class I ⊂ 2X , where X 6= ∅, is called an ideal, if the following three conditions are
satisfied:

(i) ∅ ∈ I;

(ii) A,B ∈ I ⇒ A ∪B ∈ I;

(iii) A ∈ I, B ⊂ A⇒ B ∈ I.

An ideal I in X is called non-trivial if I 6= {∅} and X /∈ I. A non-trivial ideal
I of X is called admissible if for every y ∈ X, {y} ∈ I. For a non-trivial ideal
I in X the filter associated with the ideal I is denoted by F(I) and is defined by
F(I) = {K ⊂ X : if there exists H ∈ I such that X \H = K}.

Throughout the paper I stands for a non-trivial admissible ideal in N. A real
number sequence x = {xk}k∈N is said to be I-convergent to L ∈ R, if for every ε > 0,
{k ∈ N : |xk − L| ≥ ε} ∈ I and we write it as I- lim

k→∞
xk = L.
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Many more works on this line can be seen in [19, 20, 21].
Recently the notion of A-statistical convergence of real sequences was generalized

to the notion of AI-statistical convergence by Savas et al. [29] by using an ideal I in
N. The concept of AI-statistical cluster point was introduced by Gürdal et al. [16].
A set M⊂ N is said to have AI-density δAI (M) if

δAI (M) = I- lim
n→∞

(AχM)n = I- lim
n→∞

∑
m∈M

anm.

From Lemma 2.4 of [25], we have for K1,K2 ⊂ N if δAI (K1) and δAI (K)2 exist,
then
(i) δAI (∅) = 1, δAI (N) = 1 and 0 ≤ δAI (Ki) ≤ 1 for i = 1, 2,

(ii) |K1∆K2| <∞⇒ δAI (K1) = δAI (K2),
(iii) K1 ∩ K2 = ∅ ⇒ δAI (K1) + δAI (K2) = δAI (K1 ∪ K2),
(iv) δAI (Kci ) = 1− δAI (Ki) for i = 1, 2,

(v) δAI (Ki) = 0 for i = 1, 2⇒ δAI

(
2⋃
i=1

Ki
)

= 0,

(vi) δAI (Ki) = 1 for i = 1, 2⇒ δAI (K1 ∩ K2) = 1, δAI (K1 ∪ K2) = 1.
If a real number sequence x = {xk}k∈N satisfies a property Q for each k except

for a set of AI-density zero, then we say x satisfies the property Q for “almost all
k(AI)” and we write it in short as “a.a.k(AI)”.

For an admissible ideal I of N, the collection J (AI) = {B ⊂ N : δAI (B) = 0},
where A = (ank) is an N × N non-negative regular summability matrix, forms an
admissible ideal of N again.

A real number sequence x = {xk}k∈N is said to be AI-statistically convergent to ξ
if for any ε > 0,

δAI ({k ∈ N : |xk − ξ| ≥ ε}) = 0.

In this case we write I-stA- lim
k→∞

xk = ξ or simply as xk
AI-st−−−−→ ξ. Many more works

on this line can be seen in [10, 11, 25, 30].
A real number sequence x = {xk}k∈N is said to be AI-statistically Cauchy if for

every γ > 0, there exists a natural number m0 such that

δAI ({k ∈ N : |xk − xm0
| ≥ γ}) = 0.

Because of immense importance of probabilistic metric space in applied mathe-
matics, the notions of statistical convergence [12, 31] and I-convergence [18] were
extended to the setting of sequences in a PM space endowed with the strong topology
by Şençimen et al. in [37] and [38] respectively. Many more works on this line can
be seen in [1, 2, 5, 22]. The notion of strong A-statistical convergence was stud-
ied by Malik et al. [24] in PM spaces. It can be easily seen that the set of all
AI-density zero subsets of N forms an ideal J (AI) in N. So the notions of strong
AI-statistical convergence and strong AI-statistical Cauchyness are special cases of
strong I-convergence and strong I-Cauchyness respectively in a PM space. Following
Kostyrko et al. [18], Bartoszewicz et al. [3] and Şençimen et al [38], for an admissible
ideal I of N, if we consider the admissible ideal J (AI), then the notions of strong
J (AI)-convergence, strong J (AI)-Cauchyness, strong J (AI)-limit point and strong
J (AI)-cluster point of sequences in a PM space become the notions of strong AI-
statistical convergence, strong AI-statistical Cauchyness, strong AI-statistical limit
point and strong AI-statistical cluster point respectively.
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In this paper we study some basic properties of strong AI-statistical convergence,
strong AI-statistical Cauchyness, strong AI-statistical limit points and strong AI-
statistical cluster points of a sequence in a probabilistic metric space not done earlier.
We also introduce the notion of strong AI∗ -statistical Cauchyness and study its rela-
tionship with strong AI-statistical Cauchyness.

2. Basic definitions and notations

In this section, we first recall some basic concepts and results related to probabilistic
metric (PM) spaces (for more details see in [32, 33, 34, 35, 36]).

Definition 2.1. [36] A monotonically non decreasing function f : [−∞,∞] → [0, 1]
is called a distribution function if f(−∞) = 0 and f(∞) = 1.

We denote the set of all distribution functions with left continuous over (−∞,∞)
by D. The relation ≤ on D defined by f ≤ g if and only if f(a) ≤ g(a), ∀ a ∈ [−∞,∞]
is clearly a partial order relation on D.

If b ∈ [−∞,+∞], then the unit step at b is defined on D by

εb(a) =

{
0, a ∈ [−∞, b)
1, a ∈ (b,+∞].

