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Existence of parabolic orbits for the restricted three-body
problem

Chouhäıd Souissi

Abstract. In this paper, we show, using a variational formulation, the existence of Parabolic
or homoclinic orbits at infinity of the restricted three-body problem.

z̈(t) + α
z

(z(t)2 + r2)
α
2 +1

= 0.

For this, we prove the existence of a minimax critical level of functionals defined on the spaces
of periodic functions H1

2mT , we get a sequence (zα,m)m∈N. By the Ascoli Theorem, we prove
that (zα,m) converges to a parabolic orbit.
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1. Introduction

The restricted three-body problem belongs to a large category of problems called
the Hamiltonian systems. An orbit of this problem is said to be parabolic if two
of the three bodies remain bounded while the third goes to infinity with vanishing
velocity. The existence of infinitely many periodic and parabolic solutions of such
systems has already been largely studied in the litterature ([8]-[11], [14]-[16], [18],
[22]-[24], [29]-[32], [38]). In [26], Moser treated this problem using the geometry of
the Bernoulli-Shift and the symbolic dynamics. In his method, one has to prove the
existence of homoclinic points, which needs the verification of the transversality of
stable and unstable manifolds near the hyperbolic fixed points of the systems.

Sitnikov [35] proved the existence of solutions said to be oscillatory, i.e. which
correspond to motions in which two bodies remain bounded while the third limits to
infinity with zero velocity. He was based on symmetry conditions. In [1], Alekseev
treated the problem in a more general point of view using the theory of Poincaré [27].
Than came R.Mc Gehee [20] who studied the application of Poincaré associated to a
periodic orbit of Sitnikov’s exemple. He showed that the intersection of stable and
unstable manifolds to a degenerated fixed point, is an homoclinic point. And nearby
we can remark the behaviour of the oscillatory solutions. This result is a generalization
of the theory of Slotnik [36] dealing with stable manifolds near degenerated fixed
points.

Many authors have been interested in the research of periodic orbits for N -body
type problems ([14], [15], [22]-[24], [29], [38] ...) and especially those of the restricted
three-body problem ([3], [5], [6], [21], [33] -[35] ...). In the last few years, and precisely
from the work of Rabinowitz [28], some of them focused their works on the new and
powerful tool consisting on variational methods. In fact, we can find many references
based on this tool, one can cite for example [2], [4], [10], [14]- [17], [20], [21], [37] ...
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However, there have been less interest in the looking for homoclinic orbits, and
lesser for the research of parabolic ones. We can cite, as examples the works of A.
Bahri and P.H. Rabinowitz [5] which was revisited by H. Riahi ([29] -[31]), and those
of E. Séré [32], V. Coti-Zelati and I. Ekeland [17]...

In these methods, the existence of homoclinic orbits and hyperbolic fixed points
is no longer studied. We avoid by the way to look for the intersection or to prove the
transversality of manifolds. Thus, we transform the geometric approach to solve this
problem to a purely analytic one.

This paper is organized as follows: in section 2, we set the problem in a general
frame, then we introduce the particular case studied in this work. Section 3 treats
the case 0 < α < 1 and contains two steps: in the first one, we prove the existence
of a series of minimax critical levels of functionals defined on the spaces of periodic
functions H1

2mT : we get a sequence (zα,m)m∈N. In the second step, using the Ascoli-
Arzelà Theorem, we prove that (zα,m) converges to a parabolic orbit. Finally, in
section 4, taking a sequence (αn)n∈N ⊂]0, 1[, and making it converge to 1, we obtain
the response for α = 1.

2. Problem setting

In this paper, we study the existence of parabolic solutions of the restricted three-
body problem. We are interested in the configuration studied by Moser [26], Sitnikov
[35] and Mathlouthi [21]. We consider two mass points m1 = m2 > 0, moving in the
plane under Newton’s attraction low in the elliptic orbits such that their center of
mass O is at rest. We consider a third mass point m moving on the line perpendicular
to the plane containing m1 and m2, and going through O. We also suppose that m
does not influence the motion of m1 and m2. Let z be the coordinate describing the
motion of m, so that z = 0 corresponds to O. The restricted three-body problem
consists on determining z such that

z̈ + V ′(z) = 0. (1)
where

V (z) = − 1

(z2 + r2)α/2
. 0 < α ≤ 1,

and r(t), t ∈ R is the distance from the center of mass to anyone of the first two
mass points. In the papers [21], [26] and [35], it was considered that

r(t) =
1
2

(1 − εcost) + O(ε2),

r : R −→ R is continuous, T -periodic, T > 0, and r(t) > 0, for all t ∈ R, and the
existence of a periodic solution was proved. In this work, we consider the autonomous
case which corresponds to ε = 0, and we take r(t) = r > 0. So that m1 and m2 will
have circular trajectories of constant radius r.

