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Continuous frames in n-Hilbert spaces and their tensor
products
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ABSTRACT. We introduce the notion of continuous frame in n-Hilbert space which is a gener-
alization of discrete frame in n-Hilbert space. The tensor product of Hilbert spaces is a very
important topic in mathematics. Here we also introduce the concept of continuous frame for the
tensor products of n-Hilbert spaces. Further, we study dual continuous frame and continuous
Bessel multiplier in n-Hilbert spaces and their tensor products.
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1. Introduction

The notion of frame in Hilbert space was first introduced by Duffin and Schaeffer [4]
in connection with some fundamental problem in non-harmonic analysis. Thereafter,
it was further developed and popularized by Daubechies et al [3] in 1986. A discrete
frame is a countable family of elements in a separable Hilbert space which allows
for a stable, not necessarily unique, decomposition of an arbitrary element into an
expansion of the frame element. Continuous frames extended the concept of discrete
frames when the indices are related to some measurable space. Continuous frame in
Hilbert space was studied by A. Rahimi et al [12]. M. H. faroughi and E. Osgooei
[6] also studied c-frames and c-Bessel mappings. Continuous frame and discrete frame
have been used in image processing, coding theory, wavelet analysis, signal denoising,
feature extraction, robust signal processing etc.

In 1970, Diminnie et al [2] introduced the concept of 2-inner product space. A
generalization of 2-inner product space for n > 2 was developed by A. Misiak [11] in
1989. There are several ways to introduced the tensor product of Hilbert spaces. The

basic concepts of tensor product of Hilbert spaces were presented by S.Rabinson in
[13] and Folland in [5].

In this paper, we give the notions of continuous frames in n-Hilbert spaces and their
tensor products. A characterization of continuous frame in n-Hilbert space with the
help of its pre-frame operator is discussed. We will see that the image of a continuous
frame under a bounded invertible operator in n-Hilbert space is also a continuous
frame in n-Hilbert space. Continuous Bessel multipliers and dual continuous frames
in n-Hilbert spaces and their tensor product are presented.
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2. Preliminaries

Theorem 2.1. [I] Let Hy, Ho be two Hilbert spaces and U : Hy — Ho be a
bounded linear operator with closed range Ry . Then there exists a bounded linear
operator Ut: Hy » Hy suchthat UUTz = 2 V2o € Ry.

The operator UT is called the pseudo-inverse of U.

Definition 2.1. [12] Let H be a complex Hilbert space and (€2, u) be a measure
space with positive measure p. A mapping F' : Q — H is called a continuous frame
with respect to (Q, p) if
(i) F is weakly-measurable, i.e., for all f € H, w — (f, F(w)) is a measurable
function on €.
(73) there exist constants 0 < A < B < oo such that

AHﬂVS/HﬂFUMHQWUMSBHﬂV
Q

for all f € H.The constants A and B are called continuous frame bounds.If A =

B, then it is called a tight continuous frame. If the mapping F' satisfies only the right

inequality, then it is called continuous Bessel mapping with Bessel bound B.

Definition 2.2. [6] Let L2 (Q, u) be the class of all measurable functions f : Q —

H such that || f|13 = [ || f(w) |2 du(w) < oo.It can be proved that L2 (Q, )
Q

is a Hilbert space with respect to the inner product defined by

mmm=/Xﬂwmw»ww>
Q

Definition 2.3. [6] Let F' : @ — H be a Bessel mapping. Then the operator
Te : L?(Q, u) — H is defined by

(Tele)h) = [ p(w) (F(w), b) duw)
Q
where ¢ € L2?2(Q, u) and h € H is well-defined, linear, bounded and its adjoint
operator is given by
TS H > L2 ), Té f(w) = (f F(w)) , we Q.
The operator T is called a pre-frame operator or synthesis operator and its adjoint
operator is called analysis operator of F'.The operator Sc : H — H defined by

(Se (£ ) = [ (AP (W) (F(w), h) du(w)
Q
is called the frame operator of F.
Definition 2.4. [14] The tensor product of Hilbert spaces H and K is denoted

by H ® K and it is defined to be an inner product space associated with the inner
product

(feg, f'og)=(f1f)1(99),, 1)
forall f, f/ € H and ¢, g’ € K.The norm on H ® K is given by

Ifegl=1fl1llglz VfeH andg € K. (2)
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The space H ® K is complete with respect to the above inner product. Therefore
the space H ® K is a Hilbert space.

For Q € B(H) and T € B(K), the tensor product of operators @ and T is
denoted by @ ® T and defined as

(Q@T)A=QAT* YV Ac H® K.
It can be easily verified that Q ® T € B(H ® K) [5].

Theorem 2.2. [5] Suppose Q, Q' € B(H) and T, T € B(K), then

(1) QT e B(H® K) and [Q@ T| = [|QI [T

(1) (QeT)(f@g)=Q(f)®T(g) forall f € H, gecK.

(1)) (R T)(Q'eT") =(QQ") ® (T'T").

(iv) Q@ ® T s invertible if and only if Q and T are invertible, in which case
(QeT) '=(Q'eT ).

(V) (RaT)" =(Q"aT").