Definition 2.2. [36] A sequence {fk}k∈N in D is said to converge weakly to f ∈ D
written as fk

w−→ f , if {fk(ξ)}k∈N converges to f(ξ) at each continuity point ξ of f .

If f, g ∈ D, then the distance dL(f, g) between f and g is defined by the infimum
of all numbers a ∈ (0, 1] such that

f(ξ − a)− a ≤ g(ξ) ≤ f(ξ + a) + a

and g(ξ − a)− a ≤ f(ξ) ≤ g(ξ + a) + a, holds ∀ξ ∈
(
−1

a
,

1

a

)
.

Then (D, dL) forms a metric space with the metric dL. Clearly if {fk}k∈N is a

sequence in D and f ∈ D, then fk
w−→ f if and only if dL(fk, f)→ 0.

Definition 2.3. [36] A non decreasing function f : [0,∞] −→ R, left continuous on
(0,∞) is said to be a distance distribution function if f(0) = 0 and f(∞) = 1.

We denote the set consisting of all the distance distribution functions as D+.
Clearly (D+, dL) is a compact metric space and thus complete.

Theorem 2.1. [36] If f ∈ D+ then for any t > 0, f(t) > 1 − t if and only if
dL(f, ε0) < t.

Definition 2.4. [36] A triangle function is a binary operation τ on D+, which is
associative, commutative, nondecreasing in each place and ε0 is the identity element.

Definition 2.5. [36] A probabilistic metric space, in short PM space, is a triplet
(X,F , τ) where X is a nonempty set whose elements are the points of the space; F is
a function from X ×X into D+, τ is a triangle function and the following conditions
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are satisfied for all a, b, c ∈ X:

(P-1). F(a, a) = ε0,

(P-2). F(a, b) 6= ε0 if a 6= b,

(P-3). F(a, b) = F(b, a),

(P-4). F(a, c) ≥ τ(F(a, b),F(b, c)).

Henceforth we will denote F(a, b) by Fab and its value at t by Fab(t).

Example 2.1. [36] Let F ∈ D+ is different from ε0 and ε∞. Then (X,F ,M) is a
equilateral PM space where Fuv is given by

Fuv =

{
F, if u 6= v
ε0, if u = v

and M is the maximal triangle function.

Definition 2.6. [36] Let (X,F , τ) be a PM space. For ξ ∈ X and t > 0, the strong
t-neighborhood of ξ is denoted by Nξ(t) and is defined by

Nξ(t) = {η ∈ X : Fξη(t) > 1− t}.
The collection Nξ = {Nξ(t) : t > 0} is called the strong neighborhood system at ξ
and the union N =

⋃
ξ∈X

Nξ is called the strong neighborhood system for X.

From Theorem 2.1, we can write Na(r) = {b ∈ X : dL(Fab, ε0) < r}. If τ is
continuous, then the strong neighborhood system N determines a Hausdorff topology
for X. This topology is called the strong topology for X and members of this topology
are called strong open sets. Clearly, Nβ(t) where β ∈ X, t > 0 is a basic open set of
this strong topology.

Throughout the paper, in a PM space (X,F , τ), we always consider that τ is
continuous and X is endowed with the strong topology.

In a PM space (X,F , τ) the strong closure of any subset M of X is denoted by
k(M) and for any subset M(6= ∅) of X strong closure of M is defined by,

k(M) = {c ∈ X : for any t > 0, ∃ e ∈M such that Fce(t) > 1− t}.

Definition 2.7. [9] Let (X,F , τ) be a PM space. Then a subset M of X is called
strongly closed if its complement is a strongly open set.

Definition 2.8. [22, 37] Let (X,F , τ) be a PM space and M 6= ∅ be a subset of X.
Then l ∈ X is said to be a strong limit point of M if for every t > 0,

Nl(t) ∩ (M\ {l}) 6= ∅.

The set of all strong limit points of the set M is denoted by LFM.

Definition 2.9. [9] Let (X,F , τ) be a PM space andM be a subset of X. Let Q be
a family of strongly open subsets of X such that Q covers M. Then Q is said to be
a strong open cover for M.

Definition 2.10. [9] Let (X,F , τ) be a PM space and M be a subset of X. Then
M is called strongly compact set if for every strong open cover of M has a finite
subcover.
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Definition 2.11. [9] Let (X,F , τ) be a PM space and x = {xk}k∈N be a sequence in
X. Then x is said to be strongly bounded if there exists a strongly compact subset C
of X such that xk ∈ C, ∀ k ∈ N.

Definition 2.12. [9] Let (X,F , τ) be a PM space and x = {xk}k∈N be a sequence
in X. Then x is said to be strongly statistically bounded if there exists a strongly
compact subset C of X such that d({k ∈ N : xk /∈ C}) = 0.

Theorem 2.2. [9] Let (X,F , τ) be a PM space and M be a strongly compact subset
of X. Then every strongly closed subset of M is strongly compact.

Definition 2.13. [36] Let (X,F , τ) be a PM space. Then for any u > 0, the subset
V(u) of X ×X given by

V(u) = {(p, q) : Fpq(u) > 1− u}
is called the strong u-vicinity.

Theorem 2.3. [36] Let (X,F , τ) be a PM space and τ be continuous. Then for
any u > 0, there is an α > 0 such that V(α) ◦ V(α) ⊂ V(u), where V(α) ◦ V(α) =
{(p, r) : for some q, (p, q) and (q, r) ∈ V(α)}.

From the hypothesis of Theorem 2.3, we can say that for any u > 0, there is an
α > 0 such that Fpr(u) > 1 − u whenever Fpq(α) > 1 − α and Fqr(α) > 1 − α.
Equivalently it can be written as: for any u > 0, there is an α > 0 such that
dL(Fpr, ε0) < u whenever dL(Fpq, ε0) < α and dL(Fqr, ε0) < α.

