C_{12}-modules via left exact preradicals

Figen Takil Mutlu and Adnan Tercan

Abstract

In this paper, we study modules with the condition that images of all submodules under a left exact preradical for the category of right modules over a ring can be essentially embedded in direct summands. This new class of modules properly contains the class of C_{12-} modules (and hence also $C S$-modules and uniform modules). It is shown that any module isomorphic to a direct summand of a module which satisfies the $r C_{12}$ property. In contrast to $C S$-modules, it is shown that the class of modules with the former property is closed under essential extensions whenever any module in the new class is relative injective with respect to its essential extensions.

2010 Mathematics Subject Classification. Primary 16D10, 16D50; Secondary 16D40.
Key words and phrases. complement submodule, CS-module, left exact preradical, $r C_{11}$-module, C_{12}-module, $r C_{12}$-module.

1. Introduction

Throughout this article, all rings are associative with identity and all modules are unitary right modules. Let R be a ring and M an R-module. A submodule N of M is essential (or large) in M if for every $0 \neq K$ submodule of M, we have $N \cap K \neq 0$. Given a submodule L of M, by a complement (submodule) of L in M, we mean a submodule C of M, maximal with respect to $L \cap C=0$. A module is said to be $C S$ (or extending) or said to satisfy the C_{1} condition if every submodule is essential in a direct summand. Equivalently, every complement is a direct summand (see, [6], [15]). Several generalizations of the $C S$ notion have been worked out extensively by many authors (see, [1], [2], [3], [4], [5], [11], [14], [16]). Amongst other generalizations in particular, recall that a module is called a C_{12}-module (or satisfy C_{12}) if every submodule is essentially embedded in a direct summand (see, [13]). In this trend, as the first attempt, Tercan [14] defined $E S$-module notion in terms of left exact preradicals for a ring R. Recall that a functor r from the category of the right R modules to itself is called a left exact preradical if it has the following properties
(i) $r(M)$ is a submodule of M for every right R-module M,
(ii) $r(N)=N \cap r(M)$ for every submodule N of a right R-module M,
(iii) $\varphi(r(M)) \subseteq r\left(M^{\prime}\right)$ for every homomorphism $\varphi: M \rightarrow M^{\prime}$ for right R-modules M, M^{\prime}.
Let r be a left exact preradical in the category of right R-modules. Amongst the aforementioned properties, $r\left(M_{1} \oplus M_{2}\right)=r\left(M_{1}\right) \oplus r\left(M_{2}\right)$ holds true for all right R-modules M_{1}, M_{2}. Observe that the singular submodule and socle are left exact preradicals and the identity $(i d)$ and zero functors are trivial left exact preradicals.

For a good source of left exact preradicals the reader is referred to [12]. Recently $r C_{11}$-modules are investigated in [16]. Recall that a module M is called $r C_{11}$-module provided for every submodule N of $M, r(N)$ has a complement which is a direct summand of M.

In this paper, we deal with a class of modules which properly contains the class of C_{11}-modules and $r C_{11}$-modules. We define $r C_{12}$-modules in terms of left exact preradicals for the category of right modules. In other words, we focus on the only images of all submodules of the module under the left exact preradical rather than all submodules of the module in the definition of C_{12}-modules. Formerly, we obtain basic structural properties of $r C_{12}$-modules and determine connections with the other class of modules.

Since any result including a left exact preradical in the category of right R-modules constructs a framework, we make special choice of left exact preradicals to provide counter examples. Incidentally, we show that $r C_{12}$ property is not inherited by direct summands of a module. In contrast to the latter closure property we prove that direct sums of distributive $r C_{12}$-modules enjoy with the property under a certain condition.

We use r to denote a left exact preradical in the category of right R-modules. Moreover, let M be a module. Thus $N \leq M, S o c M, Z(M)$, and $r_{R}(x)$ will stand for N is a submodule of M, socle of M, singular submodule of M, and the right annihilator of an element x in M, respectively. For any other terminology or unexplained notions, we refer to [4], [6], [8], [12], [15].

