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Edge resolving number of pentagonal circular ladder

Sunny Kumar Sharma, Vijay Kumar Bhat, and Sohal Lal

Abstract. Let G = G(V,E) be a non-trivial simple connected graph. The length of the
shortest path between two vertices p and q, represented by d(p, q), is called the distance

between the vertices p and q. The distance between an edge ε = pq and a vertex r in G

is defined as d(ε, r) = min{d(p, r), d(q, r)}. If d(r, p) 6= d(r, q), then the vertex r is said to
distinguish (resolve or recognize) two elements (edges or vertices) p, q ∈ V ∪E. The minimum

cardinality of a subset R (Re) of vertices such that all other vertices (edges) of the graph G are
uniquely determined by their distances to the vertices in R (Re) is the metric dimension (edge

metric dimension) of a graph G. In this article, we consider a family of pentagonal circular

ladder (Pm) and investigate its edge metric dimension. We show that, for Pm the edge metric
dimension is strictly greater than its metric dimension. Additionally, we answer a problem

raised in the recent past, regarding the edge metric dimension of a family of a planar graph

Rm (exists in the literature).
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1. Introduction

The problem of metric dimension was initiated in the seventies by Slater [16] and
Harary & Melter [4] independently. Suppose G = (V,E) to be a simple non-trivial
connected graph. The length of the shortest path between any two vertices p and q,
denoted by d(p, q), is called the distance between vertices p and q. The totality of
edges that are incident to a vertex of G is known as its degree (valency).

An ordered subset R ⊆ V of distinct vertices is said to be a resolving set if every pair
of different vertices of G are resolved by at least one vertex of R. In other words, for a
subset of vertices, R = {x1, x2, x3, ..., xk} of G, any vertex β ∈ V can be represented
uniquely in the form of a k-vector γ(β|R) = (d(x1, β), d(x2, β), d(x3, β), ..., d(xk, β)).
Then, the set R is a resolving set for G, if γ(p|R) = γ(q|R) implies that p = q for
all p, q ∈ V . Next, the resolving set R is said to be the metric basis for G, if the set
R has the least possible cardinality in G, and this least cardinality is known as the
metric dimension (location number) of G, represented by dim(G). A subset R of
distinguishable vertices in G is said to be an independent resolving set for G, if R is
independent as well as resolving set.

For a subset R = {x1, x2, x3, ..., xk} of distinct ordered vertices in G, the qth

component (distance coordinate) of γ(x|R) is zero if and only if x = xl. Therefore,
in order to check that the set R is a resolving set in G, it is sufficient to prove that
γ(p|R) 6= γ(q|R) for each pair of distinct vertices p, q ∈ V (G) \R.
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The first paper consisting of the concepts of resolving set and that of minimum re-
solving set were introduced by Slater [16], in association with the problem of recogniz-
ing the location of a thief or an intruder in a given network. He used the terms location
number and locating set, to describe the cardinality of a minimum resolving set and
a resolving set of a given network, respectively. Harary and Melter [4] independently
introduced the same concept, but used the terms resolving set and metric dimension,
rather than locating set and location number as used by Slater, respectively. After
these introductory papers, varieties of distinct resolving sets with different proper-
ties have also been presented, such as strong metric dimension, fault-tolerant metric
dimension, local metric dimension, independent resolving sets, resolving dominating
sets, and many others.

The resolving set and metric dimension for a graph provide some useful information
regarding the vertices of the graph, it is quite natural to ask if there is any other graph
invariant or parameter, which deals with the edges of the graphs in a similar way as
the resolving set for the graph. Answer to that important question was put forward by
Kelenc et al. [7], where the authors introduced the concept of edge metric dimension
of graphs. Firstly, they defined the distance between a vertex p ∈ V and an edge
ε = ab in the following manner:

d(ε, p) = min{d(a, p), d(b, p)}
For a subset of vertices, Re = {x1, x2, x3, ..., xk} of G, any edge e ∈ E can be repre-
sented uniquely in the form of a k-vector

γ′(e|Re) = (d(x1, e), d(x2, e), d(x3, e), ..., d(xk, e)).

Then, the set Re is an edge resolving set for G, if γ′(e1|Re) = γ′(e2|Re) implies that
e1 = e2 for all e1, e2 ∈ E. Next, the edge resolving set Re is said to be the edge
metric basis for G, if the set Re has the least possible cardinality in G, and this least
cardinality is known as the edge metric dimension of G, represented by edim(G). A
subset Re of distinguishable vertices in G is said to be an independent edge resolving
set for G, if R is independent as well as edge resolving set. Some results regarding
the metric dimension and the edge metric dimension are as follows:

Proposition 1. [7] For every positive integer m ≥ 3, edim(Pm) = dim(Pm) = 1 (Pm

is a path on m vertices), dim(Km) = edim(Km) = m − 1 (Km is a complete graph
on m vertices), and dim(Cm) = edim(Cm) = 2 (Cm is a cycle on m vertices).

Afterward, these concepts were studied in-depth, Melter and Tomescu [9] employed
the concept of metric dimension in image processing and pattern recognition, Sebo
and Tannier [12] discussed the notion of metric dimension in terms of combinatorial
optimization, Cáceres et al. [2] employed these concepts on coin weighing problems
and mastermind games, Khuller et al. [8] found an application of metric dimension
in the navigation of robots, Beerloiva et al. [1] discussed these ideas to network dis-
covery and verification, Chartrand et al. [3] studied applications to chemical science,
Slater [16] discussed problems related to SONAR (Sound Navigation and Ranging),
coastguard LORAN (Long-Range Navigation), facility location problems, etc.

In elementary geometry, a polytope is a geometric object with flat sides. Convex
polytopes are defined as polytopes with the extra property of being convex sets and
being enclosed in the m-dimensional space Rm (Euclidean space). Convex polytopes
play an important role in a variety of disciplines of mathematics as well as in applied
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areas, most notably in linear programming. For several distinct classes of convex
polytopes, the concept of metric and edge metric dimension have been discussed in
[5, 6, 10, 13, 14, 15, 18].

In this paper, we determine the edge metric dimension for a rotationally symmet-
rical family of planar graphs Pm ([5], pentagonal circular ladder), known from the
literature. We show that for the pentagonal circular ladder Pm, the edge metric di-
mension is strictly greater than its metric dimension i.e., edim(Pm) > dim(Pm), for
every m ≥ 3. We also give an answer to a problem raised by Raza et al. [11] regarding
the edge metric dimension of the family of planar graph Rm (exists in the literature),
and we prove for this family Rm, that edim(Rm) = 5. Moreover, for both of these
families of planar graphs, we show that the edge metric basis sets Re are independent.

Next, we give some known outcomes regarding the metric dimension of the two
aforementioned families of the planar graphs (viz., Pm and Rm), which are as follows:

Theorem 1. [5] Let Pm be the graph of pentagonal circular ladder. Then, dim(Pm) =
2 for every n ≥ 6.

Theorem 2. [11] Let Rm be the rotationally symmetric planar graph. Then,
dim(Rm) = 3 for every n ≥ 6.

Throughout this article, all vertex indices are taken to be modulo m. The present
paper is organized as follows: In section 2, we study the edge metric dimension of the
pentagonal circular ladder Pm (see Fig. 1 and 2). In section 3, we study the edge
metric dimension of the rotationally symmetrical planar graph Rm (see Fig. 3), and
in our last section, we conclude our results and findings regarding the aforementioned
families of the planar graphs.

