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Insensitizing controls for linear ODE’s

Marcos López-Garćıa, Alberto Peña-Garćıa, and Luz de Teresa

Abstract. In this paper we present some results regarding insensitizing controls for finite

dimensional systems. The concept was introduced by J. L. Lions in [7] in the context of
partial differential equations and, as far as we know, is a problem that has not been treated in

literature for ordinary differential equations. The concept in this situation arises in a natural

way when treating the semidiscrete one for the heat equation. We present some results in the
linear framework.
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1. Introduction

In the late 1980’s, J.L. Lions introduced several notions, inspired probably by the
sensitivity theory for ODE’s, to the control theory of Partial Differential Equations in
order to handle uncertainties. Sentinels, least regret control and insensitizing controls
were proposed in [5], [6] and [7]. In this paper we propose the study of insensitizing
controls in the framework of finite dimensional systems. The idea behind this impor-
tant concept is to act on the system in such a way that a functional defined on the
solutions of the equation (a “performance index” or “cost” see e.g. [8]) is not sensible
to some pollution or noise in some datum of the system. There are of course several
uncertainties and functionals that arise when modeling a system. One of the possible
functionals is precisely the solution to the system. In this situation there are some
results in the literature that study the evolution of sensitivities [4].

Let us recall the insensitizing control problem for the semilinear heat equation. Let
Ω ⊂ Rn, n ≥ 1, be a bounded and open set with boundary ∂Ω ∈ C2. Let T > 0 and
ω be an open and non empty subset of Ω. Consider the parabolic system ∂ty −∆y + f(y) = 1ωv + ξ in Q = Ω× (0, T ),

y = 0 on Σ = ∂Ω× (0, T )
y(0) = y0 + τw0 in Ω

(1)

where f is a globally Lipschitz-continuous function, ξ ∈ L2(Q) and y0 ∈ L2(Ω) are
given. In system (1), y = y(x, t) is the state and v = v(x, t) is a control function
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supported in ω. Notice that y depends on the data y0, ξ, v, w0, τ .

The data in system (1) are incomplete in the following sense:
• w0 ∈ L2(Ω) is unknown and |w0|L2(Ω) = 1,

• τ ∈ R is unknown and small enough.
Let Ψ be a differentiable functional defined on the set of solutions to (1). It is said

that the control v insensitizes Ψ(y) for the initial data y0 and the source term ξ if

∂Ψ (y [y0, ξ, v, w0, τ ])

∂τ

∣∣∣∣
τ=0

= 0, for all w0 ∈ L2(Ω). (2)

When (2) holds the functional Ψ is locally insensitive to the perturbations of the
initial data. In [9] the author analyzes the case when Ψ is the square of the L2-norm
of the state y in some observation subset O ⊂ Ω, namely,

Ψ(y) :=
1

2

∫ T

0

∫
O
y2dxdt. (3)

With respect to this particular functional, the author shows that the insensitivity
condition (2) is equivalent to a null-control problem for a coupled system of parabolic
PDEs: consider the cascade system of semilinear parabolic equations ∂ty −∆y + f(y) = 1ωv + ξ in Q,

y = 0 on Σ,
y(0) = y0 in Ω, −∂tq −∆q + f ′(y)q = 1Oy in Q,
q = 0 on Σ,
q(T ) = 0 in Ω.

(4)

Then, a control v satisfies the insensitivity condition (2) for the functional (3) and
the system (1), if and only if the component q of the associated solution of (4) fulfills

q(0) = 0. (5)

Notice that (5) is a null controllability property for the cascade system (4), but we
emphasize that the control v acts indirectly on the equation satisfied by q by means of
the localized coupling term 1Oy, and that the first equation in (4) is forward in time
while the second one is backward in time. Under suitable conditions on the data f ,
y0, ξ and the sets ω and O, the author proves the existence of a control v insensitizing
the functional (3). We refer to [9] for the details.