2. Basic results

This section contains basic structural properties of $r C_{12}$-modules. Also, we think of connections between $r C_{12}$ condition and the $r C_{11}$ property as well as direct summands of a module satisfying the $r C_{12}$ property. Let us begin with mentioning of the definition of $r C_{12}$ property.
Definition 2.1. A right R-module M is called $r C_{12}$-module (or satisfies $r C_{12}$) for any submodule N of M, there exist a direct summand K of M and a monomorphism $\alpha: r(N) \rightarrow K$ such that $\alpha(r(N))$ is essential in K.
Lemma 2.1. Let M be a module and $L \leq N \leq M$. If L is essential in N then $r(L)$ is essential in $r(N)$.
Proof. Let $0 \neq x \in r(N)$. Then $x \in N$ and hence there exists $t \in R$ such that $0 \neq x t \in L$. Also $x t \in r(N)$ since $r(N) \leq M$. Thus $0 \neq x t \in r(N) \cap L=r(L)$. It follows that $r(L)$ is essential in $r(N)$.
Proposition 2.2. Let M be an $r C_{12}$-module. Then $r(M)$ is a C_{12}-module.
Proof. Let N be a submodule of $r(M)$. Note that $r(N)=N$. By assumption, there exist submodules K, K^{\prime} such that $M=K \oplus K^{\prime}$ and a monomorphism $\alpha: N \rightarrow K$, such that $\alpha(N)$ is essential in K. Then $r(M)=r(K) \oplus r\left(K^{\prime}\right)$ and $\alpha(r(N)) \leq r(K) \leq K$. Hence $\alpha(N)$ is essential in $r(K)$. It follows that $r(M)$ is a C_{12}-module.

Next fact characterizes $r C_{12}$-modules in terms of complement submodules.
Lemma 2.3. Let M be a right R-module. Then M satisfies $r C_{12}$ if and only if for every complement submodule N of M there exist a direct summand K of M and a monomorphism $\alpha: r(N) \rightarrow K$ such that $\alpha(r(N))$ is essential in K.

Proof. Assume that M satisfies $r C_{12}$. Then, M has the stated property by definition. Conversely, let $X \leq M$. Then there exist a complement submodule N of M such that X is essential in N. Thus $r(X)$ is essential in $r(N)$ by Lemma 2.1. By assumption, there exist a direct summand K of M and a monomorphism $\alpha: r(N) \rightarrow K$ such that $\alpha(r(N))$ is essential in K. Since α is a monomorphism, $\alpha(r(X))$ is essential in $\alpha(r(N))$ and so, $\alpha(r(X))$ is essential in K. Thus M satisfies $r C_{12}$.

It is clear from Lemma 2.3 that any C_{12}-module satisfies $r C_{12}$. In particular, C_{11}-modules (and hence CS or uniform modules) satisfy $r C_{12}$. Recall that any indecomposable C_{12}-module over a right Noetherian ring is uniform (see [13, Lemma 1.1]). However, there are indecomposable $r C_{12}$-modules for special choices of r over right Noetherian rings which are not uniform as the following example illustrates. This example also shows that the class of C_{12}-modules is properly contained in the class of $r C_{12}$-modules.
Example 2.1. (i) The Specker group $\mathbb{Z}^{\mathbb{N}}$ does not satisfy C_{12} (see, [11, Lemma 3.4]). Now, let $r=Z$. Then, from [8, Proposition 1.22], $r\left(\mathbb{Z}^{\mathbb{N}}\right)=0$. It follows that $\mathbb{Z}^{\mathbb{N}}$ is an $r C_{12}$-module.
(ii) Let R be a principal domain and $r=S o c$. If R is not a complete discrete valuation ring, then there exists an indecomposable torsion-free R-module M of rank 2 [9, Theorem 19]. For $M, r(M)=0$. Hence M satisfies $r C_{12}$. It is clear that M_{R} has uniform dimension 2 . Since M is not uniform, M does not satisfy C_{12}.

Now we intend to show that $r C_{12}$ property is not inherited by direct summands. Before doing so, we obtain the following fact. For this recall that a module M satisfies $r C_{11}$ if for every submodule N of $M, r(N)$ has a complement which is a direct summand of M (see, [16]).
Proposition 2.4. If M satisfies $r C_{11}$, then M satisfies $r C_{12}$.
Proof. Let $N \leq M$. Then there exist direct summands K, K^{\prime} of M such that $M=$ $K \oplus K^{\prime}, r(N) \cap K^{\prime}=0$ and $r(N) \oplus K^{\prime}$ is essential in M. Let $\pi: M \rightarrow K$ be the canonical projection and let $\alpha=\pi_{\left.\right|_{r(N)}}: r(N) \rightarrow K$. So α is a monomorphism. Let $0 \neq k \in K$. Then there exists $r \in R$ such that $0 \neq k r=x+k^{\prime}$ for some $x \in r(N)$, $k^{\prime} \in K^{\prime}$. Since $k r=\pi(k r)=\pi\left(x+k^{\prime}\right)=\pi(x)=\alpha(x), k R \cap \alpha(r(N)) \neq 0$ for all $0 \neq k \in K$. Hence $\alpha(r(N))$ is essential in K.