Definition 2.5. [7] A real valued function |-, ---,-|| : H™ — R satisfying the
following properties:

(1) |lx1,x2, -, 2xy] =0 ifand only if 4, -+, x,, are linearly dependent,
(#3)  ||x1, @2, -+, Tyl is invariant under permutations of 1, -+, Xy,
(t51)  |lazi, o, -, x| = || |z1, 22, -, 2], @ €K,
(Z’U) ||.’£ +y, x2, -, :L'ﬂ” < ||.’£, Ty =ty an + ||y7 T2, ", xn”,
forall 1, 9, -+, Tn, 2,y € H,is called n-norm on H. A linear space H, together
with a n-norm |-, ---, -||, is called a linear n-normed space.
Definition 2.6. [11] Let n € N and H be a linear space of dimension greater than

or equal to n over the field K. An n-inner product on H is a map

($, yax27"'axn) — <x,y|m2, "',IL’n>, T, Y, T2, "+, Tn € H
from H"*! to the set K such that for every z, y, 1, 9, ---, z, € H,
(1) (x1,z1|x2, -, 2,y > 0 and (x1, 21|z, -+, 2,) = 0 if and only if
T1, T, -+, T, are linearly dependent,
(15) (x,y|zo, - ,xn) = (x,y|Ti,, -, x;, ) forevery permutations (ig, -+, ip )
of (2,“',71),
(“Z) (:E,y|x2,~~~,xn> = <y,$|$2,"‘,$n>,
() (azx,ylze, -, xn) =a(z, ylxe, -, Ty), for a € K,
(v) {xz+4wy, z|lze, -, xn) =(x, 2|22 -, Tn)+ (y, 2|22, -, Tn).
A linear space H together with an n-inner product (-, - |-, ---, -} is called an n-inner

product space.

Definition 2.7. [7] A sequence {zj} in linear n-normed space H is said to be
convergent to x € H if

lim |2 — 2, eq, -, e, =0
k—o0
for every eq, -+, e, € H and it is called a Cauchy sequence if
lim ||z — xg, €2, -, €en] =0
l,k— oo
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for every e, ---, e, € H.The space H is said to be complete if every Cauchy
sequence in this space is convergent in H. An n-inner product space is called n-
Hilbert space if it is complete with respect to its induce norm.

Definition 2.8. [8] Let H be a n-Hilbert space and as, --- , a, are fixed elements
in H. A sequence { f;};=, in H is said to be a frame associated to (as, -+, a,)
if there exists constant 0 < A < B < oo such that

AHfa a?v"'aaﬂHQ S Z |<f? fi|0,2,"',a/n>‘2 S B Hf?a’27”')a/n||2 (3)

i=1

for all f € H.The constants A, B are called frame bounds.If { f;}72, satisfies
only the right inequality of (3), is called a Bessel sequence associated to (as, -+, an )
in H with bound B.

Let a9, as, -+, a, bethe fixed elements in H and Lpr denote the linear subspace
of H spanned by the non-empty finite set F' = { as, a3, -+, a, }. Then the quo-
tient space H / Lr is a normed linear space with respect to the norm, ||z + Lp ||z =
|z, as, -, an]| for every x € H.Let Mp be the algebraic complement of L,
then H = Lr ® Mp. Define

<I7y>F = <x7y|a27 "'aaTL> on H.
Then (-, -)p is a semi-inner product on H and this semi-inner product induces an
inner product on the quotient space H / Ly which is given by
<$+LF7y+LF>F:<xay>F:<x7y‘a27"'aan> anyeH

By identifying H /Ly with Mg in an obvious way, we obtain an inner product
on Mp. Then Mp is a normed space with respect to the norm || - || defined by

lz|lr = /(z,2)r Yo € Mp.Let Hr be the completion of the inner product
space Mp [8].

Theorem 2.3. [8] Let H be a n-Hilbert space. Then {f;};2, C H is a frame
associated to (ag, -+, an ) with bounds A and B if and only if it is a frame for
the Hilbert space Hp with bounds A and B.

For more details on frames in n-Hilbert spaces and their tensor products one can
go through the papers [8, 9, 10].

3. Continuous frame in n-Hilbert space

In this section, first we give the definition of a continuous frame in n-Hilbert space
and then discuss some of its properties.

Definition 3.1. Let H; be a complex n-Hilbert space and as, ---, a, € H; and
(Q, u) be a measure space with positive measure p. A mapping F : Q@ — H;p is
called a continuous frame or c-frame associated to (as, -+, a,) with respect to
(Q, p) if
(i) F is weakly-measurable, i.e., for all f € H;, the mapping given by w —
(f,F(w)|aga, -+, apn) is a measurable function on €.

(79) there exist constants 0 < A < B < oo such that
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SBHf7a23"'va’nH2 (4)

for all f € H;.The constants A and B are called continuous frame bounds. If

A = B, then it is called a tight continuous frame associated to (as, ---, a, ).If the
mapping F satisfies only the right inequality of (4), then it is called continuous Bessel
mapping associated to (as, ---, a, ) with Bessel bound B.

If v is a counting measure and 1 = N, F is called a discrete frame associated to
(ag, -+, a,) for Hy.