2. Edge metric dimension of pentagonal circular ladder

The planar graph Pm [5], comprises of 3m number of vertices and 4m number of
edges. It has n faces each having five sides (pentagonal faces) and two n-sided faces,
as shown in Fig. 2. We represent the set of vertices and edges for the pentagonal
circular ladder Pm as V (Pm) and E(Pm), respectively. The sets V (Pm) and E(Pm)
are as follows:

V (Pm) = {pl, ql, rl : 1 ≤ l ≤ m}
and

E(Pm) = {plql, qlrl, plpl+1, rlql+1 : 1 ≤ l ≤ m}

We name the set A = {pl : 1 ≤ l ≤ m} of vertices in Pm, as the p-vertices, the set B =
{ql : 1 ≤ l ≤ m} of vertices in Pm, as the q-vertices, and the set C = {rl : 1 ≤ l ≤ m}
of vertices in Pm, as the r-vertices. For our purpose, we take pm+1 = p1, rm+1 = r1,
and qm+1 = q1 (whenever necessary). In this section, we study the notion of edge
metric dimension for the pentagonal circular ladder Pm. We prove that edim(Pm) = 3
for 3 ≤ m ≤ 14 and edim(Pm) = dm6 e for m ≥ 15. Additionally, we prove that an edge
resolving set Re for Pm is independent. Next, we have the following result regarding
the edge metric dimension of Pm.
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Figure 1. Pentagonal circular ladder Pm, for m = 3, 4, 5.

Figure 2. Pentagonal circular ladder Pm, for m ≥ 6.

Lemma 1. The set A ⊂ V (Pm) of p-vertices is not an edge resolving set for Pm.

Proof. Suppose on the contrary, that the set A of p-vertices is an edge resolving set
for the planar graph Pm. Then, from Fig. 2, we find that γ′(qlrl|A) = γ′(qlrl−1|A),
for all 1 ≤ l ≤ m, a contradiction. �

Lemma 2. Suppose Re ⊂ V (Pm) has vertices only from the set B = {ql : 1 ≤ l ≤ m}
(C = {rl : 1 ≤ l ≤ m}). Let d(a, b) ≥ 10, for every a, b ∈ Re. Then, Re is not an edge
resolving set for Pm for m ≥ 15.

Proof. Suppose on the contrary, that the set Re with the above said properties is an
edge resolving set for Pm. Then, without loss of generality, let a = r2 and b = r9,
then γ′(q6r6|Re) = γ′(q5r6|Re), a contradiction. �
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Lemma 3. The cardinality of any edge resolving set Re for Pm is ≥ dm6 e, for every
m ≥ 15.

Proof. It is obvious from Lemma 2. �

Next, we obtain the edge metric dimension for Pm; m ≥ 3. We also investigate the
property of independence in an edge resolving set for Pm. For this, we have the
following result:

Theorem 3. Let Pm be the graph of pentagonal circular ladder. Then,

edim(Pm) =

{
3, if 3 ≤ m ≤ 14;

dm6 e if m ≥ 15.

Proof. For 3 ≤ n ≤ 14, it is easy to check that the edge metric dimension of Pm is
3. For m = 3, 4, and 5 one can find that the position of the edge basis vertices (color
in red) in Fig. 1, and for 6 ≤ m ≤ 14 (where m = 2s or m = 2s + 1; s ∈ N) the set
of vertices Re = {r2, rs+1, rm}, is an edge resolving set for Pm. Now, for m ≥ 15, we
have following cases to be considered.

Case (I) m ≡ 0 (mod 6).
Then, we write m = 6k = 2s, where k, s ∈ N and k ≥ 3. First, we prove that
edim(Pm) ≤ dm6 e. For this, suppose Re = {r2, r8, r14, ..., r6k−10, r6k−4} ⊂ V (Pm).
We will prove that Re is an edge resolving set with minimum cardinality for Pm. By
total enumeration, one can verify easily that the set Re is an edge resolving set with
minimum cardinality for Pm, whenever k =3, 4, and 5. Next, for k ≥ 6, we have to
prove that the cardinality of minimum edge resolving set Re for Pm is ≤ dm6 e. For
this, we show that the edge metric codes with respect to the set Re, are distinct for
every two distinct members of E(Pm).

Suppose R∗e = {r2, r8, r6k−4}. Next, we give edge metric codes for every edge of
Pm; m ≥ 15, corresponding to the set R∗e . The edge metric codes for the set of edges
E1 = {e = plpl+1|l = 1, 2, 3, ...,m}, with respect to the set R∗e are listed in Table 1:

Table 1. Edge metric codes for the edges present in E1

Edges γ′(e)

plpl+1; l = 1 (2, 8, 6)
plpl+1; l = 2 (2, 7, 7)

plpl+1; 3 ≤ l ≤ 7 (l − 1, 9− l, l + 5)
plpl+1; l = 8 (7, 2, 13)

plpl+1; 9 ≤ l ≤ s− 4 (l − 1, l − 7, l + 5)
plpl+1; s− 3 ≤ l ≤ s+ 2 (l − 1, l − 7, 6k − l − 3)
plpl+1; s+ 3 ≤ l ≤ s+ 8 (6k − l + 3, l − 7, 6k − l − 3)
plpl+1; s+ 9 ≤ l ≤ 6k − 5 (6k − l + 3, 6k − l + 9, 6k − l − 3)

plpl+1; l = 6k − 4 (6k − l + 3, 6k − l + 9, 2)
plpl+1; 6k − 3 ≤ l ≤ 6k (6k − l + 3, 6k − l + 9, l − 6k + 5)

The edge metric codes for the set of edges E2 = {e = plql|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 2:
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Table 2. Edge metric codes for the edges present in E2

Edges γ′(e)

plql; l = 1 (3, 9, 6)
plql; 2 ≤ l ≤ 3 (1, 10− l, l + 5)
plql; 4 ≤ l ≤ 7 (l − 1, 10− l, l + 5)
plql; 8 ≤ l ≤ 9 (l − 1, 1, l + 5)

plql; 10 ≤ l ≤ s− 4 (l − 1, l − 7, l + 5)
plql; s− 3 ≤ l ≤ s+ 2 (l − 1, l − 7, 6k − l − 2)
plql; s+ 3 ≤ l ≤ s+ 8 (6k − l + 4, l − 7, 6k − l − 2)
plql; s+ 9 ≤ l ≤ 6k − 5 (6k − l + 4, 6k − l + 10, 6k − l − 2)
plql; 6k − 4 ≤ l ≤ 6k − 3 (6k − l + 4, 6k − l + 10, 1)
plql; 6k − 2 ≤ l ≤ 6k (6k − l + 4, 6k − l + 10, l − 6k + 5)

The edge metric codes for the set of edges E3 = {e = qlrl|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 3:

Table 3. Edge metric codes for the edges present in E3

Edges γ′(e) Edges γ′(e)

qlrl; l = 1 (2, 10, 7) qlrl; 12 ≤ l ≤ s− 4 (l, l − 6, l + 6)
qlrl; l = 2 (0, 9, 8) qlrl; s− 3 ≤ l ≤ s+ 2 (l, l − 6, 6k − l − 1)
qlrl; l = 3 (1, 8, 9) qlrl; s+ 3 ≤ l ≤ s+ 8 (6k − l + 5, l − 6, 6k − l − 1)
qlrl; l = 4 (3, 7, 10) qlrl; s+ 9 ≤ l ≤ 6k − 7 (6k − l + 5, 6k − l + 11, 6k − l − 1)
qlrl; l = 5 (5, 6, 11) qlrl; l = 6k − 6 (6k − l + 5, 6k − l + 11, 4)
qlrl; l = 6 (6, 4, 12) qlrl; l = 6k − 5 (6k − l + 5, 6k − l + 11, 2)
qlrl; l = 7 (7, 2, 13) qlrl; l = 6k − 4 (6k − l + 5, 6k − l + 11, 0)
qlrl; l = 8 (8, 0, 14) qlrl; l = 6k − 3 (6k − l + 5, 6k − l + 11, 1)
qlrl; l = 9 (9, 1, 15) qlrl; l = 6k − 2 (6k − l + 5, 6k − l + 11, 3)
qlrl; l = 10 (10, 3, 16) qlrl; l = 6k − 1 (6k − l + 5, 6k − l + 11, 5)
qlrl; l = 11 (11, 5, 17) qlrl; l = 6k (4, 6k − l + 11, 6)

The edge metric codes for the set of edges E4 = {e = rlql+1|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 4:

Now, from these edge metric codes for the edges of Pm, corresponding to the set R∗e ,
we find that γ′(qlrl|R∗e) = γ′(rlql−1|R∗e), for every 12 ≤ l ≤ 6k−7 (some other pair of
distinct edges may also have the same edge metric codes in Pm). Then, from the re-
maining edge metric codes for the edges in Pm, we obtain that γ′(e1|R∗e) 6= γ′(e2|R∗e)
for every pair of distinct edges e1 and e2 in Pm, other than the same edge metric codes.
Thus, for Re = R∗e ∪ {r14, r20, ..., r6k−10}, we obtain that γ′(qlrl|R∗e) 6= γ′(rlql−1|R∗e),
and so γ′(e1|R∗e) 6= γ′(e2|R∗e) for any e1 and e2 in E(Pm). From this, we find that
|Re| ≤ dm6 e. Hence, edim(Pm) ≤ dm6 e in this case.