Definition 2.1. (Parabolic orbit)
A solution z of problem 1 is said to be a parabolic orbit (or homoclinic to infinity)

if it is of class C2 on R and satisfies

(i) lim
|t|→+∞

‖z(t)‖ = ∞,

(ii) lim
|t|→+∞

‖ż(t)‖ = 0.
(2)
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The main result of this paper is the following

Theorem 2.1. For 0 < α ≤ 1, problem 1 has at least one parabolic orbit.

3. Variational formulation

3.1. Step1. In this paragraph, we treat the case 0 < α < 1. For this, we consider
the initial conditions

z(−mT ) − z(mT ) = ż(−mT ) − ż(mT ) = 0.

where T > 0 and r > 0. We denote by

H1
2mT =

{
z ∈ H1

loc(R,R) ; z(−mT ) = z(mT )
}
,

the space equipped with norm

‖z‖2 =
∫ mT

−mT

(
|z(t)|2 + |ż(t)|2

)
dt,

and we define on H1
2mT the functional

fm(z) =
∫ mT

−mT

(
1
2
|ż(t)|2 +

1

(z(t)2 + r2)
α
2

)
dt.

It’s easy to prove that fm ∈ C2
(
H1

2mT ,R
)

and to see that the solutions of the
system are the critical points of the functional fm. On the other hand, Palais-Smale
condition (PS)c holds at c > 0. We recall the following result given in [21]

Lemma 3.1. a) The functional fm is even and satisfies the Palais-Smale condition
at every level c > 0.

b) If z is a solution of (1), then z(−t), −z(t) and −z(−t) are too.

Let Σ denote the class of sets A ⊂ H1
2mT \ {0} such that A is closed in H1

2mT and
symmetric with respect to 0. In what follows we define:

Definition 3.1. (Cogenus and Genus)
For A ∈ Σ we define the cogenus of A to be

γ−(A) = inf
{
n ∈ N/∃φ : A → Sn−1 odd and continuous

}
,

and the genus to be

γ+(A) = sup
{
n ∈ N/∃φ : Sn−1 → A odd and continuous

}
.

When such a φ doesn’t exist, we set γ±(A) = ∞

We recall in this proposition some of the properties of the cogenus. For more
details, the reader can be referred, for example, to [4], [7] and [12].

Proposition 3.1. (i) If z 
= 0, γ± ({z} ∪ {−z}) = 1.

(ii) If Z is a k-dimensional subspace of H1
2mT and S = {z ∈ Z/‖z‖ = r}, r > 0,

then, γ±(S) = k.

(iii) If Z is a subspace of H1
2mT of codimension k and γ±(A) > k, then A∩Z 
= ∅.
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For all k ∈ N, we set

γk =
{
A ∈ Σ, A is compact, γ−(A) ≥ k

}
,

and
ck(m) = inf

A∈γk+1
sup
z∈A

fm(z).

Then we have
ck(m) ≤ ck+1(m).

Remark 3.1. (i) If fm satisfies the Palais-Smale condition at the level ck(m), then,
using the deformation lemma, we prove that ck(m) is a critical level of fm.

(ii) If ck(m) = ck+1(m) < fm(0) and fm satisfies the Palais-Smale condition at
the level ck(m), then f−1

m ({cm}) contains infinitely many distinct critical points.

(iii) 0 = c0(m) < c1(m).

(iv) c2k1(m) < fm(0), where k1 = max
{
k ∈ N/k <

mT

πr

}
.

For more details about these remarks, the reader can be referred, for example, to
[4], [7], [12] and [21] and the references therein.

Next, we set
cm = c1(m) = inf

A∈γ2
sup
z∈A

fm(z).