Definition 2.14. [37] Let (X,F , τ) be a PM space. A sequence x = {xk}k∈N in X
is said to be strongly convergent to L ∈ X if for every t > 0, ∃ a natural number k0
such that

xk ∈ NL(t), whenever k ≥ k0.

In this case, we write F- lim
k→∞

xk = L or, xk
F−→ L.

Definition 2.15. [35] Let (X,F , τ) be a PM space. A sequence x = {xk}k∈N in X is
said to be strongly Cauchy if for every t > 0, there exists a natural number k0 such
that

(xk, xr) ∈ U(t), whenever k, r ≥ k0.

Remark 2.1. The Definition 2.15 can be restated as follows: A sequence x = {xk}k∈N
in a PM space (X,F , τ) is said to be strongly Cauchy if for every t > 0, there exists
a natural number k0 = k0(t) such that

(xk, xk0) ∈ U(t), whenever k ≥ k0.

Definition 2.16. [37] Let (X,F , τ) be a PM space. A sequence x = {xk}k∈N in X
is said to be strongly statistically convergent to α ∈ X if for any t > 0

d({k ∈ N : Fxkα(t) ≤ 1− t}) = 0, or, d({k ∈ N : xk /∈ Nα(t)}) = 0.

In this case we write stF - lim
k→∞

xk = α.

Definition 2.17. [37] Let (X,F , τ) be a PM space. A sequence x = {xk}k∈N in
X is said to be strongly statistically Cauchy if for any t > 0, ∃ a natural number
N0 = N0(t) such that

d({k ∈ N : FxkxN0
(t) ≤ 1− t}) = 0, or, d({k ∈ N : xk /∈ NxN0

(t)}) = 0.
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3. Strong AI-statistical convergence and strong AI-statistical Cauchyness

In this section, following the works of Das et al. [5], Şençimen et al. [38] and Malik
et al. [24] we study the notions of strong AI-statistical convergence and strong AI-
statistical Cauchyness in a PM space.

Definition 3.1. [38] Let (X,F , τ) be a PM space and x = {xk}k∈N be a sequence in
X. Then x is said to be strongly I-convergent to L ∈ X, if for every t > 0, the set

{k ∈ N : FxkL(t) ≤ 1− t} ∈ I, or, {k ∈ N : xk /∈ NL(t)} ∈ I.

In this case we write IF - lim
k→∞

xk = L.

Definition 3.2. [38] Let (X,F , τ) be a PM space and x = {xk}k∈N be a sequence in
X. Then x is said to be strongly I-Cauchy sequence if for every t > 0, ∃ a natural
number k0 depending on t such that, the set

{k ∈ N : Fxkxk0 (t) ≤ 1− t} ∈ I, or, {k ∈ N : xk /∈ Nxk0 (t)} ∈ I.

Note 3.1. (i) If I = Ifin = {K ⊂ N : |K| < ∞}, then in a PM space the notions
of strong Ifin-convergence and strong Ifin-Cauchyness coincide with the notions of
strong convergence and strong Cauchyness respectively.

(ii) If I = Id = {K ⊂ N : d(K) = 0}, then in a PM space the notions of strong Id-
convergence and strong Id-Cauchyness coincide with the notions of strong statistical
convergence [37] and strong statistical Cauchyness [37] respectively.

(iii) Let I be an admissible ideal in N then the notions of strong J (AI)-convergence
and strong J (AI)-Cauchyness of sequences in a PM space coincide with the notions of
strong AI-statistical convergence and strong AI-statistical Cauchyness respectively.
Further, if I = Ifin = {K ⊂ N : |K| < ∞}, then the notions of strong J (AIfin)-
convergence and strong J (AIfin)-Cauchyness of sequences in a PM space coincide
with strong A-statistical convergence [24] and strong A-statistical Cauchyness [24]
respectively.

(iv) If A is the Cesaro matrix C1 and I is an admissible ideal, then the notions

of strong J (C1
I)-convergence and strong J (C1

I)-Cauchyness of sequences in a PM
space coincide with the notions of strong I-statistical convergence [5] and strong
I-statistical Cauchyness [5] respectively.

In view of Definition 3.1, Definition 3.2 and Note 3.1.(iii) we now restate the
definitions of strong AI-statistical convergence and strong AI-statistical Cauchyness
in a PM space.

Definition 3.3. [38] Let (X,F , τ) be a PM space and x = {xk}k∈N be a sequence in
X. Then x is said to be strongly AI-statistically convergent to L ∈ X, if for every
t > 0,

δAI ({k ∈ N : FxkL(t) ≤ 1− t}) = 0 or, δAI ({k ∈ N : xk /∈ NL(t)}) = 0.

We write it as, I-stFA- lim
k→∞

xk = L or simply as xk
AI-stF−−−−−→ L. L is called the strong

AI-statistical limit of x.

Definition 3.4. [38] Let (X,F , τ) be a PM space and x = {xk}k∈N be a sequence in
X. Then x is said to be strongly AI-statistically Cauchy sequence if for every t > 0,



106 P. MALIK AND SAMIRAN DAS

there exists a natural number k0 depending on t such that

δAI ({k ∈ N : Fxkxk0 (t) ≤ 1− t}) = 0, or, δAI ({k ∈ N : xk /∈ Nxk0 (t)}) = 0.

Remark 3.1. The following three statements are equivalent:

(i) xk
AI-stF−−−−−→ L

(ii) For each t > 0, δAI ({k ∈ N : dL(FxkL, ε0) ≥ t}) = 0
(iii) I-stFA- lim

k→∞
dL(FxkL, ε0) = 0.