In [1] the authors address the insensitizing control problem from the point of view
of numerical methods. They build a semi discrete approximation of the system (1)
and by means of semi discrete Carleman estimates they deduce a “relaxed” observ-
ability inequality for the linearized equation, which is uniform with respect to the
discretization parameter. This yields the existence of suitable insensitizing semi dis-
crete controls within this framework for the initial nonlinear problem.

For writing convenience the authors analyze the case Ω = (0, L) and consider the
elliptic operator A = −∂2

x with homogeneous Dirichlet boundary conditions.
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Let 0 = x0 < x1 < . . . < xN < xN+1 = L, they refer to this discretization as to
the primal mesh M := {xi : i = 1, . . . , N}, and the boundary points are denoted by
∂M = {x0, xN+1} = {0, L}.

Set hi+ 1
2

= xi+1 − xi and xi+ 1
2

= (xi+1 + xi) /2, i = 0, . . . , N . The step size is

denoted by hM = maxi hi+ 1
2
.

RM stands for the set of discrete functions defined on M. If u ∈ RM, ui denotes
the value of u at xi. For u ∈ RM define

uM =

N∑
i=1

1[
x
i− 1

2
,x

i+1
2

]ui, and u∂M = {u(0), u(L)}.

Thus, the authors consider the 1-D semi discrete system ∂ty
M +AMyM + f

(
yM
)

= 1ωv
M + ξM in RM, t ∈ (0, T ),

y∂M = 0 in (0, T ),
yM(0) = yM0 + τwM

0 ,
(6)

where f is a C1 globally Lipschitz-continuous function, with f(0) = 0. Here AM is
the discrete approximation of A := −∂2

x on the mesh M, i.e AM is the symmetric
tridiagonal matrix h−2tridiag(−1, 2,−1) ∈ RN×N .

They study the existence of uniformly bounded semi discrete controls that insen-
sitize the functional

Ψ
(
yM
)

:=
1

2

∫ T

0

∫
O

∣∣yM∣∣2 dxdt (7)

where yM is the solution to (6). As in the continuous case, it is proved that the
insensitizing control problem for (7) is equivalent to find bounded families of semi
discrete controls

(
vM
)
M

such that the solution
(
yM, qM

)
of the coupled problem

∂ty
M +AMyM + f

(
yM
)

= 1ωv
M + ξM in RM × (0, T ),

−∂tqM +AMqM + f ′
(
yM
)
qM = 1Oy

M in RM × (0, T ),
y∂M = q∂M = 0 in (0, T ),
yM(0) = yM0 , qM(T ) = 0,

(8)

satisfies the condition

qM(0) = 0. (9)

To get this, they adapt the approach introduced in [9], but taking into account the
semi discrete nature of the problem. Firstly, they analyze controllability properties
of the linearized version of (8). Then, a fixed point argument helps to obtain the
controllability result for the nonlinear system (8). We refer to [1] for the details.

It is easy to see that the linear version of system (8) (i.e taking f(s) = as) can be
written as

ẏ = Ay +Bu + ξ̂, t ∈ (0, T )

q̇ = −Aq +Qy, t ∈ (0, T )

y (0) = y0, q (T ) = 0,
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where

A =
1

h2
tridiag(1,−2, 1)+aI, B = diag(1ω(x1), . . . ,1ω(xN )), Q = diag(1O(x1), . . . ,1O(xN )),

y(t) = (y(x1, t), . . . , y(xN , t)), q(t) = (q(x1, t), . . . , q(xN , t)), u(t) = (v(x1, t), . . . , v(xN , t)),

and

y0 = (y0(x1), . . . , y0(xN )), ξ̂(t) = (ξ(x1, t), . . . , ξ(xN , t)).

The insensitizing condition (9) is equivalent to drive to zero q(0).

The last system motivate us to study the partial null controllability of cascade
systems in the setting of ordinary differential equations, where the equations are not
in the same direction of time, i.e we have a forward equation coupled with a backward
equation.