Remark 3.1. Let (£, p) be a measure space with p is o-finite. Then the mapping
F : Q — H; is a continuous frame associated to (ag, ---, a, ) with bounds A and
B if and only if it is a continuous frame for the Hilbert space Hr with bounds A
and B.

Remark 3.2. Define the representation space Lz (Q, p)
=< p: Q — Hp| @ is measurable and /||ga(w), agy s an | dp(w) < oo
Q

It can be easily proved that LZ (€, u) is a Hilbert space with respect to the inner
product defined by

(0 0)iz = [ o) v (w)lan -+ an) dutw) for o0 € LE(9, ).
Q

Theorem 3.1. Let (Q, i) be a measure space and F : Q — Hy be a continuous
Bessel mapping associated to (as, --+ , a,) with bound B. Then the operator Tc :
L2(Q, p) — Hp defined by

(To (@), fla, - an) :/w(w)<F<w>,f|a2,~~,an>du<w>
Q

where ¢ € LE(Q, u) and f € Hp, is well-defined, bounded and linear. The adjoint
operator T4 : Hrp — L2 (Q, p) given by

(TS)(M) = <f7F(w)|a’27"'aan>v w e Q
is also bounded and | Tc || = || T4 | < VB.

Proof. 1t is easy to verify that T is well-defined and linear. Since F is a continuous
Bessel mapping associated to (ag, -+, a, ) with bound B, for each ¢ € L2 (Q, u)
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and f € Hp, we have

HTC(§0)7G2""7an”:”f sup H 1‘<TC(()0),f‘027"',an>|
y A2, ,An || =
1/2
2

< swp /|<f,F<w>|a2,---,an>| du(w) | x
I fraz,,an|=1

Q

1/2

/Iw(w)lz dyu(w)
Q

S \/§||90||27
Hence, T¢ is bounded. On the other hand, for each p € LA (Q, p) and f € Hp,
<Tgf(f),<p|a2,-~,an> = <f,Tc(§0)|CL2,~“,an>

= /gp(’w) <f,F(’LU)‘027 T an> d,u(w)
Q

= <<faIF|a27"';an>7@|a2a"'7an>~
This verify that
(Té':f)(UJ) = <f,F(UJ)‘CL27 "'aa/n>7 w € Q
Also, for each f € Hp, we have
ITG(f), elas, - an|® = (TG (f), TE(f) a2, -+, an)
:/|<f,F<w>\a2,-~,an>|2du<w>.
Q
This implies that
1/2
ITell =  sup /|<fa]F(w)|a27---7an>|2du(w)
| fraz, - ,anl=1
< VB.

O

Remark 3.3. The operator T¢ defined in the Theorem 3.1, is called a pre-frame
operator or synthesis operator and 75 is called an analysis operator of F.

Definition 3.2. The operator S¢ : Hr — Hp defined by
Sc(f)(w) =TcTe (f)(w) =Te ({(f,F(w)|az, -+, an))

= [ F ) s ) Flw)dutw)
Q
is called continuous frame operator of F.
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Remark 3.4. Let F : Q — H; be a continuous frame associated to (as, -+, an)
for Hy with respect to (€, p).For each f, g € Hp, we have

<Scf7g|a27 ) an>

— [P () lan o an) (F(w) glaz, -+ an) du(w)

Q
Thus, for each f € Hp, we get

(Sc f, flaz, -+, an)
B / |<f,IF(w)|a2,,an>|2d,u(w)
Q

Therefore, for each f € Hp, from (4), we get

A<f7f|a27"'7an> S <SCf7f|a2a"'7an> S B<f7f|a27"'7an>~
Hence, AIr < S¢ < BlIp.

Theorem 3.2. Let (Q, u) be a measure space, where p is a o-finite measure and
let F: Q — Hy be a measurable function. If the operator T : LE(Q, u) — Hp
defined by

(To (@), flaz, - an) =/w(w)<F(w)7f|a2»-~-,an>du(w)
Q

where p € L2 (S, u) and f € Hp, is a bounded operator, then F is a continuous
Bessel mapping associated to (az, -+, an).

Proof. By the Theorem 3.1, we have
Tg(f)(’U)) = <f7F(w)|a2a "'7an>7 w € Q.

Now, for each f € Hp, we have

/\<f,w<w>|a2,~-~,an>|2du<w>
Q

* 2
||TC(f)a<p|a23 "'7an||

2 2
S||T‘C|| vaa%"'vanH .
This completes the proof. O

In the next theorem, we give a characterization of a continuous frame associated
to (aq, -+, a,) for Hy with respect to its pre-frame operator under some sufficient
conditions.

Theorem 3.3. Let (2, u) be a measure space, where 1 is a o-finite measure. Then
the mapping F : Q — H;y is a continuous frame associated to (asz, -+, ap ) with
respect to (8, w) if and only if the pre-frame operator To is bounded and onto
operator.

Proof. Let F be a continuous frame associated to (as, ---, ap) for Hj.Then by
Theorem 3.1, the operator T¢ is bounded and it is easy to verify that T is one-one,
onto.
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Conversely, let Te be bounded and onto operator. Then there exists a bounded
operator TCJr : Hp — L:(Q, p) such that To TCJr f = f VY f € Hp.Since

Tc is bounded, by Theorem 3.2, F is a continuous Bessel mapping associated to
(ag, -+, a,) and

176 (£ plaz v anll® = [ 1A F()laz e an) ] du(w).
Q

Let f € Hp, then

1 foaz o anll < |TE| 175 (1) olan, - an?
s U2, s Wn = C C y Pla2, y An .