Case (II) m ≡ 1 (mod 6).
Then, we write m = 6k+1 = 2s+1, where k, s ∈ N and k ≥ 3. For this case, we prove
that edim(Pm) ≤ dm6 e. For this, suppose Re = {r2, r8, r14, ..., r6k−10, r6k−4, r6k+1} ⊂
V (Pm). We will prove that Re is an edge resolving set with minimum cardinality for
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Table 4. Edge metric codes for the edges present in E4

Edges γ′(e) Edges γ′(e)

rlql+1; l = 1 (1, 9, 8) rlql+1; 11 ≤ l ≤ s− 5 (l + 1, l − 5, l + 7)
rlql+1; l = 2 (0, 8, 9) rlql+1; s− 4 ≤ l ≤ s+ 1 (l + 1, l − 5, 6k − l − 2)
rlql+1; l = 3 (2, 7, 10) rlql+1; s+ 2 ≤ l ≤ s+ 7 (6k − l + 4, l − 5, 6k − l − 2)
rlql+1; l = 4 (4, 6, 11) rlql+1; s+ 8 ≤ l ≤ 6k − 7 (6k − l + 4, 6k − l + 10, 6k − l − 2)
rlql+1; l = 5 (6, 5, 12) rlql+1; l = 6k − 6 (6k − l + 4, 6k − l + 10, 3)
rlql+1; l = 6 (7, 3, 13) rlql+1; l = 6k − 5 (6k − l + 4, 6k − l + 10, 1)
rlql+1; l = 7 (8, 1, 14) rlql+1; l = 6k − 4 (6k − l + 4, 6k − l + 10, 0)
rlql+1; l = 8 (9, 0, 15) rlql+1; l = 6k − 3 (6k − l + 4, 6k − l + 10, 2)
rlql+1; l = 9 (10, 2, 16) rlql+1; l = 6k − 2 (6k − l + 4, 6k − l + 10, 4)
rlql+1; l = 10 (11, 4, 17) rlql+1; l = 6k − 1 (6k − l + 4, 6k − l + 10, 6)

rlql+1; l = 6k (3, 6k − l + 10, 7)

Pm. By total enumeration, one can verify easily that the set Re is an edge resolving
set with minimum cardinality for Pm, whenever k =3, 4, and 5. Next, for k ≥ 6, we
have to prove that the cardinality of minimum edge resolving set Re for Pm is ≤ dm6 e.
For this, we show that the edge metric codes with respect to the set Re, are distinct
for every two distinct members of E(Pm).

Suppose R∗e = {r2, r8, r6k+1}. Next, we give edge metric codes for every edge of
Pm; m ≥ 26, corresponding to the set R∗e . The edge metric codes for the set of edges
E1 = {e = plpl+1|l = 1, 2, 3, ...,m}, with respect to the set R∗e are listed in Table 5:

Table 5. Edge metric codes for the edges present in E1

Edges γ′(e)

plpl+1; 1 ≤ l ≤ 3 (2, 9− l, l + 1)
plpl+1; 4 ≤ l ≤ 7 (l − 1, 9− l, l + 1)
plpl+1; l = 8 (7, 2, 9)

plpl+1; 9 ≤ l ≤ s (l − 1, l − 7, l + 1)
plpl+1; s+ 1 ≤ l ≤ s+ 2 (l − 1, l − 7, 6k − l + 2)
plpl+1; s+ 3 ≤ l ≤ s+ 8 (6k − l + 4, l − 7, 6k − l + 2)
plpl+1; s+ 9 ≤ l ≤ 6k + 1 (6k − l + 4, 6k − l + 10, 6k − l + 2)

plpl+1; l = 6k + 2 (6k − l + 4, 6k − l + 10, 2)

The edge metric codes for the set of edges E2 = {e = plql|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 6:

The edge metric codes for the set of edges E3 = {e = qlrl|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 7:

The edge metric codes for the set of edges E4 = {e = rlql+1|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 8:

Now, from these edge metric codes for the edges of Pm, corresponding to the
set R∗e , we find that γ′(qlrl|R∗e) = γ′(rlql−1|R∗e), for every 12 ≤ l ≤ 6k − 2 (some
other pair of distinct edges may also have the same edge metric codes in Pm).
Then, from the remaining edge metric codes for the edges in Pm, we obtain that
γ′(e1|R∗e) 6= γ′(e2|R∗e) for every pair of distinct edges e1 and e2 in Pm, other than the
same edge metric codes. Thus, for Re = R∗e ∪ {r14, r20, ..., r6k−10, r6k−4}, we obtain
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Table 6. Edge metric codes for the edges present in E2

Edges γ′(e)

plql; l = 1 (3, 9, 1)
plql; 2 ≤ l ≤ 3 (1, 10− l, l + 1)
plql; 4 ≤ l ≤ 7 (l − 1, 10− l, l + 1)
plql; 8 ≤ l ≤ 9 (l − 1, 1, l + 1)
plql; 10 ≤ l ≤ s (l − 1, l − 7, l + 1)

plql; s+ 1 ≤ l ≤ s+ 2 (l − 1, l − 7, 6k − l + 3)
plql; s+ 3 ≤ l ≤ s+ 8 (6k − l + 5, l − 7, 6k − l + 3)
plql; s+ 9 ≤ l ≤ 6k + 1 (6k − l + 5, 6k − l + 11, 6k − l + 3)

plql; l = 6k + 2 (6k − l + 5, 6k − l + 11, 1)

Table 7. Edge metric codes for the edges present in E3

Edges γ′(e) Edges γ′(e)

qlrl; l = 1 (2, 10, 1) qlrl; l = 10 (10, 3, 12)
qlrl; l = 2 (0, 9, 3) qlrl; l = 11 (11, 5, 13)
qlrl; l = 3 (1, 8, 5) qlrl; 12 ≤ l ≤ s (l, l − 6, l + 2)
qlrl; l = 4 (3, 7, 6) qlrl; s+ 1 ≤ l ≤ s+ 2 (l, l − 6, 6k − l + 4)
qlrl; l = 5 (5, 6, 7) qlrl; s+ 3 ≤ l ≤ s+ 8 (6k − l + 6, l − 6, 6k − l + 4)
qlrl; l = 6 (6, 4, 8) qlrl; s+ 9 ≤ l ≤ 6k − 1 (6k − l + 6, 6k − l + 12, 6k − l + 4)
qlrl; l = 7 (7, 2, 9) qlrl; l = 6k (6k − l + 6, 6k − l + 12, 4)
qlrl; l = 8 (8, 0, 10) qlrl; l = 6k + 1 (6k − l + 6, 6k − l + 12, 2)
qlrl; l = 9 (9, 1, 11) qlrl; l = 6k + 2 (4, 6k − l + 12, 0)