The next result which has already pointed out previously brings up a different behavior of the $r C_{12}$ condition from the other extending properties.

Proposition 2.5. Let M be any module. Then M is isomorphic to a direct summand of a module which satisfies $r C_{12}$.
Proof. For any module X, let $E(X)$ denote the injective hull of X. Let $M^{\prime}=$ $E(E(M) \oplus E(M) \oplus \cdots)$. Note that M^{\prime} is injective. Let $M^{\prime \prime}=M \oplus M^{\prime}$. So, M is isomorphic to $M \oplus 0$ which is a direct summand of $M^{\prime \prime}$. Let us show that $M^{\prime \prime}$ satisfies $r C_{12}$. Note that $E\left(M^{\prime \prime}\right)=E(M) \oplus M^{\prime}=E(E(M) \oplus E(M) \oplus \cdots)$ which is isomorphic to M^{\prime} and hence there exists a monomorphism $\beta: M^{\prime \prime} \rightarrow M^{\prime}$. Let N be a submodule of $M^{\prime \prime}$. Then $\beta(r(N))$ is a submodule of M^{\prime}. But M^{\prime} is injective thus there exists a direct summand K of M^{\prime} and hence of $M^{\prime \prime}$ such that $\beta(r(N))$ is essential submodule of K. Thus $M^{\prime \prime}$ satisfies $r C_{12}$.

Lemma 2.6. The Specker group $\mathbb{Z}^{\mathbb{N}}$ does not satisfy $r C_{12}$ with nonzero image under a left exact preradical r.

Proof. Let M be the Specker group $\mathbb{Z}^{\mathbb{N}}$ and let N be the subgroup $\underset{i=1}{\infty} \mathbb{Z}$ of M. Suppose that there exists a direct summand K of M and a monomorphism $\alpha: r(N) \rightarrow K$ such that $\alpha(r(N))$ is essential in K. Note that $r(N)$ is isomorphic to $\alpha(r(N))$. By Nunke's theorem [10, Theorem 5], K is isomorphic to M. This implies that K has uncountable rank. But $\alpha(r(N))$ has countable rank. Thus $\alpha(r(N))$ cannot be essential in K.
Corollary 2.7. There exists a \mathbb{Z}-module M satisfying $r C_{12}$ such that some direct summand K of M does not satisfy $r C_{12}$.

Proof. By Proposition 2.5 and Lemma 2.6.
Notice that Corollary 2.7 provides existence of a group (i.e., \mathbb{Z}-module) which satisfies $r C_{12}$ but it has a direct summand which does not satisfy the $r C_{12}$ property. Moreover, the following proposition makes it clear that the converse of Proposition 2.4 is not true, in general.

Lemma 2.8. [16, Corollary 3.19]Let M be a module which satisfies $r C_{11}$. Let N be a direct summand of M such that M / N is an injective module. Then N satisfies $r C_{11}$.

Proposition 2.9. There exists a \mathbb{Z}-module M which satisfies $r C_{12}$ but M does not satisfy $r C_{11}$.
Proof. By the construction of Proposition 2.5, if M is the Specker group $\mathbb{Z}^{\mathbb{N}}$ then there exists an injective \mathbb{Z}-module M^{\prime} such that $M^{\prime \prime}=M \oplus M^{\prime}$ satisfies $r C_{12}$. By Lemma 2.8, Proposition 2.4 and Lemma 2.6, $M^{\prime \prime}$ does not satisfy $r C_{11}$.

3. Direct sums and summands of $r C_{12}$-modules

In this section, we consider direct sums and direct summands of modules which satisfy the $r C_{12}$ property. We show that the class of distributive $r C_{12}$-modules is closed under direct sums under a certain condition. On the other hand, Corollary 2.7 shows that the $r C_{12}$ property is not inherited by direct summands. We provide a concrete example which exhibits the failure of the latter closure property.