We obtain the following result

Lemma 3.2. There exist two constants c > 0 and 0 < θ < 1, independent of m such
that

cm ≤ cmθ.

Proof. Let 1
2 < β < 1, we consider the subspace of H1

2mT generated by the 2mT −
periodic functions

ϕβ(t) = |t|β , ∀t ∈ [−mT,mT ]

ψβ(t) = (mT − t)β , ∀t ∈ [0,mT ], and even
and we set

K =
{
z ∈ H1

2mT ; z = ε1τϕβ + ε2(1 − τ)ψβ , τ ∈ [0, 1] and ε1, ε2 ∈ {−1, 1}} .
The set K is compact, symmetric not containing zero, homomorphic to the subset

S1 of H1
2mT . This implies that the cogenus of K is equal to 2. Then,

cm ≤ max
z∈K

fm(z).

Indeed, we have

żτ,ε,ε1 =




βετtβ−1 − β(1 − τ)ε1(mT − t)β−1 if t ∈ ]0,mT [ ,

−βετtβ−1 + β(1 − τ)ε1(mT − t)β−1 if t ∈ ]−mT, 0[ ,

Then∫ mT

−mT

|żτ,ε,ε1 |2dt ≤ (mT )2β−1

[
2β2

2β − 1
(τ2 + (1 − τ)2) + 4β(1 − τ)τ

Γ(2β)
Γ(β)2

]

≤ (mT )2β−1

[
2β2

2β − 1
+ β

Γ(2β)
Γ(β)2

]
,
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where Γ(t) =
∫ +∞

0

st−1e−sds. Moreover, we have

∫ mT

0

dt(
z2
τ,ε,ε1

(t) + r2
)α

2
≤ (mT )1−αβ

∫ 1

0

dt

|τtβ − (1 − τ)(1 − t)β |α .

For τ ∈ ]0, 1[, we have ∫ 1
2

0

1
|τtβ − (1 − τ)(1 − t)β |α dt ≤

≤




2αβ

β

[
(1 − τ)−α+1 − (1 − 2τ)−α+1

τ(1 − α)

]
, if 0 < τ ≤ 1

2
.

2αβ

β

[
(1 − τ)−α+1 + (−1 + 2τ)−α+1

τ(1 − α)

]
, if

1
2
≤ τ < 1.

In the other hand, ∫ 1

1
2

dt

|τtβ − (1 − τ)(1 − t)β |α ≤

≤




2αβ

β

[
τ−α+1 + (1 − 2τ)−α+1

(1 − τ)(1 − α)

]
, if 0 < τ ≤ 1

2
.

2αβ

β

[
τ−α+1 − (−1 + 2τ)−α+1

(1 − τ)(1 − α)

]
, if

1
2
≤ τ < 1.

Then, by Taylor expansion in 0 and 1, we deduce that∫ mT

0

dt(
z2
τ,ε,ε1

(t) + r2
)α

2
≤ c(mT )1−αβ ,

where c is a constant depending on β and α. Then, taking

θ = max(2β − 1, 1 − αβ),

we deduce that for all τ ∈]0, 1[, we have cm ≤ cmθ. Hence the lemma follows. �

If zα,m is a critical point corresponding to the critical level cm, then we have

Lemma 3.3. ‖zα,m‖∞ −→ +∞ when m −→ +∞.

Proof. We have,

2mT

(‖zα,m‖2∞ + r2)
α
2

=
∫ mT

−mT

dt

(‖zα,m‖2∞ + r2)
α
2
≤ fm(zα,m) ≤ cmθ.

This implies

‖zα,m‖2
∞ ≥ 1

c
m

2(1−θ)
α − r2 −→ +∞ when m −→ +∞.

�
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Remark 3.2. If zα,m is a solution of (1), then zα,m has at least one zero t0m in
[−mT,mT ]. Then, there exists n(m) ∈ Z such that n(m)T ≤ t0m < (n(m) + 1)T .
We set

z̄α,m(t) = zα,m(t + n(m)T ),
then z̄α,m is a solution of 1, having a zero in [0, T ]. In the following, for simplicity,

we denote z̄α,m by zα,m.

Lemma 3.4. (żα,m)m∈N is uniformly bounded.