Table 8. Edge metric codes for the edges present in E4

Edges γ′(e) Edges γ′(e)

rlql+1; l = 1 (1, 9, 2) rlql+1; l = 9 (10, 2, 12)
rlql+1; l = 2 (0, 8, 4) rlql+1; l = 10 (11, 4, 13)
rlql+1; l = 3 (2, 7, 6) rlql+1; 11 ≤ l ≤ s− 1 (l + 1, l − 5, l + 3)
rlql+1; l = 4 (4, 6, 7) rlql+1; s ≤ l ≤ s+ 1 (l + 1, l − 5, 6k − l + 3)
rlql+1; l = 5 (6, 5, 8) rlql+1; s+ 2 ≤ l ≤ s+ 7 (6k − l + 5, l − 5, 6k − l + 3)
rlql+1; l = 6 (7, 3, 9) rlql+1; s+ 8 ≤ l ≤ 6k − 1 (6k − l + 5, 6k − l + 11, 6k − l + 3)
rlql+1; l = 7 (8, 1, 10) rlql+1; 6k (6k − l + 5, 6k − l + 11, 3)
rlql+1; l = 8 (9, 0, 11) rlql+1; 6k + 1 (6k − l + 5, 6k − l + 11, 1)

rlql+1; 6k + 2 (3, 6k − l + 11, 0)

that γ′(qlrl|R∗e) 6= γ′(rlql−1|R∗e), and so γ′(e1|R∗e) 6= γ′(e2|R∗e) for any e1 and e2 in
E(Pm). From this, we find that |Re| ≤ dm6 e. Hence, edim(Pm) ≤ dm6 e in this case as
well.

Case (III) m ≡ 2 (mod 6).
Then, we write m = 6k + 2 = 2s, where k, s ∈ N and k ≥ 3. For this case, we prove
that edim(Pm) ≤ dm6 e. For this, suppose Re = {r2, r8, r14, ..., r6k−10, r6k−4, r6k+2} ⊂
V (Pm). We will prove that Re is an edge resolving set with minimum cardinality for
Pm. By total enumeration, one can verify easily that the set Re is an edge resolving
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set with minimum cardinality for Pm, whenever k =3, 4, and 5. Next, for k ≥ 6, we
have to prove that the cardinality of minimum edge resolving set Re for Pm is ≤ dm6 e.
For this, we show that the edge metric codes with respect to the set Re, are distinct
for every two distinct members of E(Pm).

Suppose R∗e = {r2, r8, r6k+2}. Next, we give edge metric codes for every edge of
Pm; m ≥ 15, corresponding to the set R∗e . The edge metric codes for the set of edges
E1 = {e = plpl+1|l = 1, 2, 3, ...,m}, with respect to the set R∗e are listed in Table 9:

Table 9. Edge metric codes for the edges present in E1

Edges γ′(e)

plpl+1; 1 ≤ l ≤ 3 (2, 9− l, l + 1)
plpl+1; 4 ≤ l ≤ 7 (l − 1, 9− l, l + 1)
plpl+1; l = 8 (7, 2, 9)

plpl+1; 9 ≤ l ≤ s (l − 1, l − 7, l + 1)
plpl+1; s+ 1 ≤ l ≤ s+ 2 (l − 1, l − 7, 6k − l + 3)
plpl+1; s+ 3 ≤ l ≤ s+ 8 (6k − l + 5, l − 7, 6k − l + 3)
plpl+1; s+ 9 ≤ l ≤ 6k + 1 (6k − l + 5, 6k − l + 11, 6k − l + 3)

plpl+1; l = 6k + 2 (6k − l + 5, 6k − l + 11, 2)

The edge metric codes for the set of edges E2 = {e = plql|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 10:

Table 10. Edge metric codes for the edges present in E2

Edges γ′(e)

plql; l = 1 (3, 9, 1)
plql; 2 ≤ l ≤ 3 (1, 10− l, l + 1)
plql; 4 ≤ l ≤ 7 (l − 1, 10− l, l + 1)
plql; 8 ≤ l ≤ 9 (l − 1, 1, l + 1)
plql; 10 ≤ l ≤ s (l − 1, l − 7, l + 1)

plql; s+ 1 ≤ l ≤ s+ 2 (l − 1, l − 7, 6k − l + 4)
plql; s+ 3 ≤ l ≤ s+ 8 (6k − l + 6, l − 7, 6k − l + 4)
plql; s+ 9 ≤ l ≤ 6k + 1 (6k − l + 6, 6k − l + 12, 6k − l + 4)

plql; l = 6k + 2 (6k − l + 6, 6k − l + 12, 1)

The edge metric codes for the set of edges E3 = {e = qlrl|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 11:

The edge metric codes for the set of edges E4 = {e = rlql+1|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 12:

Now, from these edge metric codes for the edges of Pm, corresponding to the
set R∗e , we find that γ′(qlrl|R∗e) = γ′(rlql−1|R∗e), for every 12 ≤ l ≤ 6k − 1 (some
other pair of distinct edges may also have the same edge metric codes in Pm).
Then, from the remaining edge metric codes for the edges in Pm, we obtain that
γ′(e1|R∗e) 6= γ′(e2|R∗e) for every pair of distinct edges e1 and e2 in Pm, other than the
same edge metric codes. Thus, for Re = R∗e ∪ {r14, r20, ..., r6k−10, r6k−4}, we obtain
that γ′(qlrl|R∗e) 6= γ′(rlql−1|R∗e), and so γ′(e1|R∗e) 6= γ′(e2|R∗e) for any e1 and e2 in
E(Pm). From this, we find that |Re| ≤ dm6 e. Hence, edim(Pm) ≤ dm6 e in this case as
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Table 11. Edge metric codes for the edges present in E3

Edges γ′(e) Edges γ′(e)

qlrl; l = 1 (2, 10, 1) qlrl; l = 10 (10, 3, 12)
qlrl; l = 2 (0, 9, 3) qlrl; l = 11 (11, 5, 13)
qlrl; l = 3 (1, 8, 5) qlrl; 12 ≤ l ≤ s (l, l − 6, l + 2)
qlrl; l = 4 (3, 7, 6) qlrl; s+ 1 ≤ l ≤ s+ 2 (l, l − 6, 6k − l + 5)
qlrl; l = 5 (5, 6, 7) qlrl; s+ 3 ≤ l ≤ s+ 8 (6k − l + 7, l − 6, 6k − l + 5)
qlrl; l = 6 (6, 4, 8) qlrl; s+ 9 ≤ l ≤ 6k − 1 (6k − l + 7, 6k − l + 13, 6k − l + 5)
qlrl; l = 7 (7, 2, 9) qlrl; l = 6k (6k − l + 7, 6k − l + 13, 4)
qlrl; l = 8 (8, 0, 10) qlrl; l = 6k + 1 (6k − l + 7, 6k − l + 13, 2)
qlrl; l = 9 (9, 1, 11) qlrl; l = 6k + 2 (4, 6k − l + 13, 0)

Table 12. Edge metric codes for the edges present in E4

Edges γ′(e) Edges γ′(e)

rlql+1; l = 1 (1, 9, 2) rlql+1; l = 9 (10, 2, 12)
rlql+1; l = 2 (0, 8, 4) rlql+1; l = 10 (11, 4, 13)
rlql+1; l = 3 (2, 7, 6) rlql+1; 11 ≤ l ≤ s− 1 (l + 1, l − 5, l + 3)
rlql+1; l = 4 (4, 6, 7) rlql+1; s ≤ l ≤ s+ 1 (l + 1, l − 5, 6k − l + 4)
rlql+1; l = 5 (6, 5, 8) rlql+1; s+ 2 ≤ l ≤ s+ 7 (6k − l + 6, l − 5, 6k − l + 4)
rlql+1; l = 6 (7, 3, 9) rlql+1; s+ 8 ≤ l ≤ 6k − 1 (6k − l + 6, 6k − l + 12, 6k − l + 4)
rlql+1; l = 7 (8, 1, 10) rlql+1; 6k (6k − l + 6, 6k − l + 12, 3)
rlql+1; l = 8 (9, 0, 11) rlql+1; 6k + 1 (6k − l + 6, 6k − l + 12, 1)

rlql+1; 6k + 2 (3, 6k − l + 12, 0)

well.