Proof. It is clear from Theorem 2.1 and the Definition 3.3. �

Theorem 3.1. Let (X,F , τ) be a PM space and x = {xk}k∈N be a strongly AI-
statistically convergent sequence in X. Then strong AI-statistical limit of x is unique.

Proof. If possible, let I-stFA- lim
k→∞

xk = α1 and I-stFA- lim
k→∞

xk = α2 with α1 6= α2.

So Fα1α2
6= ε0. Then there is a t > 0 such that dL(Fα1α2

, ε0) = t. We choose
γ > 0 so that dL(Fpq, ε0) < γ and dL(Fqr, ε0) < γ imply that dL(Fpr, ε0) < t. Since
I-stFA- lim

k→∞
xk = α1 and I-stFA- lim

k→∞
xk = α2, so δAI (Z1(γ)) = 0 and δAI (Z2(γ)) = 0,

where
Z1(γ) = {k ∈ N : xk /∈ Nα1(γ)}

and
Z2(γ) = {k ∈ N : xk /∈ Nα2

(γ)}.
Now, let Z3(γ) = Z1(γ) ∪ Z2(γ). Then δAI (Z3(γ)) = 0 and so δAI (Zc3(γ)) = 1. Let
k ∈ Zc3(γ). Then dL(Fxkα1

, ε0) < γ and dL(Fα2xk , ε0) < γ and so dL(Fα1α2
, ε0) <

t, a contradiction. Hence strong AI-statistical limit of a strongly AI-statistically
convergent sequence in a PM space is unique. �

Theorem 3.2. Let (X,F , τ) be a PM space and x = {xk}k∈N, y = {yk}k∈N be two

sequences in X such that xk
AI-stF−−−−−→ p ∈ X and yk

AI-stF−−−−−→ q ∈ X. Then

I-stFA- lim
k→∞

dL(Fxkyk ,Fpq) = 0.

Proof. The proof directly follows from [Theorem 3.1 [38]], by taking the ideal J (AI).
�

Theorem 3.3. Let (X,F , τ) be a PM space and x = {xk}k∈N be a sequence in X. If
x is strongly convergent to L ∈ X, then I-stFA- lim

k→∞
xk = L.

Proof. Let the sequence x be strongly convergent to L. So, for t > 0, there is a natural
number k0 such that xk ∈ NL(t) for all k ≥ k0. Thus δAI ({k ∈ N : xk /∈ NL(t)}) = 0
and so I-stFA- lim

k→∞
xk = L. �

We now using the condtion APAIO in [25] to prove some useful results discussed
in [22].

Definition 3.5. (Additive property for AI-density zero sets) [25] The AI-
density δAI is said to satisfy the condition APAIO if, given any countable collection
of mutually disjoint sets {Gj}j∈N in N with δAI (Gj) = 0 for each j ∈ N, there exists
a collection of sets {Hj}j∈N in N with the properties |Gj∆Hj | < ∞ for each j ∈ N

and δAI (H =
∞⋃
j=1

Hj) = 0.
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Definition 3.6. [38] Let (X,F , τ) be a PM space and x = {xk}k∈N be a sequence
in X. Then x is said to be strongly I∗-convergent to L in X, if there exists a set
K = {k1 < k2 < ... < kj < ...}(⊂ N) ∈ F(I) such that N \ K ∈ I and the subsequence
{x}K strongly convergent to L.

Note 3.2. If we take I = J (AI) then the notion of strong I∗-convergence becomes
the notion of strong AI∗ -statistical convergence.

In view of Definition 3.6 and Note 3.2 we restate the definition of strong AI∗ -
statistical convergence.

Definition 3.7. [38] Let (X,F , τ) be a PM space and x = {xk}k∈N be a sequence
in X. Then x is said to be strongly AI∗ -statistically convergent to L in X, if there
exists a set K = {k1 < k2 < ... < kj < ...}(⊂ N) ∈ F(I) such that δAI (K) = 1 and

the subsequence {x}K strongly convergent to L. In this case we write xk
AI
∗
-stF−−−−−−→ L

and L is called strong AI∗ -statistical limit of x.

Definition 3.8. Let (X,F , τ) be a PM space and x = {xk}k∈N be a sequence in
X. Then x is said to be strong AI∗ -statistically Cauchy sequence if there exists a
set K = {k1 < k2 < ... < kj < ...}(⊂ N) ∈ F(I) such that δAI (K) = 1 and the
subsequence {x}K strongly Cauchy in X.

Theorem 3.4. Let (X,F , τ) be a PM space, x = {xk}k∈N be a sequence in X and
I be an admissible ideal in N such that δAI has the property APAIO. Then x is
strongly AI-statistically convergent to L if and only if x is strongly AI∗-statistically
convergent to L.

Proof. Let x = {xk}k∈N be a sequence in X such that x is strongly AI-statistically
convergent to L ∈ X. Then for all t > 0, the set {k ∈ N : FxkL(t) ≤ 1 − t} has
AI-density zero. Then,

δAI ({k ∈ N : dL(FxkL, ε0) ≥ t}) = 0.

Set G1 = {k ∈ N : dL(FxkL, ε0) ≥ 1}, Gj = {k ∈ N : 1
j−1 > dL(FxkL, ε0) ≥ 1

j }
for j ≥ 2, j ∈ N. Then {Gj}j∈N is a sequence of mutually disjoint subsets of N with
δAI (Gj) = 0 for each j ∈ N. Since δAI satisfies the property APAIO so there exists

a sequence {Hj}j∈N of subsets of N with |Gj∆Hj | < ∞ and δAI (H =
∞⋃
j=1

Hj) = 0.