On the other hand, we can mimic the insensitizing control problem in the context
of ordinary differential equations and study it in its own right. This is done in the
next section.

2. Statement of the problem

Given A ∈ Rn×n, B ∈ Rn\{0}, and T > 0 we consider the Cauchy problem

ẋ = Ax +Bu, t ∈ (0, T )

x (0) = x0 + τx1,
(10)

where x ∈ Rn, u ∈ L2 ([0, T ] ;R) and x0 ∈ Rn is known. The data of the system are
incomplete in the following sense
• x1 ∈ Rn is unknown but ‖x1‖ = 1.
• τ is a small unknown parameter.

Given a functional J defined on the set of solutions to (10), we say that a control
u insensitizes the functional J (x) with x solution to (10) (or insensitizes J (x) to
abridge) if

∂J
∂τ

∣∣∣∣
τ=0

= 0 for all x1 ∈ Rn, ‖x1‖ = 1. (11)

There is a large set of functionals that may be interesting for the purpose of a insen-
sitizing control. Here we consider the functional defined as

JT (x (u)) =

∫ T

0

x∗ (t)Gx (t) dt, (12)

where G ∈ Rn×n is an arbitrary matrix. Observe that in (7) G = I, however we will
generalize to a more interesting problem with G a general matrix.

Also it can be seen that when G is an antisymmetric matrix the problem is trivial
since ∂J

∂τ ≡ 0. So all along the paper we will consider G a non antisymmetric matrix.
The following result shows that, for JT defined in (12), the insensitizing condition

(11) is equivalent to the partial null controllability of a coupled system.
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Proposition 2.1. Let T > 0 be given, define JT be as in (12). Then a control
u ∈ L2 ([0, T ] ;R) insensitizes JT (x) with x solution to (10) if and only if p(0) = 0,
where p satisfies

ẋ = Ax +Bu, t ∈ (0, T )

ṗ = −A∗p +Qx, t ∈ (0, T )

x (0) = x0, p (T ) = 0,

(13)

with Q = G+G∗ 6= 0 and (∗) denotes the transpose of a matrix.

Remark 2.1. Observe that the insensitizing condition is equivalent to a partial null
controllability of system (13) where we want to drive only the p component of the
system to zero in time T . Observe also that the equations verified by x and p are not in
the same direction of time, so we have a forward equation (x component) coupled with
a backward equation (p component). This fact introduces new technical difficulties
and the results differ from the classical ones of controlling only partially a system
where all the components go in the same time direction. See e.g. [2] for results on
partial controllability for ODE and see [10] chapter 11 for results regarding partial
stabilization of a ODE.

Remark 2.2. Observe that it is also interesting to study some optimal control prob-
lem associated with the quadratic functional JT that relates the optimal control u to
the adjoint equation given by p. See e.g. [11], part III.

Throughout this paper 〈·, ·〉 denotes the usual inner product in Rn, and ‖ · ‖ stands
for the corresponding norm.

Proof of Proposition 2.1. Let x0 ∈ Rn fixed. For x1 ∈ Rn such that ‖x1‖ = 1 we
consider the solution x(·, ·; x1) : [0, T ]× (−δ, δ)→ Rn of (10) that is given as follows

x(t, τ) := x(t, τ ; x1) = eAt(x0 + τx1) + eAt
∫ t

0

e−AsBu(s)ds.

We observe that the functional JT is differentiable with respect to τ . Hence the
insensitizing condition can be rewritten in this way∫ T

0

〈
∂x

∂τ
(t, τ), Qx(t, τ)

〉
dt

∣∣∣∣∣
τ=0

=

∫ T

0

〈
∂x

∂τ
(t, 0), Qx(t, 0)

〉
dt = 0. (14)

We have that ∂x
∂τ (t, 0) = w with w the corresponding solution to

ẇ = Aw, t ∈ (0, T )

w (0) = x1.
(15)

Then, taking the inner product of (15) with p given in (13) we obtain:∫ T

0

〈w, ṗ(t)〉 dt = −
∫ T

0

〈ẇ,p(t)〉 dt− 〈x1,p(0)〉

= −
∫ T

0

〈Aw,p(t)〉 dt− 〈x1,p(0)〉 .