Therefore, for each f € Hp, we have

-2
% 2 2
|72 17 () laz e anl®< [1U£F(w) ez, an)|? du(w).
Q
This completes the proof. O
Theorem 3.4. Let F : Q — H; be a continuous frame associated to (as, -+, ay)

with respect to (Q, p) for Hy with frame operator Sc and let U : Hp — Hp
be a bounded and invertible operator. Then UTF is a continuous frame associated to
(ag, -, ayn) for Hy with frame operator U Sc U *

Proof. For each f € Hp, we have
w = (U f,F(w)|az, ,an,) = {(f,UF(w)|az, -+, ap)
is measurable. Since U is invertible, for each f € Hp, we have
Ifoaz, - anll < [UTHIU f, a2, -, anll.

Since F is a continuous frame associated to (aso, ---, a, ) in Hi, for each f € Hp,
we have

A||U*f7a2a"'aan||2

IN

J 10 B () az - an)1? duw)
Q

S B||U*f7a2a"'aa/n”2-

Therefore, for each f € Hp, we have

-2
AU feaz e anl? £ [ A UF(0)]az, - a0)|? du(w)
Q
SBHUHQ”faa??"'yanHz-
Thus, UIFisacontinuousframeassociatedto(ag,---7an)withb0undsAHU_1H72

and B|U||2.



124 P. GHOSH AND T. K. SAMANTA
Furthermore, for each f, g € Hp, we have

/n<ﬂ17F(uﬁ|a2»“'7an><(]F(Uﬁ7g|am"'>an>du(w)

Q

:/<U*faF(w)|a2""’an> <F(w)vU*g‘a27"'aan>d:u(w)

Q
- <SCU*faU*g|a27"'van> = <USCU*fvg|a27"'aan>~

This shows that the corresponding continuous frame operator is U S¢ U *. O

Next, we end this section by discussing the continuous Bessel multiplier in Hj.

Definition 3.3. Let F and G be continuous Bessel families associated to (ag, -+, ap )
for Hy with respect to (€2, p) having bounds B; and By and m : @ — C be a
measurable function. The operator M, r ¢ : Hr — Hp defined by

m ]FGfag|a27 Tty an>
./’” JF(w) oz, an) (Glw) glas, -+, an) d(w)
is called continuous Bessel multiplier associated to (as, -+, a, ) of F and G with

respect to m.

Theorem 3.5. The continuous Bessel multiplier associated to (aq, -+, a,) of F
and G with respect to m is well defined and bounded.

Proof. For any f, g € Hp, we have

‘<Mm,]F,Gfag|a27"'7an>|

L/7n(uﬁ<f,F(UU\a2v”'aan><G(Uﬁa9|a%""an>dﬂ(w)
Q

1/2

1 o (/| FF(w)lag, - an) Pdu(w) | x

IN

1/2

/| g7 ‘a27"'7a">|2d:u(w) X
< Hm“oo\/m”f’a27“'aan”2 ||g7a25"'7an”2

This shows that || My, 7 ¢ || < ||m| e vVB1 B2 and so M, r ¢ is well-defined and
bounded. (|
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Remark 3.5. According to the proof of the Theorem 3.5, for each f € Hp, we have
||Mm,IF,Gfaa27"'aan”: sup ‘<Mm,]F,Gfag|a27"'aan>|

lg,az,-,anl=1
1/2

< |m o B2 /|f, Vg, an)Pdu(w) | (5)

and similarly it can be shown that

|| Fvaa23"'7an||
1/2
2
< lmllwvB: /\ )glaz, - an) Pdu(w) | . ()
Theorem 3.6. Let My, r, ¢ be the continuous Bessel multiplier associated to (ag,-- - ,an)
of F and G with respect to m. Then T is a continuous frame associated to (aq, -+, ay)

for Hy provided M,, r ¢ is bounded below.

Proof. Since M,, r ¢ is bounded below, for each f € Hp, there exists D > 0 such
that

||Mm,IF,Gf7a27"'aan” > D”faan"'van”'

Therefore, for each f € Hp, using 5, we get

2
D* | f,az, -+ an? < |mll% Bs /\ £ () az, - an) | du(w)
D? / 9
= —— || f,a2, - ,a , o, -, 0a dup(w).
Thus, F is a continuous frame associated to (asz, -+, a,) for H; with bounds
2
——5 5~ and Bi.This completes the proof. O
[m |3 B2
Theorem 3.7. Let M,, r ¢ be the continuous Bessel multiplier associated to (az,- - , an)

of F and G with respect to m. Suppose A1 < 1, Ay > —1 such that for each
f € Hp, we have

||f - Mm,IF,Gf, ag, -, an” <X\ ||f, Az, -, an||+>‘2 ||MW’F7GJC7 g, -, an”
Then T is a continuous frame associated to (as, -+, an) for Hi.