We claim that lim
k∈M
k→∞

xk = L where M = N \ H. To prove our claim, let γ > 0 be

given. Choose i ∈ N so that 1
i+1 < γ. Then {k ∈ N : dL(FxkL, ε0) ≥ γ} ⊂

i+1⋃
j=1

Gj .

Since |Gj∆Hj | < ∞ for all j = 1, 2, ..., i + 1, so there exists n′ ∈ N such that
i+1⋃
j=1

Gj ∩ (n′,∞) =
i+1⋃
j=1

Hj ∩ (n′,∞). Now if k /∈ H, k > n′ then k /∈
i+1⋃
j=1

Hj and

consequently, k /∈
i+1⋃
j=1

Gj , which implies dL(FxkL, ε0) < γ. Therefore, x is strongly

AI∗ -statistically convergent to L.
The proof of the converse part directly follows from [Theorem 3.2 [38]], by taking

the ideal J (AI). �
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Theorem 3.5. Let (X,F , τ) be a PM space, x = {xk}k∈N be a sequence in X and

I be an ideal such that δAI satisfies the property APAIO. Then xk
AI-stF−−−−−→ L if and

only if there exists a sequence {yk}k∈N such that xk = yk for a.a.k(AI) and yk
F−→ L.

Proof. Let xk
AI-stF−−−−−→ L. Then we have

I-stFA- lim
k→∞

dL(FxkL, ε0) = 0.

So by Theorem 3.4, there is a set M = {j1 < j2 < ... < jn < ...} ⊂ N such that
δAI (M) = 1 and F- lim

n→∞
dL(FxjnL, ε0) = 0.

We now construct a sequence y = {yk}k∈N as follows:

yk =

{
xk, if k ∈M
L, if k /∈M.

Then clearly, yk
F−→ L and xk = yk for a.a.k(AI).

Conversely, let xk = yk for a.a.k(AI) and yk
F−→ L. Let t > 0. Since A is a

non-negative regular summability matrix so there exists an N0 ∈ N such that for each
of n ≥ N0, we get ∑

xk /∈NL(t)

ank ≤
∑
xk 6=yk

ank +
∑

yk /∈NL(t)

ank.

As {yk}k∈N is strongly convergent to L, so the set {k ∈ N : yk /∈ NL(t)} is finite and
so δAI ({k ∈ N : yk /∈ NL(t)}) = 0.
Thus,

δAI ({k ∈ N : xk /∈ NL(t)})
≤ δAI ({k ∈ N : xk 6= yk}) + δAI ({k ∈ N : yk /∈ NL(t)}) = 0.

Therefore δAI ({k ∈ N : xk /∈ NL(t)}) = 0 i.e., the sequence {xk}k∈N is strongly
AI-statistically convergent to L. �

Definition 3.9. [18] Let (X, ρ) be a metric space and x = {xk}k∈N be a sequence
in X. Then x is said to be I-Cauchy in X if for every γ > 0, there exists a natural
number k0 such that

{k ∈ N : ρ(xk, xk0) ≥ γ} ∈ I.

Note 3.3. If we take I = J (AI), then the notion of I-Cauchyness becomes the
notion of AI-Cauchyness.

Now we discuss the following lemma in a metric space which is needed to study
some properties of strong AI-statistical Cauchyness in PM spaces.

Lemma 3.6. Let (X, ρ) be a metric space and x = {xk}k∈N be a sequence in X.
Then the following statements are equivalent:
(1) x is an AI-statistically Cauchy sequence.
(2) For all γ > 0, there is a set M ⊂ N such that δAI (M) = 0 and ρ(xm, xn) < γ

for all m,n /∈M.
(3) For every γ > 0, δAI ({j ∈ N : δAI (Dj) 6= 0}) = 0, where Dj(γ) = {k ∈ N :

ρ(xk, xj) ≥ γ}, j ∈ N.

Proof. The proof directly follows from [Proposition 4. [8]], by taking the ideal J (AI).
�
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Theorem 3.7. Let (X,F , τ) be a PM space, x = {xk}k∈N be a sequence in X and I be
an admissible ideal in N such that δAI has the property APAIO. Then x is strongly
AI-statistically Cauchy sequence in X if and only if x is strongly AI∗-statistically
Cauchy sequence in X.

Proof. Let x = {xk}k∈N be a sequence in X such that x is strongly AI-statistically
Cauchy sequence in X. Then for all t > 0, there exists a natural number k0 depending
on t such that the set {k ∈ N : Fxkxk0 (t) ≤ 1− t} has AI-density zero. Then,

δAI ({k ∈ N : dL(Fxkxk0 , ε0) ≥ t}) = 0.

Set G1 = {k ∈ N : dL(Fxkxk0 , ε0) ≥ 1}, Gj = {k ∈ N : 1
j−1 > dL(Fxkxk0 , ε0) ≥ 1

j }
for j ≥ 2, j ∈ N. Then {Gj}j∈N is a sequence of mutually disjoint subsets of N with
δAI (Gj) = 0 for each j ∈ N. Since δAI satisfies the property APAIO so there exists

a sequence {Hj}j∈N of subsets of N with |Gj∆Hj | < ∞ and δAI (H =
∞⋃
j=1

Hj) = 0.