From (14) we get that

0 =

∫ T

0

〈
∂x

∂τ
(t, 0), ṗ(t) +A∗p(t)

〉
dt = −〈x1,p(0)〉 ,
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for all x1 ∈ Rn with ‖x1‖ = 1. That means that for every x̃1 6= 0, we get

−
〈

x̃1

‖x̃1‖ ,p(0)
〉

= 0, so 〈x̃1,p(0)〉 = 0 for every x̃1 6= 0 and the conclusion is im-

mediate. �

The rest of the paper is organized as follows. In section 3 we reformulate Proposi-
tion 2.1 in a more general situation, that is, we will consider a partial null controlla-
bility problem for a forward-backward cascade system. In section 4, we consider the
partial null controllability of a non-autonomous forward-backward coupled system.

3. Insensitizing controls for linear ODEs

In what follows we will treat a general linear forward-backward model with the com-
ponent p of the system described by a general matrix C (that is not necessarily −A∗).
That is, we will consider the equation verified by x as forward in time and the system
verified by p as backward in time with p(T ) = 0.

For T > 0, A,C,Q ∈ Rn×n, Q 6= 0, and B ∈ Rn\{0} consider the following cascade
system

ẋ = Ax +Bu, t ∈ (0, T )

ṗ = Cp +Qx, t ∈ (0, T ) (16)

x(0) = x0, p(T ) = 0.

Definition 3.1. We will say that (16) is partially null controllable if for every x0 ∈ Rn
it exists u ∈ L2 ([0, T ] ;R) such that p(0) = 0.

We introduce the matrix-valued analytic function

g(t) :=

∫ t

0

esCQe−sAds etA, t ∈ R.

By using the variation of constants formula we get the solution p(t) of the system
(16), then we evaluate at t = T to get

p(0) = −e−TCg(T )x0 − e−TC
∫ T

0

g(T − s)Bu(s)ds. (17)

The next result gives an explicit representation of g as a power series in terms of
A,C and Q.

Proposition 3.1. The function g has the following representation in power series

g(t) =

∞∑
j=0

tj+1

(j + 1)!
Dj , t ∈ R, (18)

where

Dj :=

j∑
`=0

C`QAj−`, j ≥ 0. (19)

Proof. Since g(t) is an analytic function at t = 0 with infinite convergence radius and
g(0) = 0 we write

g(t) =

∞∑
j=0

g(j+1)(0)

(j + 1)!
tj+1.
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Straightforward computations show

g(j+1)(0) = (−1)j
j∑
`=0

(
j∑
k=`

(−1)k
(
j + 1

k + 1

)(
k

`

))
(−C)`QAj−`, j ≥ 0. (20)

Observe that the proof of (20) is straightforward when A,Q and C commute. For
x ∈ R fixed, x 6= −1, consider the function

g̃x(t) :=

∫ t

0

e−sxe−sds et, t ∈ R.

Therefore

g̃x(t) =
1

1 + x
(et − e−tx) =

∞∑
j=0

1− (−x)j+1

1 + x

tj+1

(j + 1)!

=

∞∑
j=0

(
j∑
`=0

(−1)`x`

)
tj+1

(j + 1)!

=

∞∑
j=0

(
(−1)j

j∑
`=0

(
j∑
k=`

(−1)k
(
j + 1

k + 1

)(
k

`

))
x`

)
tj+1

(j + 1)!
.