Proof. For each f € Hp, we have
||f,a2, "'7an|| - HMm,Rvaa%"'aanH S Hf - Mm7F,Gf7a27"'aan”
<M fya s anll + X [ Myrcfaz, 5 an.
= (]- - >\1) ||faa27"';an|| g (]- + >\2) ||Mm,]F,Gfaa27"'7an”'
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Now, using (5), we get

(1= M)

(1+/\ ) Hf7af25"'aanH

1/2

< lmlv/Bs /\(f,F(w)|a27-~-,an>|2du(w)
Q

(1-x)°
[m||2 Bz (1 + Az)

/\ FF(w) ag - an)|2du(w). (7)

Thus, F is a continuous frame associated to (aga, -+, a, ) for H; with bounds
(1—X)°
[m % Bs (14 A2)*

and Bj. O

Theorem 3.8. Let My, r.¢ be the continuous Bessel multiplier associated to (az,- - ,an)
of F and G with respect to m. Suppose A € [0, 1) such that for each f € Hp, we
have

||f - MM,F,GJC»GQ? "’van” é A ||faa27"',an||'
Then F and G are continuous frames associated to (aq, -+, an) for Hj.

Proof. Putting Ay = XA and A2 = 0 in (7), we get

(1-2)° 2
e | g, e an || | £ F(w)lag, - an) | du(w).
Im |3, Be

Thus, F is a continuous frame associated to (aq, -+-, a, ) for Hj.

On the other hand, for each f € Hp, we have
Hf - m]FvaCLQa”'aanH = H(IF - Mm,]F,G)*f7a23"'>an||
S| = My rcll Il f,az, - anl < Af,az, - an]
= (1 - )\) ||f7a27"'aan|| S |‘M;1,F,Gfﬂa27"'7anu'

Now, using (6), we get

(1—x)2 / 2
AT L an R d ]
||m||2 B ||f7a2a Y || | f|a2 a’n>| ,LL(’U))
This shows that G is a continuous frame associated to (aso, ---, a, ) for H;.This
completes the proof. O

4. Continuous frame in tensor product of n-Hilbert spaces

In this section, we introduce the concept of continuous frame in tensor product of
n-Hilbert spaces and give a characterization. We begin this section with the concept
of tensor product of n-Hilbert spaces.
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Let Hy and Hy be two n-Hilbert spaces associated with the n-inner products
(+ye]----,-); and (-, |-, -+, -)q, respectively. The tensor product of H; and H»
is denoted by H; ® Hs and it is defined to be an n-inner product space associated
with the n-inner product given by

(f@g fi®gilfa2®g2, -\ fn®gn)
=(fifulfa s fa)1 (9, 91192, -+ gn)as (8)
for all f, f1, fo, -+, fn € Hy and ¢, g1, 92, -+, gn € Ho.
The n-norm on H; ® Hy is defined by
[f1® g1, f2 @92, -+, fn®gall
= f1, far - fnlly 191, 92, - gz 9)
for all fq, fo, -~ , fn € Hy and g¢1,92, -+, gn € Hs, where the n-norms
||.,...’.||1 and ||,’||2 aregeneratedby <.7.|.,...’.>1 and <.’.‘.’...7.>2’

respectively. The space Hi; ® H, is completion with respect to the above n-inner
product. Therefore the space H; ® Hs is an n-Hilbert space.

Consider G = {bg, b3, --+, by, }, where ba, b, ---, b, are fixed elements in Hy
and Lg denote the linear subspace of Hs spanned by G.Now, we can define the
Hilbert space Hg with respect to the inner product is given by

<f+LGag+LG>G = <fvg>G = <fag|b23"'7bn>2;v f7g € H2-

Remark 4.1. According to the definition 2.4, Hr ® Hg is the Hilbert space with
respect to the inner product:

(fog, fleog)=(fFr{9.9 )
forall f, f’ € Hr and g, g’ € Hg.

Definition 4.1. Let (X, p) = (X1 x X9, p1 ® pa) be the product of measure
spaces with o-finite positive measures 1, o and ag ® ba, -+, a, ® b, be fixed
elements in H; ® Hs. The mapping F : X — H; ® Hs is called a continuous frame
associated to (ag ® ba, -+, ap @ by ) for Hy ® Hy with respect to (X, p) if
(i) F is weakly-measurable, i.e., for all f ® ¢ € H; ® Ho, © = (x1,x2) —
(f®g F(x)|az ® ba, -+, a, ® by ) is a measurable function on X.
(79) there exist constants A, B > 0 such that

A||f®g,a2®bz,---,an®bn”2

§/|<f®97]:($)|a2 @ bo, oy a, @by) |7 du(x)
X

<B|f®g,as®by -, an @b, (10)
for all f ® g € Hy ® Hs.The constants A and B are called continuous frame
bounds.If A = B, then it is called a tight continuous frame associated to
(as ® ba, -+, ap @ by ). I the mapping F satisfies only the right inequal-
ity of (10), then it is called Bessel mapping or c-Bessel mapping associated to
(a2 ® ba, -+, a, ® b, ) with Bessel bound B.