We claim that {x}M is a strongly Cauchy sequence in X where M = N \ H. To
prove our claim, let γ > 0 be given. Choose i ∈ N so that 1

i+1 < γ. Then {k ∈ N :

dL(Fxkxk0 , ε0) ≥ γ} ⊂
i+1⋃
j=1

Gj . Since |Gj∆Hj | < ∞ for all j = 1, 2, ..., i + 1, so there

exists n′ ∈ N such that
i+1⋃
j=1

Gj ∩ (n′,∞) =
i+1⋃
j=1

Hj ∩ (n′,∞). Now if k /∈ H, k > n′

then k /∈
i+1⋃
j=1

Hj . And consequently, k /∈
i+1⋃
j=1

Gj , which implies dL(Fxkxk0 , ε0) < γ.

Therefore, x is strongly AI∗ -statistically Cauchy sequence in X.
Conversely, let x be strongly AI∗ -statistically Cauchy sequence in X. Then there

exists a subset M = {q1 < q2 < ...} of N such that δAI (M) = 1 and {x}M is a
strongly Cauchy sequence in X. Then for each t > 0, there exists a natural number
k0 depending on t such that

Fxqnxqk0 (t) > 1− t, ∀ n ≥ k0,

i.e.,

dL(Fxqnxqk0 , ε0) < t, ∀ n ≥ k0.

Let Et = {n ∈ N : dL(Fxqnxqk0 , ε0) ≥ t}. Then Et ⊂ N \ {q
k0+1

, q
k0+2

, ...}. Now

δAI (N \ {q
k0+1

, q
k0+2

, ...}) = 0 and so δAI (Et) = 0.

Hence x is strongly AI-statistically Cauchy sequence in X. �

Theorem 3.8. Let (X,F , τ) be a PM space and x = {xk}k∈N be a sequence in X. If
x is strongly AI-statistically convergent, then x is strongly AI-statistically Cauchy.

Proof. The proof directly follows from [Theorem 3.5 [38]], by taking the ideal J (AI).
�

Corollary 3.9. Let (X,F , τ) be a PM space, x = {xk}k∈N be a sequence in X and
I be an admissible ideal in N such that δAI has the property APAIO. If x is strongly
AI-statistically convergent, then x has a strongly Cauchy subsequence in X.

Proof. Directly follows from Theorem 3.7 and Theorem 3.8. �
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Theorem 3.10. Let (X,F , τ) be a PM space and x = {xk}k∈N be a sequence in X.
If the sequence x is strongly AI-statistically Cauchy, then for each t > 0, there is a
set Pt ⊂ N with δAI (Pt) = 0 such that Fxmxj (t) > 1− t for any m, j /∈ Pt.

Proof. Let x be strongly AI-statistically Cauchy. Let t > 0. Then, there is a γ =
γ(t) > 0 such that,

Flr(t) > 1− t whenever Flj(γ) > 1− γ and Fjr(γ) > 1− γ.

As x is strongly AI-statistically Cauchy, so there is an k0 = k0(γ) ∈ N such that

δAI ({k ∈ N : Fxkxk0 (γ) ≤ 1− γ}) = 0.

Let Pt = {m ∈ N : Fxmxk0 (γ) ≤ 1 − γ}. Then δAI (Pt) = 0 and Fxmxk0 (γ) > 1 − γ
and Fxjxk0 (γ) > 1 − γ for m, j /∈ Pt. Hence for every t > 0, there is a set Pt ⊂ N
with δAI (Pt) = 0 such that Fxmxj (t) > 1− t for every m, j /∈ Pt. �

Corollary 3.11. Let (X,F , τ) be a PM space, x = {xk}k∈N be a sequence in X. If
x is strongly AI-statistically Cauchy, then for each t > 0, there is a set Qt ⊂ N with
δAI (Qt) = 1 such that Fxmxj (t) > 1− t for any m, j ∈ Qt.

Theorem 3.12. Let (X,F , τ) be a PM space, x = {xk}k∈N, y = {yk}k∈N be two
strongly AI-statistically Cauchy sequences in X. Then {Fxkyk}k∈N is an AI-statistically
Cauchy sequence in (D+, dL).

Proof. As x and y are strongly AI-statistically Cauchy sequences, so by corollary
3.11, for every γ > 0 there are Uγ ,Vγ ⊂ N with δAI (Uγ) = δAI (Vγ) = 1 so that
Fxmxj (γ) > 1 − γ holds for any m, j ∈ Uγ and Fynyz (γ) > 1 − γ holds for any
n, z ∈ Vγ . Let Wγ = Uγ ∩ Vγ . Then δAI (Wγ) = 1. So, for every γ > 0, there is a set
Wγ ⊂ N with δAI (Wγ) = 1 so that Fxpxq (γ) > 1 − γ and Fypyq (γ) > 1 − γ for any
p, q ∈ Wγ . Now let t > 0. Then there exists a γ(t) and hence a set Wγ = Wt ⊂ N
with δAI (Wt) = 1 so that dL(Fxpyp ,Fxqyq ) < t for any p, q ∈ Wt, as F is uniformly
continuous. Then the result follows from Lemma 3.6. �

4. Strong AI-statistical limit points and strong AI-statistical cluster points

In this section following the works of Şençimen et al. [38] and Malik et al. [22, 23]
we discuss some basic properties of strong AI-statistical cluster points of a sequence
in a PM space including their interrelationship.

Definition 4.1. [36, 37] Let (X,F , τ) be a PM space and x = {xk}k∈N be a sequence
in X. An element L ∈ X is called a strong limit point of x, if there is a subsequence
of x that strongly converges to L.

To denote the set of all strong limit points of any sequence x in a PM space (X,F , τ)
we use the notation LFx .