By modifying Lemma 2.1 in [7] for noncommutative rings, we get the following theorem.

Theorem 3.1. Let $M \oplus N$ be a direct sum of two R-modules with the property $r C_{12}$. If $r_{R}(x)+r_{R}(y)=R$ for all $x \in M$ and all $y \in N$, then $M \oplus N$ is an $r C_{12}$-module.

Proof. Let X be any submodule of $M \oplus N$. From Lemma [7, Lemma 2.1], $X=A \oplus B$ for some submodule A of M and some submodule B of N. By the $r C_{12}$ assumption, there exist a direct summand K of M, a direct summand L of N, and monomorphisms $\alpha: r(A) \rightarrow K$ and $\beta: r(B) \rightarrow L$ such that $\alpha(r(A))$ is essential in K and $\beta(r(B))$ is essential in L. Note that $K \oplus L$ is a direct summand of $M \oplus N$ and $r(X)=$ $r(A \oplus B)=r(A) \oplus r(B)$. Define

$$
\theta: r(X) \rightarrow K \oplus L \text { by } \theta(x)=\theta(a+b)=\alpha(a)+\beta(b)
$$

where $x \in r(X), a \in r(A), b \in r(B)$. It is easy to check that θ is a monomorphism. Furthermore, $\theta(r(X))=\alpha(r(A)) \oplus \beta(r(B))$ is essential submodule of $K \oplus L$. Thus M satisfies $r C_{12}$.

Recall that a submodule X of M is said to be fully invariant if $f(X) \leq X$ for all $f \in \operatorname{End}_{R}(M)$. Any direct sum of $r C_{12}$-modules need not to be an $r C_{12}$-module. For example, consider the Specker group $\mathbb{Z}^{\mathbb{N}}$. Let $r=i d$. Then $\mathbb{Z}^{\mathbb{N}}$ is not an $r C_{12^{-}}$ module by Lemma 2.6, although $\mathbb{Z}_{\mathbb{Z}}$ is an $r C_{12}$-module (see, [11, Lemma 3.4]). Now we prove that any direct sum of distributive $r C_{12}$-modules is again an $r C_{12}$-module under a certain condition. Recall that a module is called distributive if its lattice of submodules is a distributive lattice.

Theorem 3.2. Let $M=\oplus_{\lambda \in \Lambda} M_{\lambda}$ be a direct sum of distributive $r C_{12}$-modules. If every submodule of M is fully invariant (i.e., M is a duo module), then M is an $r C_{12}$-module.

Proof. Let $M_{\lambda}(\lambda \in \Lambda)$ be a non-empty collection of distributive modules, each satisfying $r C_{12}$. Let $M=\oplus_{\lambda \in \Lambda} M_{\lambda}$. Let N be any submodule of M. Let $\lambda \in \Lambda$. Note that $N \cap M_{\lambda}$ is a submodule of M_{λ} and M_{λ} satisfies $r C_{12}$. There exists a direct summand K_{λ} of M_{λ} and a monomorphism $\alpha: r\left(N \cap M_{\lambda}\right) \rightarrow K_{\lambda}$ such that $\alpha\left(r\left(N \cap M_{\lambda}\right)\right)$ is essential in K_{λ}. Let Λ^{\prime} be a non-empty subset of Λ containing λ such that there exists a direct summand K^{\prime} of $M^{\prime}=\oplus_{\lambda \in \Lambda^{\prime}} M_{\lambda}$ and a monomorphism $\alpha^{\prime}: r\left(N \cap M^{\prime}\right) \rightarrow K^{\prime}$ such that $\alpha^{\prime}\left(r\left(N \cap M^{\prime}\right)\right)$ is essential in K^{\prime}. Suppose $\Lambda^{\prime} \neq \Lambda$. Let $\mu \in \Lambda, \mu \notin \Lambda^{\prime}$. Now $N \cap M_{\mu}$ is a submodule of M_{μ}, so there exists a direct summand K_{μ} of M_{μ} and a monomorphism $\alpha^{\prime \prime}: r\left(N \cap M_{\mu}\right) \rightarrow K_{\mu}$ such that $\alpha^{\prime \prime}\left(r\left(N \cap M_{\mu}\right)\right)$ is essential in K_{μ}. Let $\Lambda^{\prime \prime}=\Lambda^{\prime} \cup\{\mu\}$ and $M^{\prime \prime}=\oplus_{\lambda \in \Lambda^{\prime \prime}} M_{\lambda}=M^{\prime} \oplus M_{\mu}$. It is clear that $K^{\prime} \cap K_{\mu}=0$. Let $K^{\prime \prime}=K^{\prime} \oplus K_{\mu}$. Note that $K^{\prime \prime}$ is a direct summand of $M^{\prime \prime}$.