Hence for all x 6= −1 we have

j∑
`=0

(−1)j

(
j∑
k=`

(−1)k
(
j + 1

k + 1

)(
k

`

))
x` =

j∑
`=0

(−1)`x`, j ≥ 0,

it follows that

(−1)j
j∑
k=`

(−1)k
(
j + 1

k + 1

)(
k

`

)
= (−1)`

for all ` = 0, . . . , j and j ≥ 0. The result follows from (20). �

From Proposition 3.1, we get a characterization of the partial null controllability
property of system (16). In this aim, for a linear map f : V → W we put R(f) :=
{f(v) : v ∈ V } to denote the image of f .

Theorem 3.2. Let T > 0 be given, A,C,Q ∈ Rn×n, Q 6= 0, and B ∈ Rn\{0}. The
following statements are equivalent.
(1) The cascade system (16) is partially null controllable at time T > 0.
(2) There exists c > 0 such that the observability inequality

‖g(T )∗w0‖2 ≤ c
∫ T

0

|〈g(t)B,w0〉|2dt (21)

holds for all w0 ∈ Rn.

(3) R(h(T )) ⊂ span{DjB}j≥0, where

h(T ) =

∫ T

0

esCQe−sAds. (22)



190 M. LÓPEZ-GARCÍA, A. PEÑA-GARCÍA, AND L. DE TERESA

Proof. 1) ⇔ 2) Consider the operator C : L2(0, T )→ Rn defined as

Cu := −
∫ T

0

g(T − s)Bu(s)ds.

A straighforward computation shows that C∗ : Rn → L2(0, T ) is given as

C∗w0 = −〈g(T − ·)B,w0〉.
The system (16) is partially null controllable at time T > 0 iff R(g(T )) ⊂ R(C) iff
there exists a constant c > 0 such that

‖g(T )∗w0‖ ≤ c‖C∗w0‖
for all w0 ∈ Rn, see [3, Lemma 2.48, page 58].

2)⇒ 3) Let w0 ∈ {span{DjB}j≥0}⊥. Then 〈DjB,w0〉 = 0 for all j ≥ 0, from (18)
we get that 〈g(t)B,w0〉 = 0 for all t > 0 and the hypothesis implies that g(T )∗w0 = 0,
i.e. w0 ∈ R(g(T ))⊥. Thus, {span{DjB}j≥0}⊥ ⊂ R(g(T ))⊥.

3) ⇒ 1) If span{DjB}j≥0 = {0} then h(T ) = 0, thus g(T ) = 0. Hence we choose
the trivial control u ≡ 0 on [0, T ] for all x0 ∈ Rn, and the result follows from (17).

Now we assume that span{DjB}j≥0 6= {0}. We introduce the following positive
semi-definite matrix

M :=

∫ T

0

g(t)BB∗g(t)∗dt.

We have w0 ∈ kerM if and only if

0 = 〈Mw0,w0〉 =

∫ T

0

|B∗g(t)∗w0|2dt

iff 〈w0, g(t)B〉 = 0 for all t ∈ [0, T ] iff w0 ∈ {span{DjB}j≥0}⊥ (by (18)). It follows
that (kerM)⊥ = span{DjB}j≥0 6= 0.

Since M is symmetric it can be diagonalized and M : (kerM)⊥ → (kerM)⊥ is
bijective. The hypothesis implies that R(g(T )) ⊂ span{DjB}j≥0. Thus, for x0 ∈ Rn
we set u(t) := −B∗g(T − t)∗M−1g(T )x0, t ∈ [0, T ], and the corresponding solution
p(t) of the system (16) satisfies

eTCp(0) = −g(T )x0 +MM−1g(T )x0 = 0.

�

The following remark shows that the control u obtained in the proof of Theorem 3.2
is the one of minimal norm in L2 ([0, T ] ;R).

Remark 3.1. 1.-Let ũ ∈ L2 ([0, T ] ;R) be another control in system (16) such that
the corresponding solution p̃(t) satisfies p̃(0) = 0 then∫ T

0

g(T − t)Bũ(t)dt =

∫ T

0

g(T − t)Bu(t)dt.