Case (IV)m ≡ 3 (mod 6).
Then, we write m = 6k+3 = 2s+1, where k, s ∈ N and k ≥ 3. For this case, we prove
that edim(Pm) ≤ dm6 e. For this, suppose Re = {r2, r8, r14, ..., r6k−10, r6k−4, r6k+2} ⊂
V (Pm). We will prove that Re is an edge resolving set with minimum cardinality for
Pm. By total enumeration, one can verify easily that the set Re is an edge resolving
set with minimum cardinality for Pm, whenever k =3, 4, and 5. Next, for k ≥ 6, we
have to prove that the cardinality of minimum edge resolving set Re for Pm is ≤ dm6 e.
For this, we show that the edge metric codes with respect to the set Re, are distinct
for every two distinct members of E(Pm).

Suppose R∗e = {r2, r8, r6k+2}. Next, we give edge metric codes for every edge of
Pm; m ≥ 33, corresponding to the set R∗e . The edge metric codes for the set of edges
E1 = {e = plpl+1|l = 1, 2, 3, ...,m}, with respect to the set R∗e are listed in Table 13:

The edge metric codes for the set of edges E2 = {e = plql|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 14:

The edge metric codes for the set of edges E3 = {e = qlrl|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 15:

The edge metric codes for the set of edges E4 = {e = rlql+1|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 16:

Now, from these edge metric codes for the edges of Pm, corresponding to the
set R∗e , we find that γ′(qlrl|R∗e) = γ′(rlql−1|R∗e), for every 12 ≤ l ≤ 6k − 1 (some
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Table 13. Edge metric codes for the edges present in E1

Edges γ′(e)

plpl+1; 1 ≤ l ≤ 3 (2, 9− l, l + 2)
plpl+1; 4 ≤ l ≤ 7 (l − 1, 9− l, l + 2)
plpl+1; l = 8 (7, 2, 10)

plpl+1; 9 ≤ l ≤ s− 1 (l − 1, l − 7, l + 2)
plpl+1; s ≤ l ≤ s+ 1 (l − 1, l − 7, 6k − l + 3)

plpl+1; s+ 2 ≤ l ≤ s+ 8 (6k − l + 6, l − 7, 6k − l + 3)
plpl+1; s+ 9 ≤ l ≤ 6k + 1 (6k − l + 6, 6k − l + 12, 6k − l + 3)
plpl+1; 6k + 2 ≤ l ≤ 6k + 3 (6k − l + 6, 6k − l + 12, 2)

Table 14. Edge metric codes for the edges present in E2

Edges γ′(e)

plql; l = 1 (3, 9, 3)
plql; 2 ≤ l ≤ 3 (1, 10− l, l + 2)
plql; 4 ≤ l ≤ 7 (l − 1, 10− l, l + 2)
plql; 8 ≤ l ≤ 9 (l − 1, 1, l + 2)
plql; 10 ≤ l ≤ s (l − 1, l − 7, l + 2)

plql; s+ 1 ≤ l ≤ s+ 3 (l − 1, l − 7, 6k − l + 4)
plql; s+ 4 ≤ l ≤ s+ 9 (6k − l + 7, l − 7, 6k − l + 4)
plql; s+ 10 ≤ l ≤ 6k + 1 (6k − l + 7, 6k − l + 13, 6k − l + 4)
plql; 6k + 2 ≤ l ≤ 6k + 3 (6k − l + 7, 6k − l + 13, 1)

Table 15. Edge metric codes for the edges present in E3

Edges γ′(e) Edges γ′(e)

qlrl; l = 1 (2, 10, 3) qlrl; l = 10 (10, 3, 13)
qlrl; l = 2 (0, 9, 5) qlrl; l = 11 (11, 5, 14)
qlrl; l = 3 (1, 8, 6) qlrl; 12 ≤ l ≤ s (l, l − 6, l + 3)
qlrl; l = 4 (3, 7, 7) qlrl; s+ 1 ≤ l ≤ s+ 3 (l, l − 6, 6k − l + 5)
qlrl; l = 5 (5, 6, 8) qlrl; s+ 4 ≤ l ≤ s+ 9 (6k − l + 8, l − 6, 6k − l + 5)
qlrl; l = 6 (6, 4, 9) qlrl; s+ 9 ≤ l ≤ 6k − 1 (6k − l + 8, 6k − l + 14, 6k − l + 5)
qlrl; l = 7 (7, 2, 10) qlrl; l = 6k (6k − l + 8, 6k − l + 14, 4)
qlrl; l = 8 (8, 0, 11) qlrl; l = 6k + 1 (6k − l + 8, 6k − l + 14, 2)
qlrl; l = 9 (9, 1, 12) qlrl; l = 6k + 2 (6k − l + 8, 6k − l + 13, 0)

qlrl; l = 6k + 3 (4, 6k − l + 13, 1)

other pair of distinct edges may also have the same edge metric codes in Pm).
Then, from the remaining edge metric codes for the edges in Pm, we obtain that
γ′(e1|R∗e) 6= γ′(e2|R∗e) for every pair of distinct edges e1 and e2 in Pm, other than the
same edge metric codes. Thus, for Re = R∗e ∪ {r14, r20, ..., r6k−10, r6k−4}, we obtain
that γ′(qlrl|R∗e) 6= γ′(rlql−1|R∗e), and so γ′(e1|R∗e) 6= γ′(e2|R∗e) for any e1 and e2 in
E(Pm). From this, we find that |Re| ≤ dm6 e. Hence, edim(Pm) ≤ dm6 e in this case as
well.

Case (V)m ≡ 4 (mod 6).
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Table 16. Edge metric codes for the edges present in E4

Edges γ′(e) Edges γ′(e)

rlql+1; l = 1 (1, 9, 4) rlql+1; l = 10 (11, 4, 14)
rlql+1; l = 2 (0, 8, 6) rlql+1; 11 ≤ l ≤ s− 1 (l + 1, l − 5, l + 4)
rlql+1; l = 3 (2, 7, 7) rlql+1; s ≤ l ≤ s+ 2 (l + 1, l − 5, 6k − l + 4)
rlql+1; l = 4 (4, 6, 8) rlql+1; s+ 3 ≤ l ≤ s+ 8 (6k − l + 7, l − 5, 6k − l + 4)
rlql+1; l = 5 (6, 5, 9) rlql+1; s+ 9 ≤ l ≤ 6k − 1 (6k − l + 7, 6k − l + 13, 6k − l + 4)
rlql+1; l = 6 (7, 3, 10) rlql+1; 6k (6k − l + 7, 6k − l + 13, 3)
rlql+1; l = 7 (8, 1, 11) rlql+1; 6k + 1 (6k − l + 7, 6k − l + 13, 1)
rlql+1; l = 8 (9, 0, 12) rlql+1; 6k + 2 (6k − l + 7, 6k − l + 13, 0)
rlql+1; l = 9 (10, 2, 13) rlql+1; 6k + 3 (3, 6k − l + 13, 2)

Then, we write m = 6k + 4 = 2s, where k, s ∈ N and k ≥ 3. For this case, we prove
that edim(Pm) ≤ dm6 e. For this, suppose Re = {r2, r8, r14, ..., r6k−10, r6k−4, r6k+2} ⊂
V (Pm). We will prove that Re is an edge resolving set with minimum cardinality for
Pm. By total enumeration, one can verify easily that the set Re is an edge resolving
set with minimum cardinality for Pm, whenever k =3, 4, and 5. Next, for k ≥ 6, we
have to prove that the cardinality of minimum edge resolving set Re for Pm is ≤ dm6 e.
For this, we show that the edge metric codes with respect to the set Re, are distinct
for every two distinct members of E(Pm).