In the following theorem, we show that the continuous frame in n-Hilbert space is
preserved by the tensor product.
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Theorem 4.1. The mapping F = F1 ® Fy : X — H; ® Hs is a continuous frame

associated to (as ® ba, -+, a, @ by, ) for Hy ® Hy with respect to (X, u) if and
only if F1 is a continuous frame associated to (as, -+, an ) for Hy with respect to
(X1, n1) and Fy is a continuous frame associated to (ba, ---, by, ) for Hy with

respect to ( Xa, po)

Proof. Suppose that F = F; ® Fy is a continuous frame associated to (as ®
ba, -+, a, ®b,) for HA ® Hy with respect to (X, p).Let f € Hy /{0} and fix
g € Hy/{0}.Then f ® g € Hi ® Hy and by Fubini’s theorem we have

/\ F®g Fi(z1)® Fa(za)|as @ba, -, a, @by,)|" du(x)
/\ () las, - an), [P dpn (1) x

/| g, Fo(xza)|bo, -+, >2|2dﬂ2($2)-

Therefore, for each f ® g € H; ® Hs, (10) can be written as
2 2
AHfaa/Za"' an”l ||g’b27"'aan2
/| [, Fi(z1)las, - ,an>1|2dul($1)><

/ (g, Fa (22) b2, -+, by | du (22)
2
<B Hf’ az, -+, aﬂ”l Hg7b2’ T bn||2 .
Here we may assume that every Fy (z1) and as, -+, a, are linearly independent
and also every Fy(xo) and bo, ---, b, are linearly mdependent Hence

/\ fiFi(xz1)|ag, - 7an>1|2d,u1($1),

/\<g,Fz<x2>|b2,-~-,bn>2|2du2<x2>

are non-zero. Thus from the above inequality we can write

A”gabQ,aan;

J 19 Fa(z2)]ba, -+, bn)y|? dus (a2)
X2

s/|<f,F1<w1>|a2,---,an>1|2du1<x1>

Hf7a27"'7an||12

2
B Hgab27"'>bn||2

[ 1{g Fa(@a)|ba, s bn)y|? dpa (22)
X2

2
< ||f7a27"'aa’nH1'
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Thus, for each f € Hy/{0}, we have

Al Hf7a25"'7anH12 S / |<f,F1(9:1)|a2,--~,an>1|2du1(x1)
X1

S Bl H.f7a2a 7an||127
where
A bo. -o- b |2
Ay = inf L. b, o bnlla
g€H> | [ (g, Fa(a2)|ba, -+, bn)y|” dus(22)
X2
and
B Hga b27 R bn||22
B, = sup 5
geHs | [ (g, Fa(wa)|ba, -+, bn)y|” dua(x2)
X2
This shows that F} is a continuous frame associated to (asz, ---, a, ) for H; with
respect to (X7, p1 ). Similarly, it can be shown that Fy is a continuous frame asso-
ciated to (bo, ---, b, ) for Hs with respect to ( Xo, p2).
Conversely, suppose that Fj is a continuous frame associated to (as, ---, a, ) for
H, with respect to (X7, pt1) having bounds A, B and F; is a continuous frame as-
sociated to (bg, ---, by, ) for Hy with respect to ( Xa, uo ) having bounds C, D.By

the assumption it is easy to very that F' = F} ® F5 is weakly measurable on Hy ® Hs
with respect to (X, p).Now, for each f € Hy/{0}, g € Hy/{0}, we have

Al foaz, - a,|] < / [(f, Fr(z1) |ag, -y an), |? du (21)
X1

§B||faa27"'7an||127
C‘|gvb237bn||22 < / |<gv FQ(‘TZ)“)Q&"'7bn>2|2du2(x2)
X2
§D||gaanabn||22

Multiplying the above two inequalities and using Fubini’s theorem we get

AC | f® g a2 @ba, -+, an @ byl”

S/|<f®g,f(x)|a2 @ ba, -y an @by) |7 du(x)
X

S BD||f®g7a2 ®b27"'7an ®an27
forall f ® g € H; ® Hs.This completes the proof. O

Remark 4.2. Let (X, p) = (X1 x X2, 41 ® pa) be the product of measure
spaces with o-finite positive measures f1, (2.
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Let L2 (X, ) be the class of all measurable functions ¥ : X — Hp ® Hg
such that

/H‘I’(x)a ay @by, an @by, |? du(z) < oo,
with the inner product

<\I' (I)>L2 =

F®G

<\Il(x),q>(;(;)|a2 ®b27"'aan ®bn>dﬂ(x)a

(p1 (1), Y1 (21)]ag, -, an) du(wr)x

Il
H— | M—

/ (@2 (x2), Y2 (@2) b2, -+, by) du(xz)

X2
= (p1, Y1)z (P2, 2)pz s

for U = 1 ® 92, P = 91 ® gy € LI%@G(X, ). The space L%®G(X7 w) is
completion with respect to the above inner product. Therefore it is an Hilbert space.