Definition 4.2. [38] Let (X,F , τ) be a PM space and I be an admissible ideal in
N and x = {xk}k∈N be a sequence in X. An element ζ ∈ X is said to be a strong
I-limit point of x, if there is a subset Q = {q1 < q2 < ...} of N such that Q /∈ I and
{xqk}k∈N strongly converges to ζ.
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Definition 4.3. [38] Let (X,F , τ) be a PM space, I be an admissible ideal in N and
x = {xk}k∈N be a sequence in X. An element η ∈ X is said to be a strong I-cluster
point of x, if for every t > 0, the set {k ∈ N : xk ∈ Nη(t)}) /∈ I.

Note 4.1. (i) If I = Id = {K ⊂ N : d(K) = 0}, then in a PM space the notions of
strong Id-limit point and strong Id-cluster point coincide with the notions of strong
statistical limit point [37] and strong statistical cluster point [37] respectively.

(ii) Let I be an admissible ideal in N then the notions of strong J (AI)-limit point
and strong J (AI)-cluster point of sequences in a PM space become the notions of
strong AI-statistical limit point and strong AI-statistical cluster point respectively.
Further, if I = Ifin = {K ⊂ N : |K| < ∞}, then the notions of strong J (AI)-limit
point and strong J (AI)-cluster point of sequences in a PM space coincide with strong
A-statistical limit point [24] and strong A-statistical cluster point [24] respectively.

(iii) If A be the Cesaro matrix C1 and I is an admissible ideal, then the notions

of strong J (C1
I)-limit point and strong J (C1

I)-cluster point of sequences in a PM
space become the notions of strong I-statistical limit point and strong I-statistical
cluster point respectively.

Let (X,F , τ) be a PM space, x = {xk}k∈N be a sequence in X. Let {xkj}j∈N be a
subsequence of x and K = {kj ∈ N : j ∈ N} then we denote {xkj}j∈N by {x}K. Now,

if δAI (K) = 0, {x}K is said to be an AI-thin subsequence of x. On the other hand,
{x}K is said to be an AI-nonthin subsequence of x, if K does not have AI density
zero i.e., if either δAI (K) is a positive number or, the AI-density of K does not exist.

In view of Definition 4.2, Definition 4.3 and Note 4.1.(ii) we now restate the defi-
nitions of strong AI-statistical limit point and strong AI-statistical cluster point in
a PM space.

Definition 4.4. [38] Let (X,F , τ) be a PM space, x = {xk}k∈N be a sequence in X.
An element ζ ∈ X is said to be a strong AI-statistical limit point of x, if there is an
AI-nonthin subsequence of x that strongly converges to ζ.

To denote the set of all strong AI-statistical limit points of any sequence x =
{xk}k∈N in a PM space (X,F , τ) we use the notation ΛAx (I)Fs .

Definition 4.5. [38] Let (X,F , τ) be a PM space and x = {xk}k∈N be a sequence in
X. An element ν ∈ X is said to be a strong AI-statistical cluster point of x, if for
every t > 0, the set δAI ({k ∈ N : Fxkν(t) > 1− t}) does not equal to zero.

To denote the set of all strong AI-statistical cluster points of any sequence x =
{xk}k∈N in a PM space (X,F , τ) we use the notation ΓAx (I)Fs .

Theorem 4.1. Let (X,F , τ) be a PM space and x = {xk}k∈N be a sequence in X.
Then ΛAx (I)Fs ⊂ ΓAx (I)Fs ⊂ LFx .

Proof. The proof directly follows from [Theorem 4.1 [38]], by taking the ideal J (AI).
�

Theorem 4.2. Let (X,F , τ) be a PM space, x = {xk}k∈N be a sequence in X and I
be an ideal such that δAI satisfies the property APAIO. If I-stFA- lim

k→∞
xk = µ, then

ΛAx (I)Fs = ΓAx (I)Fs = {µ}.
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Proof. Let I-stFA- lim
k→∞

xk = µ. So for every t > 0, δAI ({k ∈ N : Fxkµ(t) > 1−t}) = 1.

Therefore, µ ∈ ΓAx (I)Fs . Now assume that there exists at least one α ∈ ΓAx (I)Fs such
that α 6= µ. Then Fαµ 6= ε0. Then there is a t1 > 0 such that dL(Fαµ, ε0) = t1. Let
t > 0 be given such that dL(Fpq, ε0) < t and dL(Fqr, ε0) < t imply that dL(Fpr, ε0) <
t1. Now since µ, α ∈ ΓAx (I)Fs , for that t > 0, δAI (K) 6= 0 and δAI (M) 6= 0 where
K = {k ∈ N : Fxkµ(t) > 1 − t} and M = {k ∈ N : Fxkα(t) > 1 − t}. As, µ 6= α,
so K ∩M = ∅ and so M ⊂ Kc. Since I-stFA- lim

k→∞
xk = µ so δAI (Kc) = 0. Hence

δAI (M) = 0, which is a contradiction.
Therefore, ΓAx (I)Fs = {µ}.
As I-stFA- lim

k→∞
xk = µ, so from Theorem 3.5, we have µ ∈ ΛAx (I)Fs . Now by

Theorem 4.1, we get ΛAx (I)Fs = ΓAx (I)Fs = {µ}. �

Theorem 4.3. Let (X,F , τ) be a PM space. Also let x = {xk}k∈N and y = {yk}k∈N be
two sequences in X such that δAI ({k ∈ N : xk 6= yk}) = 0. Then ΛAx (I)Fs = ΛAy (I)Fs
and ΓAx (I)Fs = ΓAy (I)Fs .