Proof. Let m ∈ N and zα,m be a solution of 1. We take the energy function

Em(t) =
1
2
|żα,m(t)|2 − 1(

z2
α,m + r2

)α
2
. (3)

The derivative of Em with respect to t is such that E′
m(t) = 0 for all t ∈ R and for

each solution zα,m of (1). This implies that Em(t) = C(m).

We consider an extremum tm of zα,m. Then we have

żα,m(tm) = 0.

So that we have
|C(m)| =

1
(z2

α,m(tm) + r2)
α
2
≤ 1

rα

From 3 we deduce

|żα,m(t)|2 ≤ 2(
z2
α,m(t) + r2

)α
2

+ 2|C(m)| ≤ 4
rα

�

PROOF OF THE THEOREM FOR 0 < α < 1

As zα,m vanishes on [0, T ], for all m ∈ N, Lemma 3 implies that (zα,m)m∈N is
uniformly bounded on any compact set of R. From 3.4, we deduce that (zα,m)m∈N

is uniformly equicontinues on R. Then applying the Ascoli-Arzelà theorem, we can
extract a subspace of (zα,m)m∈N converging uniformly on any compact set of R to a
limit zα, which is a solution of (1). zα is also of class C2 on R. On the other hand,
it satisfies the energy equation

E =
1
2
|żα|2 − 1

(z2
α + r2)

α
2

= 0

Which implies that

1
2
|żα|2 =

1

(z2
α + r2)

α
2
> 0. (4)

So we can deduce that zα is strictly increasing or strictly decreasing on R. We
suppose that zα is bounded. So that there exists a constant B > 0 such that |zα(t)| <
B for all t ∈ R. By 4, there exists γ > 0 such that |żα(t)| > γ, for all t ∈ R, which
implies:

|zα(t) − zα(0)| = |
∫ t

0

żα(t)dt| > γ|t| → ∞ when t → ∞
This result contradicts the hypothesis ”zα is bounded”. So that: zα(t) → ∞ when

t → ∞.
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And again from 4 we have: |żα(t)| → 0 when |t| → +∞.
It follows that zα is a parabolic orbit of problem 1.

3.2. Step2.

Lemma 3.5. For 0 < α < 1, the solution zα vanishes on [0, T ].

Proof. We suppose that zα doesn’t vanish on [0, T ]. Than zα doesn’t change sign on
[0, T ]. Assume, for example, that zα(t) > 0, for all t ∈ [0, T ] (the case ”zα(t) < 0, for
all t ∈ [0, T ]” is similar). As zα is continues on the compact set [0, T ], there exists a
constant β > 0 such that zα(t) > β for all t ∈ [0, T ]. But zα,m converges uniformly
to zα on [0, T ], so we deduce the existence of an integer N such that

m ≥ N =⇒ |zα,m(t) − zα(t)| < β

2

so that

zα,m(t) >
β

2
∀t ∈ [0, T ] and ∀m ≥ N

It follows that zα,m(t) 
= 0 ∀t ∈ [0, T ]. A contradiction. �

PROOF OF THE THEOREM FOR α = 1
Let (αn)n∈N be an increasing sequence of ]0, 1[ which converges to 1. For each

n ∈ N, we denote by zn = zαn
the solution, constructed below, of the problem




z̈n(t) + αn
zn(t)

(zn(t)2 + r2)
αn
2 +1

= 0,

lim
|t|→∞

|zn(t)| = +∞,

lim
|t|→∞

|żn(t)| = 0.

(5)

Applying 4 for zn, we obtain

|żn(t)|2 =
2

(z2
n(t) + r2)

α
2
≤ 2

rα
∀t ∈ R.

which implies that (żn)n is uniformly bounded on R.
As zn vanishes on [0, T ], for all n ∈ N, we can deduce that (żn)n is uniformly

bounded on every compact set of R and uniformly equicontinues on R. It follows
that we can again apply the Ascoli-Arzelà Theorem (as we did with the sequence
(zα,m)m∈N in Step 1) and extract from zn a subsequence that is uniformly converging
on any compact set of R to a function z1 which is a solution of problem 1 for α = 1.

Arguing as in the previous step, we deduce by 4, as |t| −→ ∞, that we have{ |z1(t)| −→ ∞
ż1(t) −→ 0

So that z1 is a parabolic orbit of problem 1.
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