We set v(t) := ũ(t)− u(t), thus

‖ũ‖2L2(0,T ) = ‖u‖2L2(0,T ) + ‖v‖2L2(0,T ) + 2

∫ T

0

u(t)v(t)dt,
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and ∫ T

0

u(t)v(t)dt = −
∫ T

0

〈M−1g(T )x0, g(T − t)B〉v(t)dt

= −〈M−1g(T )x0,

∫ T

0

g(T − t)Bv(t)dt〉 = 0

imply that ‖u‖L2(0,T ) ≤ ‖ũ‖L2(0,T ).
2.- The control u(t) is the unique solution of a (Hausdorff) moment problem on [0, T ]:
Since ∫ T

0

tn(T − t)j+1dt = Tn+j+2B(n+ 1, j + 2) = Tn+j+2 n!(j + 1)!

(n+ j + 2)!
,

where B(·, ·) stands for the Beta function, we get∫ T

0

tnu(t)dt = −n!

∞∑
j=0

Tn+j+2

(n+ j + 2)!
B∗D∗jM−1g(T )x0 for all n ≥ 0.

3.- If span{DjB}j≥0 = Rn then the system (16) is partially null controllable at any
time T > 0.

From Proposition 2.1 and Theorem 3.2 we have the following result.

Corollary 3.3. Let T > 0 and JT be given by (12). Consider A ∈ Rn×n, B ∈
Rn\{0}. Then there exists a control u ∈ L2 ([0, T ] ;R) that insensitizes JT (x) with x
the corresponding solution to

ẋ = Ax +Bu, t ∈ (0, T )

x (0) = x0 + τx1,

if and only if

R(h̃(T )) ⊂ span{D̃jB}j≥0, (23)

where Q = G+G∗ 6= 0,

h̃(T ) =

∫ T

0

e−sA
∗
Qe−sAds, and D̃j :=

j∑
`=0

(−A∗)`QAj−`, j ≥ 0 (24)

Notice that
∫ T

0
e−sA

∗
e−sAds is an invertible operator on Rn for all T > 0.

Remark 3.2. 1.- If Q commutes with A∗, then R(h̃(T )) = R(Q) for all T > 0. In
this case,

span

{
j∑
`=0

(−A∗)`Aj−`B

}
j≥0

= Rn (25)

is a sufficient condition for which (23) holds for all T > 0. For instance, if we also
assume that A is (anti)symmetric and (A2, B) is a controllable pair then (25) holds.
Conversely, if Q is invertible, A is (anti)symmetric and (23) holds, then Cayley-
Hamilton Theorem implies that (A2, B) is a controllable pair.

2.- If Q commutes with A, then

span

{
j∑
`=0

(−A∗)`Aj−`QB

}
j≥0

= Rn (26)
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is a sufficient condition for which (23) holds for all T > 0. For instance, if we also
assume that A is (anti)symmetric and (A2, QB) is a controllable pair then (26) holds.
Conversely, if Q is invertible, A is (anti)symmetric and (23) holds, then the Cayley-
Hamilton theorem implies that (A2, QB) is a controllable pair.

4. Partial null controllability: the linear non-autonomous case

In this section we analyze the partial null controllability of the non-autonomous ver-
sion of system (16).

Let T > 0 be given, for A(t), C(t), Q(t) ∈ C0([0, T ];Rn×n), B(t) ∈ C0(([0, T ];Rn)
and u ∈ L2 ([0, T ] ;R), we consider the following non-autonomous system

ẋ = A (t) x +B (t)u, t ∈ (0, T )

ṗ = C (t) p +Q(t)x, t ∈ (0, T )

x (0) = x0, p (T ) = 0.