Consider the submodule $N \cap M^{\prime \prime}$. Since M is a duo module, it is distributive by [7, Propositon 2.3]. Hence $N \cap M^{\prime \prime}=N \cap\left(M^{\prime} \oplus M_{\mu}\right)=\left(N \cap M^{\prime}\right) \oplus\left(N \cap M_{\mu}\right)$. Then $r\left(N \cap M^{\prime \prime}\right)=r\left(N \cap M^{\prime}\right) \oplus r\left(N \cap M_{\mu}\right)$. Define

$$
\beta: r\left(N \cap M^{\prime \prime}\right) \rightarrow K^{\prime} \oplus K_{\mu} \quad \text { by } \beta(n)=\beta\left(m_{1}+m_{2}\right)=\alpha^{\prime}\left(m_{1}\right)+\alpha^{\prime \prime}\left(m_{2}\right)
$$

where $n \in r\left(N \cap M^{\prime \prime}\right), m_{1} \in r\left(N \cap M^{\prime}\right), m_{2} \in r\left(N \cap M_{\mu}\right)$. It is easy to check that β is a monomorphism. Furthermore, $\beta\left(N \cap M^{\prime \prime}\right)=\alpha^{\prime}\left(N \cap M^{\prime}\right) \oplus \alpha^{\prime \prime}\left(N \cap M_{\mu}\right)$ is essential submodule of $K^{\prime} \oplus K_{\mu}$. Repeating this argument, there exists a direct summand K of M and a monomorphism $\gamma: r(N) \rightarrow K$ such that $\gamma(N)$ is essential in K. Thus M satisfies $r C_{12}$.

Our next objective is to give a condition when the $r C_{12}$ property is inherited by essential extensions.

Theorem 3.3. Let M and T be right R-modules such that M_{R} is essential in T_{R} and M_{R} satisfies $r C_{12}$. If M_{R} is T-injective then T_{R} satisfies $r C_{12}$.

Proof. Let X be any submodule of T_{R}. Let $\bar{X}=X \cap M$. Since M_{R} is an $r C_{12}$-module, there exist $e^{2}=e \in \operatorname{End}\left(M_{R}\right)$ and a monomorphism $\varphi: r(\bar{X}) \rightarrow e M$ such that $\varphi(r(\bar{X}))$ is essential in $e M$. By relative injectivity assumption, there exists $\theta: X \rightarrow T$ which lifts φ to X. Let $\pi: T \rightarrow e T$ be the canonical projection with kernel $(1-e) T$. So, define $\alpha: r(X) \rightarrow e T$ by $\alpha(x)=\pi(\theta(x))$ where $x \in r(X)$. Then it is easy to see
that α is a monomorphism. Now, we show that $\alpha(r(X))$ is essential in $e T$. For, let $0 \neq e t \in e T$. Hence there exists $r \in R$ such that $0 \neq e t r \in M$. Thus $0 \neq e t r \in e M$. It follows that there exists $s \in R$ such that $0 \neq$ etrs $\in \varphi(r(\bar{X}))$. Hence $0 \neq$ etrs $=\varphi(a)$ for some $a \in r(\bar{X})$. Therefore $\alpha(a)=\pi(\theta(a))=\pi(\varphi(a))=\varphi(a)=$ etrs. Thus $\alpha(r(X))$ is essential in $e T$ which yields that T_{R} satisfies $r C_{12}$.