Proof. Let ν ∈ ΓAx (I)Fs and t > 0 be given. Let C = {k ∈ N : xk = yk}. Since
δAI (C) = 1, so δAI ({k ∈ N : Fxkν(t) > 1 − t} ∩ C) is not zero. This gives δAI ({k ∈
N : Fykν(t) > 1 − t}) 6= 0 and so ν ∈ ΓAy (I)Fs . Since ν ∈ ΓAx (I)Fs is arbitrary,

so ΓAx (I)Fs ⊂ ΓAy (I)Fs . By similar argument, we get ΓAx (I)Fs ⊃ ΓAy (I)Fs . Hence,

ΓAx (I)Fs = ΓAy (I)Fs .

Now let µ ∈ ΛAy (I)Fs . Then y has an AI-nonthin subsequence {ykj}j∈N that
strongly converges to µ. Let M = {kj ∈ N : ykj = xkj}. Since δAI ({kj ∈ N : ykj 6=
xkj}) = 0 and {ykj}j∈N is an AI-nonthin subsequence of y so δAI (M) 6= 0. Now using

the set M we get an AI-nonthin subsequence {x}M′ of x that strongly converges to
µ. Thus µ ∈ ΛAx (I)Fs . As µ ∈ ΛAy (I)Fs is arbitrary, so ΛAy (I)Fs ⊂ ΛAx (I)Fs . Similarly,

we have ΛAx (I)Fs ⊂ ΛAy (I)Fs . Therefore ΛAx (I)Fs = ΛAy (I)Fs . �

Theorem 4.4. Let (X,F , τ) be a PM space and x = {xk}k∈N be a sequence in X.
Then the set ΓAx (I)Fs is a strongly closed set.

Proof. The proof directly follows from [Theorem 4.2 [38]], by taking the ideal J (AI).
�

Theorem 4.5. Let (X,F , τ) be a PM space, x = {xk}k∈N be a sequence in X and
C be a strongly compact subset of X such that C ∩ ΓAx (I)Fs = ∅. Then δAI (M) = 0,
where M = {k ∈ N : xk ∈ C}.

Proof. As C ∩ ΓAx (I)Fs = ∅, so for all β ∈ C, there exists a real number t = t(β) > 0
so that δAI ({k ∈ N : Fxkβ(t) > 1 − t}) = 0. Let Nβ(t) = {q ∈ X : Fqβ(t) >
1 − t}. Then the family of strongly open sets Q = {Nβ(t) : β ∈ C} forms a strong
open cover of C. As C is a strongly compact set, so there exists a finite subcover

{Nβ1(t1),Nβ2(t2), ...,Nβm(tm)} of the strong open cover Q. Then C ⊂
m⋃
j=1

Nβj (tj)

and also for each j = 1, 2, ...,m we have δAI ({k ∈ N : Fxkβj (tj) > 1 − tj}) = 0. So
we get for every n ∈ N, ∑

xk∈C
ank ≤

m∑
j=1

∑
xk∈Nβj (tj)

ank.
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Then by the property of I convergence,

I- lim
n→∞

∑
xk∈C

ank ≤
m∑
j=1

I- lim
n→∞

∑
xk∈Nβj (tj)

ank = 0.

This gives δAI ({k ∈ N : xk ∈ C}) = 0. �

Theorem 4.6. Let (X,F , τ) be a PM space and x = {xk}k∈N be a sequence in X. If
x has a strongly bounded AI-nonthin subsequence then the set ΓAx (I)Fs is non-empty
and strongly closed.

Proof. Let {x}M be a strongly bounded AI-nonthin subsequence of x. So δAI (M) 6=
0 and there exists a strongly compact subset C of X such that xk ∈ C for all k ∈M.
If ΓAx (I)Fs = ∅ then C ∩ ΓAx (I)Fs = ∅ and then by Theorem 4.5, we get δAI ({k ∈ N :
xk ∈ C}) = 0. Since A is a non-negative regular summability matrix so there exists
an N0 ∈ N such that for every n ≥ N0 we have∑

k∈M

ank ≤
∑
xk∈C

ank

and this gives δAI (M) = 0, which contradicts our assumption. Hence ΓAx (I)Fs is
nonempty and also by Theorem 4.4, ΓAx (I)Fs is strongly closed. �

Definition 4.6. Let (X,F , τ) be a PM space, x = {xk}k∈N be a sequence in X. Then
x is said to be strongly AI-statistically bounded if there exists a strongly compact
subset C of X such that δAI ({k ∈ N : xk /∈ C}) = 0.

Theorem 4.7. Let (X,F , τ) be a PM space, x = {xk}k∈N be a sequence in X. If
x is strongly AI-statistically bounded then the set ΓAx (I)Fs is nonempty and strongly
compact.

Proof. Let C be a strongly compact set with δAI (V) = 0, where V = {k ∈ N : xk /∈ C}.
Then δAI (Vc) = 1 6= 0 and so C contains a bounded AI- nonthin subsequence of
x. So, by Theorem 4.6, ΓAx (I)Fs is nonempty and strongly closed. We now prove
that ΓAx (I)Fs is strongly compact. For this we only show that ΓAx (I)Fs ⊂ C. If
possible let α ∈ ΓAx (I)Fs \ C. As C is strongly compact so there is a q > 0 such that
Nα(q) ∩ C = ∅. So we get {k ∈ N : Fxkα(q) > 1 − q} ⊂ {k ∈ N : xk /∈ C} which
implies that δAI ({k ∈ N : Fxkα(q) > 1 − q}) = 0, a contradiction to our assumption
that α ∈ ΓAx (I)Fs . So, ΓAx (I)Fs ⊂ C.

Therefore the set ΓAx (I)Fs is nonempty and strongly compact. �
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[18] P. Kostyrko, T. Šalát, and W. Wilczyński, I -convergence, Real Anal. Exchange 26 (2000/2001),
no. 2, 669–685.
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