(27)

Let RA(·, ·), RC(·, ·) : [0, T ]2 → Rn×n be the resolvents corresponding to the time-
varying linear systems ẋ = A (t) x and ẋ = C (t) x respectively (see [3, Proposition
1.5, page 5]), therefore

x(t) = RA(t, 0)x0 +

∫ t

0

RA(t, τ)B(τ)u(τ)dτ, t ∈ [0, T ],

p(t) = −
∫ T

t

RC(t, τ)Q(τ)x(τ)dτ, t ∈ [0, T ],

thus

−p(0) =

∫ T

0

RC(0, τ)Q(τ)RA(τ, 0)dτ x0

+

∫ T

0

RC(0, τ)Q(τ)

∫ τ

0

RA(τ, s)B(s)u(s)dsdτ

=

∫ T

0

RC(0, τ)Q(τ)RA(τ, 0)dτ x0

+

∫ T

0

∫ T

s

RC(0, τ)Q(τ)RA(τ, s)dτB(s)u(s)ds.

(28)

We introduce the operator C : L2(0, T )→ Rn as follows

Cu := −
∫ T

0

∫ T

s

RC(0, τ)Q(τ)RA(τ, s)dτB(s)u(s)ds.

An easy computation shows that C∗ : Rn → L2(0, T ) is given by

(C∗w0)(s) = −

〈∫ T

s

RC(0, τ)Q(τ)RA(τ, s)dτ B(s),w0

〉
.

We also consider the following operators

GT :=

∫ T

0

RC(0, τ)Q(τ)RA(τ, 0)dτ,

G(s) :=

∫ T

s

RC(0, τ)Q(τ)RA(τ, s)dτ,



INSENSITIZING CONTROLS FOR LINEAR ODE’S 193

M :=

∫ T

0

G(s)B(s)B(s)∗G(s)∗ds ≥ 0.

Notice that M is a positive semi-definite matrix.
Similar to Theorem 3.2, we have the following result.

Theorem 4.1. Let T > 0 be given and A(t), C(t), Q(t) ∈ C0([0, T ];Rn×n), B(t) ∈
C0([0, T ];Rn) with Q 6≡ 0, B 6≡ 0. The following statements are equivalent.
(1) The cascade system (27) is partially null controllable at time T > 0.
(2) There exists c > 0 such that the observabillity inequality

‖G∗Tw0‖2 ≤ c
∫ T

0

|(C∗w0)(s)|2ds (29)

holds for all w0 ∈ Rn.
(3) R(GT ) ⊂ (kerM)⊥.

Proof. 1) ⇔ 2) We just notice that (28) is equivalent to

− p(0) = GTx0 − Cu, (30)

and we proceed as in the proof of i) ⇔ ii) in Theorem 3.2.

2) ⇒ 3) Let w0 ∈ kerM. Since 〈Mw0,w0〉 = 0 it follows that (C∗w0)(s) = 0 for
all s ∈ [0, T ], thus G∗Tw0 = 0 and the result follows.

3) ⇒ 1) If (kerM)⊥ = {0} then GT = 0. Hence we choose the trivial control u ≡ 0
on [0, T ] for all x0 ∈ Rn, and the result follows from (30).

Now we assume (kerM)⊥ 6= {0}. We have that M is diagonalisable and M :
(kerM)⊥ → (kerM)⊥ is bijective. By hypothesisR(GT ) ⊂ (kerM)⊥. Given x0 ∈ Rn
we set u(t) := −B(t)∗G(t)∗M−1GTx0, so the corresponding solution p(t) of the system
(27) satisfies

−p(0) = GTx0 −MM−1GTx0 = 0.

�

In order to get an algebraic test to verify the issue iii) in the last result, from now
on we assume A(t), C(t), Q(t) ∈ C∞([0, T ];Rn×n), B(t) ∈ C∞([0, T ];Rn). For i, j ≥ 0
we introduce the following sequences of vector-valued functions defined on [0, T ],

B0 (t) := B (t) , Hj
0 (t) := Q(t)Bj (t) , (31)

Bi+1 (t) := Ḃi (t)−A (t)Bi (t) , Hj
i+1 (t) := Ḣj

i (t)− C (t)Hj
i (t) ,

we also set for s ∈ [0, T ],m ≥ 1,

Ys,0 := G(s)B(s), Ys,m := −RC(0, s)

m−1∑
j=0

Hj
m−1−j(s) + G(s)Bm(s), (32)

and Es := span{Ys,m : m ≥ 0}, s ∈ [0, T ].