Suppose R∗e = {r2, r8, r6k+2}. Next, we give edge metric codes for every edge of
Pm; m ≥ 33, corresponding to the set R∗e . The edge metric codes for the set of edges
E1 = {e = plpl+1|l = 1, 2, 3, ...,m}, with respect to the set R∗e are listed in Table 17:

Table 17. Edge metric codes for the edges present in E1

Edges γ′(e)

plpl+1; 1 ≤ l ≤ 3 (2, 9− l, l + 3)
plpl+1; 4 ≤ l ≤ 7 (l − 1, 9− l, l + 3)
plpl+1; l = 8 (7, 2, 11)

plpl+1; 9 ≤ l ≤ s− 2 (l − 1, l − 7, l + 3)
plpl+1; s− 1 ≤ l ≤ s+ 2 (l − 1, l − 7, 6k − l + 3)
plpl+1; s+ 3 ≤ l ≤ s+ 8 (6k − l + 7, l − 7, 6k − l + 3)
plpl+1; s+ 9 ≤ l ≤ 6k + 1 (6k − l + 7, 6k − l + 13, 6k − l + 3)
plpl+1; 6k + 2 ≤ l ≤ 6k + 3 (6k − l + 7, 6k − l + 13, 2)

plpl+1; l = 4 (6k − l + 7, 6k − l + 13, 3)

The edge metric codes for the set of edges E2 = {e = plql|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 18:

The edge metric codes for the set of edges E3 = {e = qlrl|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 19:

The edge metric codes for the set of edges E4 = {e = rlql+1|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 20:

Now, from these edge metric codes for the edges of Pm, corresponding to the
set R∗e , we find that γ′(qlrl|R∗e) = γ′(rlql−1|R∗e), for every 12 ≤ l ≤ 6k − 1 (some
other pair of distinct edges may also have the same edge metric codes in Pm).
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Table 18. Edge metric codes for the edges present in E2

Edges γ′(e)

plql; l = 1 (3, 9, 4)
plql; 2 ≤ l ≤ 3 (1, 10− l, l + 3)
plql; 4 ≤ l ≤ 7 (l − 1, 10− l, l + 3)
plql; 8 ≤ l ≤ 9 (l − 1, 1, l + 3)

plql; 10 ≤ l ≤ s− 2 (l − 1, l − 7, l + 3)
plql; s− 1 ≤ l ≤ s+ 2 (l − 1, l − 7, 6k − l + 4)
plql; s+ 3 ≤ l ≤ s+ 8 (6k − l + 8, l − 7, 6k − l + 4)
plql; s+ 9 ≤ l ≤ 6k + 1 (6k − l + 8, 6k − l + 14, 6k − l + 4)
plql; 6k + 2 ≤ l ≤ 6k + 3 (6k − l + 8, 6k − l + 14, 1)

plql; l = 6k + 4 (6k − l + 8, 6k − l + 14, 3)

Table 19. Edge metric codes for the edges present in E3

Edges γ′(e) Edges γ′(e)

qlrl; l = 1 (2, 10, 5) qlrl; l = 11 (11, 5, 15)
qlrl; l = 2 (0, 9, 6) qlrl; 12 ≤ l ≤ s− 2 (l, l − 6, l + 4)
qlrl; l = 3 (1, 8, 7) qlrl; s− 1 ≤ l ≤ s+ 2 (l, l − 6, 6k − l + 5)
qlrl; l = 4 (3, 7, 8) qlrl; s+ 3 ≤ l ≤ s+ 7 (6k − l + 9, l − 6, 6k − l + 5)
qlrl; l = 5 (5, 6, 9) qlrl; s+ 8 ≤ l ≤ 6k − 1 (6k − l + 9, 6k − l + 15, 6k − l + 5)
qlrl; l = 6 (6, 4, 10) qlrl; l = 6k (6k − l + 9, 6k − l + 15, 4)
qlrl; l = 7 (7, 2, 11) qlrl; l = 6k + 1 (6k − l + 9, 6k − l + 15, 2)
qlrl; l = 8 (8, 0, 12) qlrl; l = 6k + 2 (6k − l + 9, 6k − l + 15, 0)
qlrl; l = 9 (9, 1, 13) qlrl; l = 6k + 3 (4, 6k − l + 15, 1)
qlrl; l = 10 (10, 3, 14) qlrl; l = 6k + 4 (2, 6k − l + 15, 3)

Table 20. Edge metric codes for the edges present in E4

Edges γ′(e) Edges γ′(e)

rlql+1; l = 1 (1, 9, 6) rlql+1; l = 10 (11, 4, 15)
rlql+1; l = 2 (0, 8, 7) rlql+1; 11 ≤ l ≤ s− 3 (l + 1, l − 5, l + 5)
rlql+1; l = 3 (2, 7, 8) rlql+1; s− 2 ≤ l ≤ s+ 1 (l + 1, l − 5, 6k − l + 4)
rlql+1; l = 4 (4, 6, 9) rlql+1; s+ 2 ≤ l ≤ s+ 7 (6k − l + 8, l − 5, 6k − l + 4)
rlql+1; l = 5 (6, 5, 10) rlql+1; s+ 8 ≤ l ≤ 6k − 1 (6k − l + 8, 6k − l + 14, 6k − l + 4)
rlql+1; l = 6 (7, 3, 11) rlql+1; 6k (6k − l + 8, 6k − l + 14, 3)
rlql+1; l = 7 (8, 1, 12) rlql+1; 6k + 1 (6k − l + 8, 6k − l + 14, 1)
rlql+1; l = 8 (9, 0, 13) rlql+1; 6k + 2 (6k − l + 8, 6k − l + 14, 0)
rlql+1; l = 9 (10, 2, 14) rlql+1; 6k + 3 (6k − l + 8, 6k − l + 14, 2)

rlql+1; 6k + 4 (3, 6k − l + 14, 4)

Then, from the remaining edge metric codes for the edges in Pm, we obtain that
γ′(e1|R∗e) 6= γ′(e2|R∗e) for every pair of distinct edges e1 and e2 in Pm, other than the
same edge metric codes. Thus, for Re = R∗e ∪ {r14, r20, ..., r6k−10, r6k−4}, we obtain
that γ′(qlrl|R∗e) 6= γ′(rlql−1|R∗e), and so γ′(e1|R∗e) 6= γ′(e2|R∗e) for any e1 and e2 in
E(Pm). From this, we find that |Re| ≤ dm6 e. Hence, edim(Pm) ≤ dm6 e in this case as
well.
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Case (VI)m ≡ 5 (mod 6).
Then, we write m = 6k+5 = 2s+1, where k, s ∈ N and k ≥ 3. For this case, we prove
that edim(Pm) ≤ dm6 e. For this, suppose Re = {r2, r8, r14, ..., r6k−10, r6k−4, r6k+2} ⊂
V (Pm). We will prove that Re is an edge resolving set with minimum cardinality for
Pm. By total enumeration, one can verify easily that the set Re is an edge resolving
set with minimum cardinality for Pm, whenever k =3, 4, and 5. Next, for k ≥ 6, we
have to prove that the cardinality of minimum edge resolving set Re for Pm is ≤ dm6 e.
For this, we show that the edge metric codes with respect to the set Re, are distinct
for every two distinct members of E(Pm).