Remark 4.3. Let F be a continuous Bessel family associated to (a2 ® ba, -,
an ® by) for Hi ® Hy with respect to (X, ). Then the synthesis operator T :
Lioa (X, pn) = Hp @ Hg defined by

[ (@) F(o)duta)

T (¢)

//s@(mwz)F(Il,xz)du(m,xz)

X1 Xo
where ¢ € LI%@)G (X, p) is well-defined, bounded and linear. The analysis operator
T# : Hp ® Ho — Lo (X, i) given by

(Tr(f®g))(z) =(f©@g F(x)lag @by, -+, an @ bn),
€ X, f®g € Hr ® Hg. The frame operator Sr : Hr ® Hg — Hp ® Hg is
given by

F(f®g) /f@g, £)[az ®ba, - an @ by) F(x)du(z)
X

The next theorem demonstrates that the continuous frame operator associated
with the tensor product of two continuous frames in n-Hilbert spaces is exactly the
tensor product of their respective continuous frame operators.

Theorem 4.2. Let F = F1 ® F5 : X — Hy; ® Hy be a continuous frame associated

to (aga ® by, -+, a, ®by,) for H ® Hy with respect to (X, u). Then Sy =
SF1 ® SFQ.
Proof. Suppose that F = F; ® F is a continuous frame associated to (as ®

bo, - ,a, ® b, ) for H ® Hs with respect to (X, p). Then for each f ® g €
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Hr ® Hg, we have

Sr(f®yg)
:/<f®97F1($1)®F2($2)\t12®b2,"',an®bn>F1(:c1)®F2(x2)dp(x)
X
= [ (B @) laz e an)y Fi(a) di (o) @
X1

/ (g, Fo(z2) b2, -+, bn)y Fo(w2)dus(z2)
X

= Sp, f ® Sp,g = (Sp, ® Sp,) (f © g).

O
Theorem 4.3. Let Fy be a continuous frame associated to (asq, -+, ay ) for Hy
with respect to (X1, p1) having bounds A, B and F» be a continuous frame asso-
ciated to (ba, -+, by ) for Hy with respect to (Xa, ua) having bounds C, D. Then

ACIrge < Srer < BDIrpgqg, where Irpgc is the identity operator on
Hr ® Hg and Sfg,, Sr, are continuous frame operators of Fy, Fa, respectively.
Proof. Since Sp, and Sp, are continuous frame operators, we have
Alp < Sp, < Blp, Clg < Sk, < Dlg,

where Irand Ig are the identity operators on Hp and K¢, respectively. Taking
tensor product on the above two inequalities, we get

AC(Irp ® Ig) < (Sp, ® Sp,) < BD (Ir ® Ig)

= ACIrgc < Smerm < BDlIpgc.
This completes the proof. O

To each continuous frame in n-Hilbert space one can associate a dual continuous
frame which is introduced as follows.

If F} is a continuous frame associated to (ag, -+, a, ) for Hy with respect to
(X1, p1) and Fy is a continuous frame associated to (bg, -+, b, ) for Hy with
respect to ( Xa, uo ), then we may consider the dual continuous frame G; associated
to (ag, -+, ap) of Fy and dual continuous frame G5 associated to (ba, -+, by )
of F5 which satisfies the following:

<fvg|a2a Ty an>1

= / (f, Fi(xq)|az, s an); (Gi(z1), glaz, -, an); dui(z), (11)
X1

<f1791|b27 "'7bn>1

= / <f17 FQ(.’IIQ)le, Y bn>2 <G2($2)7 g1 |b2a R b’n>2 dM2(1’2)7 (12)
X2

for all f, g € Hy and f1, g1 € Hs.
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Now, we give the definition of dual continuous frame in Hy; ® Hs.

Definition 4.2. Let F be a continuous frame associated to (as ® bg, -+, a, &
b,) for Hi ® Hs with respect to (X, p). Then a frame G associated to (as ®
ba, -+, a, ® b, ) satisfying

fog :/<f®g,f(;c)\a2 ® boy -y ay @bp) G()du(x),
X

for all f ® ¢ € H; ® Hs, is called a dual continuous frame associated to (as ®
bo, -+, a, ®by,) of F.The pair (F, G) is called a dual pair of continuous frames
associated to (ag ® ba, -+, an @ by).

Next, we give a sufficient condition for two tensor product of continuous frames to
form a pair of dual continuous frames in H; ® Hs.

Theorem 4.4. Let Fy be a continuous frame associated to (as, -+, a,) for Hj
with respect to (X, p1) and Fs is a continuous frame associated to (bo, --+, by)
for Hy with respect to (Xa, o). Suppose Gi be the dual continuous frame asso-
ciated to (ag, -+, ay,) of F1 and Go be the dual continuous frame associated to
(bay <+, bn) of Fo.Then G = G1 ® G2 : X — Hy ® Hy is a dual continuous
frame associated to (a2 ® ba, -+, a, ® by ) for Hi ® Hy with respect to (X, )
Of]::F1®F22X—)H1®H2.