Lemma 4.2. We have Es ⊂ (kerM)⊥ for all s ∈ [0, T ]. If A(t), C(t), Q(t) ∈
Cω([0, T ];Rn×n) and B(t) ∈ Cω([0, T ];Rn) then (kerM)⊥ =

⋂
s∈[0,T ]Es.
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Proof. We claim that

dm

dsm
(GB(s)) = Ys,m, for all m ≥ 1, s ∈ [0, T ]. (33)

First, we use that ∂RA

∂s (τ, s) = −RA(τ, s)A(s) to get

d

ds
(GBj(s)) = −RC(0, s)Q(s)RA(s, s)Bj(s)

+

∫ T

s

RC(0, τ)Q(τ)RA(τ, s)(Ḃj(s)−A(s)Bj(s))dτ

= −RC(0, s)Q(s)Bj(s) +

∫ T

s

RC(0, τ)Q(τ)RA(τ, s)Bj+1(s)dτ

= −RC(0, s)Hj
0 (s) + G(s)Bj+1(s), for all j ≥ 0.

The last equality (with j = 0) implies (33) for m = 1.

Now we assume that (33) holds for some m ≥ 1. Thus,

dm+1

dsm+1
(GB(s)) = −RC(0, s)

m−1∑
j=0

[
Ḣj
m−1−j (s)− C (s)Hj

m−1−j (s)
]

+
d

ds
(GBm(s))

= −RC(0, s)

m−1∑
j=0

Hj
m−j (s)−RC(0, s)Hm

0 (s) + G(s)Bm+1(s) = Ys,m+1.

If w0 ∈ kerM then w∗0G(s)B(s) = −(C∗w0)(s) = 0 for all s ∈ [0, T ], therefore (33)
implies that

〈w0, Ys,m〉 = 0 for all m ≥ 1, s ∈ [0, T ]

and the first part of the result follows.

To prove the second part we use that for each s ∈ [0, T ] there exists δs > 0 such
that

G(t)B(t) =

∞∑
m=0

dm(GB)

dsm
(s)

(t− s)m

m!
=

∞∑
m=0

Ys,m
(t− s)m

m!

for t ∈ (s− δs, s+ δs).
If w0 ∈ E⊥s for all s ∈ [0, T ], then w∗0G(t)B(t) = −(C∗w0)(t) = 0 for all t ∈ (s −
δs, s + δs), s ∈ [0, T ]. It follows that 〈Mw0,w0〉 = 0, so w0 ∈ kerM and the result
has been proved. �

As a consequence we have the following result.

Corollary 4.3. Let T > 0 be given, if there exists t̄ ∈ [0, T ] such that R(GT ) ⊂
Et̄, then (27) is null controllable at time T . Conversely, if A,B,C,Q are analytic
functions on [0, T ] and (27) is partially null controllable at time T , then R(GT ) ⊂ Es
for all s ∈ [0, T ].

Example 4.1. Suppose that A(t), B(t), C(t), Q(t) are constant functions on [0, T ].
In this case, (31) yields

Bi = (−1)iAiB, Hj
i = (−1)i+jCiQAjB for all i, j ≥ 0.
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Since RA(t, s) = e(t−s)A, RC(t, s) = e(t−s)C , it follows by (22) that

GT =

∫ T

0

RC(0, T − s)QRA(T − s, 0)ds = e−TCh(T )eTA,

so R(GT ) = R(h(T )), and

ET = span

e−TC
m−1∑
j=0

Hj
m−1−j : m ≥ 1

 = span {DnB : n ≥ 0} .

where Dn is given in (19). The last corollary implies that system (16) is partially null
controllable at time T iff R(h(T )) ⊂ span {DnB : n ≥ 1}. This is another proof of
Theorem 3.2.
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