Suppose R∗e = {r2, r8, r6k+2}. Next, we give edge metric codes for every edge of
Pm; m ≥ 33, corresponding to the set R∗e . The edge metric codes for the set of edges
E1 = {e = plpl+1|l = 1, 2, 3, ...,m}, with respect to the set R∗e are listed in Table 21:

Table 21. Edge metric codes for the edges present in E1

Edges γ′(e)

plpl+1; 1 ≤ l ≤ 3 (2, 9− l, l + 4)
plpl+1; 4 ≤ l ≤ 7 (l − 1, 9− l, l + 4)
plpl+1; l = 8 (7, 2, 12)

plpl+1; 9 ≤ l ≤ s− 3 (l − 1, l − 7, l + 4)
plpl+1; s− 2 ≤ l ≤ s+ 2 (l − 1, l − 7, 6k − l + 3)
plpl+1; s+ 3 ≤ l ≤ s+ 8 (6k − l + 8, l − 7, 6k − l + 3)
plpl+1; s+ 9 ≤ l ≤ 6k + 1 (6k − l + 8, 6k − l + 14, 6k − l + 3)
plpl+1; 6k + 2 ≤ l ≤ 6k + 3 (6k − l + 8, 6k − l + 14, 2)

plpl+1; l = 6k + 4 (6k − l + 8, 6k − l + 14, 3)
plpl+1; l = 6k + 5 (6k − l + 8, 6k − l + 14, 4)

The edge metric codes for the set of edges E2 = {e = plql|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 22:

Table 22. Edge metric codes for the edges present in E2

Edges γ′(e)

plql; l = 1 (3, 9, 5)
plql; 2 ≤ l ≤ 3 (1, 10− l, l + 4)
plql; 4 ≤ l ≤ 7 (l − 1, 10− l, l + 4)
plql; 8 ≤ l ≤ 9 (l − 1, 1, l + 4)

plql; 10 ≤ l ≤ s− 2 (l − 1, l − 7, l + 4)
plql; s− 1 ≤ l ≤ s+ 3 (l − 1, l − 7, 6k − l + 4)
plql; s+ 4 ≤ l ≤ s+ 9 (6k − l + 9, l − 7, 6k − l + 4)
plql; s+ 10 ≤ l ≤ 6k + 1 (6k − l + 9, 6k − l + 15, 6k − l + 4)
plql; 6k + 2 ≤ l ≤ 6k + 3 (6k − l + 9, 6k − l + 15, 1)

plql; l = 6k + 4 (6k − l + 9, 6k − l + 15, 3)
plql; l = 6k + 5 (6k − l + 9, 6k − l + 15, 4)

The edge metric codes for the set of edges E3 = {e = qlrl|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 23:
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Table 23. Edge metric codes for the edges present in E3

Edges γ′(e) Edges γ′(e)

qlrl; l = 1 (2, 10, 6) qlrl; l = 11 (11, 5, 16)
qlrl; l = 2 (0, 9, 7) qlrl; 12 ≤ l ≤ s− 2 (l, l − 6, l + 5)
qlrl; l = 3 (1, 8, 8) qlrl; s− 1 ≤ l ≤ s+ 3 (l, l − 6, 6k − l + 5)
qlrl; l = 4 (3, 7, 9) qlrl; s+ 4 ≤ l ≤ s+ 9 (6k − l + 10, l − 6, 6k − l + 5)
qlrl; l = 5 (5, 6, 10) qlrl; s+ 10 ≤ l ≤ 6k − 1 (6k − l + 10, 6k − l + 16, 6k − l + 5)
qlrl; l = 6 (6, 4, 11) qlrl; l = 6k (6k − l + 10, 6k − l + 16, 4)
qlrl; l = 7 (7, 2, 12) qlrl; l = 6k + 1 (6k − l + 10, 6k − l + 16, 2)
qlrl; l = 8 (8, 0, 13) qlrl; l = 6k + 2 (6k − l + 10, 6k − l + 16, 0)
qlrl; l = 9 (9, 1, 14) qlrl; l = 6k + 3 (6k − l + 10, 6k − l + 16, 1)
qlrl; l = 10 (10, 3, 15) qlrl; l = 6k + 4 (6k − l + 10, 6k − l + 15, 3)

qlrl; l = 6k + 5 (4, 6k − l + 15, 5)

Table 24. Edge metric codes for the edges present in E4

Edges γ′(e) Edges γ′(e)

rlql+1; l = 1 (1, 9, 7) rlql+1; 11 ≤ l ≤ s− 3 (l + 1, l − 5, l + 6)
rlql+1; l = 2 (0, 8, 8) rlql+1; s− 2 ≤ l ≤ s+ 2 (l + 1, l − 5, 6k − l + 4)
rlql+1; l = 3 (2, 7, 9) rlql+1; s+ 3 ≤ l ≤ s+ 8 (6k − l + 9, l − 5, 6k − l + 4)
rlql+1; l = 4 (4, 6, 10) rlql+1; s+ 9 ≤ l ≤ 6k − 1 (6k − l + 9, 6k − l + 156k − l + 4)
rlql+1; l = 5 (6, 5, 11) rlql+1; 6k (6k − l + 9, 6k − l + 15, 3)
rlql+1; l = 6 (7, 3, 12) rlql+1; 6k + 1 (6k − l + 9, 6k − l + 15, 1)
rlql+1; l = 7 (8, 1, 13) rlql+1; 6k + 2 (6k − l + 9, 6k − l + 15, 0)
rlql+1; l = 8 (9, 0, 14) rlql+1; 6k + 3 (6k − l + 9, 6k − l + 15, 2)
rlql+1; l = 9 (10, 2, 15) rlql+1; 6k + 4 (6k − l + 9, 6k − l + 14, 4)
rlql+1; l = 10 (11, 4, 16) rlql+1; 6k + 5 (3, 6k − l + 14, 6)

The edge metric codes for the set of edges E4 = {e = rlql+1|l = 1, 2, 3, ...,m}, with
respect to the set R∗e are listed in Table 24:

Now, from these edge metric codes for the edges of Pm, corresponding to the
set R∗e , we find that γ′(qlrl|R∗e) = γ′(rlql−1|R∗e), for every 12 ≤ l ≤ 6k − 1 (some
other pair of distinct edges may also have the same edge metric codes in Pm).
Then, from the remaining edge metric codes for the edges in Pm, we obtain that
γ′(e1|R∗e) 6= γ′(e2|R∗e) for every pair of distinct edges e1 and e2 in Pm, other than the
same edge metric codes. Thus, for Re = R∗e ∪ {r14, r20, ..., r6k−10, r6k−4}, we obtain
that γ′(qlrl|R∗e) 6= γ′(rlql−1|R∗e), and so γ′(e1|R∗e) 6= γ′(e2|R∗e) for any e1 and e2 in
E(Pm). From this, we find that |Re| ≤ dm6 e. Hence, edim(Pm) ≤ dm6 e in this case as
well.

From all of these cases and by using lemma 3, we find that edim(Pm) = dm6 e for
every m ≥ 15. �

Now, regarding the independence of an edge resolving set for Pm, we have the
following result:
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Theorem 4. Let Pm be the graph of pentagonal circular ladder. Then, its indepen-
dent edge metric number is

edim(Pm) =

{
3, if 3 ≤ m ≤ 14;

dm6 e if m ≥ 15.

Proof. Refer Theorem 3, for proof. �

Raza et al. [11] considered three families of the planar graphs viz., Dm (prism
graph), Am (antiprism graph), and Rm (a graph obtained by superimposing the outer
cycle of Am on the inner cycle of vertices of Dm). For these families of the planar
graphs they studied mixed metric dimension and raised a problem regarding the edge
metric dimension of Rm, that The edge metric dimension of the planar graph Rm is
equal to its mixed metric dimension? Now, in the next section, we compute the edge
metric dimension for the planar graph Rm, and which comes out to be equal to its
mixed metric dimension i.e., mdim(Rm) = 5 = edim(Rm).