Proof. By theorem 4.1, F = F} ® F5, : X - H; ® Hy and § = G; ® Gy :
X — H; ® H, are continuous frames associated to (ags ® bg, -+, a, ® b, ) for
H, ® Hy with respect to (X, ). Since G; is a dual continuous frame associated to
(ag, -+, a,) of F} and Gy is a dual continuous frame associated to (ba, -+, by, )
of Fy, for f € Hi and g € H,, we have

;= / F Fy(21)|ag, - an)y Gi(x1)dps (21),

X1
92/<9’F2($2)|b27"nbn)ng(ﬁfz)duz(@)-
X2
Now, for each f ® g € H; ® Hs, we have
f®g
= [ [t Fie ez and (g Fa(a2) [ba e ba)yG (2)du (o)
X1 Xo

where G () = G1(z1) ® G2 (x2).By Fubini’s theorem, we can write

fog=[(£90F(@)la2®ba e an®ba)G()due).
b'e
This completes the proof. O

In the following theorem, we will see that dual pair of continuous Bessel families
is a dual pair of continuous frames in H; ® Hs.
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Theorem 4.5. Let Fy, Gy be the dual pair of continuous Bessel families associated to

(ag, -+, ayn) for Hy with respect to (X1, 1) having bounds By, By and Fy, Go
be the dual pair of continuous Bessel families associated to (ba, -+, by, ) for Hy with
respect to ( Xo, o) having bounds D1, Do. Then G = G1 ® Gy : X — Hy ® Hy s
a dual continuous frame associated to (as ® ba, -+, a, ® by) for HA ® Hy with

respect to (X, p) of F = F1 @ Fy» : X — H; ® Hs.
Proof. First, we show that F = F} ® F5,G = G; ® G2 : X — H; ® Hy are

continuous frames associated to (a3 ® ba, --+, a, ® b, ) for Hy ® Hy with respect
o (X, p).Now, for each f ® g € H; ® Hs, using (11) and (12), we have
||f®g7a2®b23"'7an®bn”2
:<f7f|af25"'aan>1<g7g|a’2;"'aan>2
:/<f7F1(m1)‘a27"'7an>1 <G1(x1),f\a27~--,an>1du1(x1)><
X1

/ <g7 F2($2)|b2a "'abn>2 <G2($2),g|b2,"',bn>2 duQ(xZ)
X2
1/2

/|<f,F1<x1>|a2,---,an>1|2du1<x1> «
/|<g7el<x1>|az,---7 ) 2 dun (a1)

/|<97F2(902)|bz7--~,b Vo | dug T3)

/|<97G2(~T2)|b2,"~,b Vo | dug )

S \/B2D2 ||faa27"'7an||1 ||gab27"'aan2 X

1/2

/| f®g F(z)|las ®ba, -, an @by)|” du(z)

1 2
:>ﬁ||f®gaa2®b2;"'aan®bn”

/| f®g F(a)|as @ba, - a, @b,)|" du(z).

Thus, F is a continuous frame associated to (as ® ba, -+, a, ® by ) for Hy ® Hy

1

with respect to ( X, p) having bounds BD. and Bj D1.Similarly, it can be shown
29

that G is a continuous frame associated to (a2 ® b, -+, a, ® b, ) for H; ® Ho
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with respect to (X, u).Now, by theorem 4.4, (F, G) is a dual pair of continuous
frames associated to (a2 ® ba, -+, a, ® b, ). This completes the proof. O

Now, we end this section by discussing the idea of continuous Bessel multiplier in
H, ® Hs.

Definition 4.3. Let F and G be continuous Bessel families associated to (ay ®
bo, - ,a, ®by,) for Hi ® Hy with respect to (X, ) having bounds By and B,
and m : X = C be a measurable function. The operator M,,, r ¢ : Hr ® Hg —
Hr ® Hg defined by

m]:g f®g)

/m (f ® g, F(2)|as ®ba, -, an ®bn) G(x)du(z),  (13)

for all f ® g € Hp ® Hg, is called continuous Bessel multiplier associated to
(a2 ® bay, -+, a, ®by) of F and G with respect to m.

Remark 4.4. Let Fy, G be continuous Bessel families associated to (asa, -+, ay )
for Hy with respect to (X1, p1) and F, G2 be continuous Bessel families associated
to (bg, -+, by) for Hy with respect to (Xo, p2) and my : X3 — C, mg
Xo — C be two measurable function.Suppose My, r,¢, : Hr — Hp be a
continuous Bessel multiplier associated to (a9, -+, a, ) of F; and G; with respect
to my and My, r,. ¢, : He — Hg be a continuous Bessel multiplier associated
o (bg, -+, b,) of F5 and Gy with respect to mso.Now, by theorem 4.1, F =
Fil® F,,G =G ® Gy : X - Hy ® Hy are continuous Bessel families associated
to (aa ® bg, -+, a, ®b,) for H ® Hs with respect to (X, p).From (13), for
each f ® g € Hp ® Hg, we can write

Mmfg f®g)
=/m (f ® g, Fla)|as® b, an®bn)G(a)du(a)

::/m1<x1><f, Fi(@1)]as - an)y Gy (21)dpy (21) ©

[ ma(22) (g Faw2) b+ by Ga(w2) dis (2)
Xo
=: My, F,Gi f @ My 7,,6,9 = (Mimy 7y Gy @ My ry6,) (F ® g).
Thus, My, 7.6 = Mm,, ;,¢1 @ Mu,, 7y, G-
Remark 4.5. According to the theorem 3.5, the continuous Bessel multiplier asso-

ciated to (ag ® ba, -+, a, ® b, ) of F and G with respect to m is well defined
and bounded.
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