3. Edge metric dimension of the planar graph Rm

The planar graph Rm [11], comprises of 3m number of vertices and 6m number of
edges. It has 2m number of faces each having three sides, m number of faces each
having four sides, and two m-sided faces, as shown in Fig. 3. We represent the set of
vertices and edges for the planar graph Rm as V (Rm) and E(Rm), respectively. The
sets V (Rm) and E(Rm) are as follows:

V (Rm) = {pl, ql, rl : 1 ≤ l ≤ m}
and

E(Rm) = {plql, qlrl, rlrl+1, qlql+1, plpl+1, qlpl+1 : 1 ≤ l ≤ m}

We name the set D = {pl : 1 ≤ l ≤ m} of vertices in Rm, as the p-vertices,
the set E = {ql : 1 ≤ l ≤ m} of vertices in Rm, as the q-vertices, and the set
F = {rl : 1 ≤ l ≤ m} of vertices in Rm, as the r-vertices. For our purpose, we
take pm+1 = p1, rm+1 = r1, and qm+1 = q1 (whenever necessary). In this section,
we study the notion of edge metric dimension for the planar graph Rm. We prove
that edim(Rm) = 3 for m ≥ 8. Additionally, we prove that an edge resolving set Re

for Rm is independent. Next, we have the following result regarding the edge metric
dimension of Rm.

Theorem 5. Let Rm be the planar graph as defined above. Then, for m ≥ 8, we
have edim(Rm) = 5.

Proof. For 8 ≤ m ≤ 11, it is easy to verify that the edge metric dimension of a planar
graph Rm is 5. Now, for m ≥ 12, we eagerly consider the resulting two cases relying
on the positive integer m i.e., when the positive natural number m is even and when
it is odd.

Case (I):the integer m is even.
Then, we write m = 2s, where s ∈ N and s ≥ 4. Let Re = {r1, q2, qs+1, p3, ps+3} ⊂



168 S. K. SHARMA, V. K. BHAT, AND S. LAL

Figure 3. The Plane Graph Rm

V (Rm) (for the location of these five edge basis vertices, see vertices in red colour
and both red and green colour in figure 3). Now, in order to find that LE is an
edge metric generator of the radially symmetrical graph Rm, we give the edge metric
representations for each edge of E(Rm) regarding the set LE . For edge metric codes
of E(Rm) see in [11], proof of Theorem 3.

We notice that no two edges are having the same edge metric codes, suggesting
that edim(Rm) ≤ 5. Now, so as to finish the evidence for this case, we show that
edim(Rm) ≥ 5 by working out that there does not exist an edge metric generator LE

such that |LE | = 4. Suppose on the contrary that edim(Rm) = 4. At that point, we
have the accompanying prospects to be talked about.

By the symmetry of the plane graph, Rm different relations can be considered,
they will have the same sort of logical inconsistencies. In this manner, the above
conversation explains that there is no edge resolving set comprising of four vertices
for V (Rm) inferring that edim(Rm) = 5 in this case.

Case (II):the integer m is odd.
For this situation, the integer m can be written as m = 2s + 1, where s ∈ N and
s ≥ 4. Let Re = {r1, qs+1, p1, p3, ps+2} ⊂ V (Rm) (for the location of these five edge
basis vertices, see vertices in green colour and both red and green colour in Figure 3).
Now, in order to find that LE is an edge metric generator of the radially symmetrical
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graph Rm, we give the edge metric representations for each edge of E(Rm) regarding
the set LE . For edge metric codes of E(Rm) see in [11], proof of Theorem 3.

Again, we see that no two edges are having the same edge metric codes, suggesting
that edim(Rm) ≤ 5. As appeared before the logical inconsistency table for indeed,
even m, same sort of logical inconsistency happen if there should be an occurrence of
odd m, so edim(Rm) ≥ 5. Subsequently, it is demonstrated that edim(Rm) = 5. �

Edge resolving sets Contradictions

Re = {p1, q1, rl, rl+1}, (1 ≤ l ≤ 2s) γ′(p1pm|Re) = γ′(p1qm|Re), for 1 ≤ l ≤ s− 1
γ′(r1q1|Re) = γ′(q1q2|Re), for l = s, and

γ′(r1q1|Re) = γ′(q1qm|Re), for s+ 1 ≤ l ≤ 2s− 1.

Re = {p1, r1, ql, ql+1}, (1 ≤ l ≤ 2s) γ′(p1qm|Re) = γ′(p1pm|Re), for 1 ≤ l ≤ s− 1
γ′(p3q3|Re) = γ′(p3p4|Re), for l = s, and

γ′(rmqm|Re) = γ′(q1qm|Re), for s+ 1 ≤ l ≤ 2s− 1.

Re = {q1, r1, pl, pl+1}, (1 ≤ l ≤ 2s) γ′(p1qm|Re) = γ′(p1pm|Re), for 1 ≤ l ≤ s− 1
γ′(q3p4|Re) = γ′(p3p4|Re), for s ≤ l ≤ s+ 2, and
γ′(p3p2|Re) = γ′(q2p2|Re), for s+ 3 ≤ l ≤ 2s− 1.

Re = {p1, q1, rl, rs+l}, (1 ≤ l ≤ 2s) γ′(p1pm|Re) = γ′(qmp1|Re), for 1 ≤ l ≤ s− 1
γ′(pm−1qm−2|Re) = γ′(pm−1pm−2|Re), for l = s, and
for s+ 3 ≤ l ≤ 2s− 1, it is same as for 1 ≤ l ≤ s.

Re = {p1, r1, ql, qs+l}, (1 ≤ l ≤ 2s) γ′(p1qm|Re) = γ′(p1pm|Re), for 1 ≤ l ≤ s− 1
γ′(pm−1pm−2|Re) = γ′(pm−1qm−2|Re), for l = s, and
for s+ 3 ≤ l ≤ 2s− 1, it is same as for 1 ≤ l ≤ s.

Re = {q1, r1, pl, ps+l}, (1 ≤ l ≤ 2s) γ′(qm−1qm|Re) = γ′(qmpm|Re), for 1 ≤ l ≤ s− 1
γ′(p2q1|Re) = γ′(q1q2|Re), for l = s, and

for s+ 3 ≤ l ≤ 2s− 1, it is same as for 1 ≤ l ≤ s.
Re = {p1, q2, rl, ps}, (1 ≤ l ≤ 2s) γ′(qmp1|Re) = γ′(p1pm|Re), for 1 ≤ l ≤ 2s− 1 and

γ′(q2q3|Re) = γ′(q2p3|Re), for l = 2s.

Re = {q1, r2, pl, qs}, (1 ≤ l ≤ 2s) γ′(qmq1|Re) = γ′(p1q1|Re), for 2 ≤ l ≤ 2s and
γ′(psps−1|Re) = γ′(qs−1ps−1|Re), for l = 1.

Re = {r1, p2, ql, rs}, (1 ≤ l ≤ 2s) γ′(qmp1|Re) = γ′(p1pm|Re), for 1 ≤ l ≤ 2s− 1 and
γ′(psps−1|Re) = γ′(qs−1ps−1|Re), for l = 2s.

Now, regarding the independence of an edge resolving set for Rm, we have the follow-
ing result:

Theorem 6. Let Rm be the planar graph as defined above. Then, its independent
edge metric number is 5 for any m ≥ 8.

Proof. Refer Theorem 5, for proof. �

4. Conclusion

The problem of characterizing the classes of planar graphs with the constant edge
metric dimension is of great interest nowadays. In this manuscript, we have studied
the notion of edge metric dimension for two families of planar graphs, viz., Pm and
Rm. For Pm, we proved that edim(Pm) = 3 for 3 ≤ m ≤ 14 and edim(Pm) = dm6 e for
m ≥ 15. We additionally find that the edge metric dimension is strictly greater than
the metric dimension for the pentagonal circular ladder i.e., edim(Pm) > dim(Pm);
for every m ≥ 3. We also answer the problem raised in the recent past regarding the
edge metric dimension of the family of planar graph Rm [11], and we prove for this



170 S. K. SHARMA, V. K. BHAT, AND S. LAL

family Rm, that edim(Rm) = 5. Moreover, for both of these families of the planar
graphs, we show that the edge metric basis set Re is independent.
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