It is natural to think of whether we can remove the relative injectivity assumption in the previous theorem. However the following example illustrates that the relative injectivity condition is not superfluous.
Example 3.1. Let $T=F[x] /<x^{4}>=\left\{a \overline{1}+b \bar{x}+c \bar{x}^{2}+d \bar{x}^{3} \mid a, b, c, d \in F\right.$ and $\bar{x}=$ $x+\left\langle x^{4}>\right\}$ where F is a field. Let $R=F+F \bar{x}^{2}+F \bar{x}^{3}=\left\{a \overline{1}+c \bar{x}^{2}+d \bar{x}^{3} \mid a, c, d \in\right.$ $F\} \leq T$ a subring of T. Then $Z(R)=\left\{a+b \bar{x}^{2}+c \bar{x}^{3} \mid\left(a+b \bar{x}^{2}+c \bar{x}^{3}\right)\left(F \bar{x}^{2}+F \bar{x}^{3}\right)=\right.$ $\overline{0}\}=F \bar{x}^{2}+F \bar{x}^{3}=S o c R_{R}$ is essential in R_{R}. Also, $S o c R_{R}$ is not R-injective. In fact, note that $F \bar{x}^{2}$ is an ideal of R. Let $f: F \bar{x}^{2} \rightarrow S o c R$ defined by $f\left(a \bar{x}^{2}\right)=a \bar{x}^{3}$, where $a \in F$. Hence f is an R-homomorphism. But there is no $\alpha \in R$ such that $\alpha a \bar{x}^{2}=a \bar{x}^{3}$ for all $a \in F$. So, $S o c R$ is not R-injective by Baers Criterion. The ideals of R are $0, R, F \bar{x}^{2}, F \bar{x}^{3}$ and $F \bar{x}^{2}+F \bar{x}^{3}$. So, the ideals of SocR are $0, S o c R, F \bar{x}^{2}$ and $F \bar{x}^{3}$. Also, $Z\left(F \bar{x}^{2}\right)=F \bar{x}^{2}$ and $Z\left(F \bar{x}^{3}\right)=F \bar{x}^{3}$. Now, it is easy to see that Soc_{R} satisfies $r C_{12}$ for $r=Z$. Let us show that R_{R} does not satisfy $r C_{12}$ for $r=Z$. Note that R is an indecomposable R-module. Let $N=F \bar{x}^{2}$. Assume that R_{R} satisfy $r C_{12}$. Then there exist a monomorphism $\alpha: Z\left(F \bar{x}^{2}\right) \rightarrow R$ such that $\alpha\left(Z\left(F \bar{x}^{2}\right)\right)=\alpha\left(F \bar{x}^{2}\right)$ is essential in R. Thus, $\alpha\left(\operatorname{Soc}\left(F \bar{x}^{2}\right)\right)=\operatorname{Soc} R=F \bar{x}^{2} \oplus F \bar{x}^{3}$. Since α is a monomorphism, $F \bar{x}^{2} \cong \alpha\left(F \bar{x}^{2}\right)=\alpha\left(\operatorname{Soc}\left(F \bar{x}^{2}\right)\right)=F \bar{x}^{2} \oplus F \bar{x}^{3}$, a contradiction. Hence, R_{R} does not satisfy $r C_{12}$.

The following proposition is useful in the sense of determining when a direct summand of an $r C_{12}$-module satisfies the $r C_{12}$ property.
Proposition 3.4. Let $M=M_{1} \oplus M_{2}$ be a direct sum of submodules M_{1} and M_{2} of M. Then M_{1} is an $r C_{12}$-module if and only if for every submodule N of M_{1}, there exists a direct summand K of M and φ monomorphism on N such that $M_{2} \subseteq K$, $\varphi(r(N)) \cap K=0$ and $\varphi(r(N)) \oplus K$ is an essential submodule of M.
Proof. Assume M_{1} satisfies $r C_{12}$. Let N be any submodule of M_{1}. Then there exists a direct summand H of M_{1} and a monomorphism $\alpha: r(N) \rightarrow H$ such that $\varphi(r(N))$ is an essential submodule of H. Thus $M_{1}=H \oplus L$ for some submodule L of M. Now, it is clear that $L \oplus M_{2}$ is a direct summand of $M,\left(L \oplus M_{2}\right) \cap \varphi(r(N))=0$ and $\left(L \oplus M_{2}\right) \oplus \varphi(r(N))$ is an essential submodule of M. Conversely, suppose that M_{1} has the stated property. Let N be a submodule of M_{1}. By hypothesis, there exists a direct summand K of M and a monomorphism α on $r(N)$ such that $M_{2} \subseteq K$, $\alpha(r(N)) \cap K=0$ and $\alpha(r(N)) \oplus K$ is an essential submodule of M. Since $K=$ $K \cap\left(M_{1} \oplus M_{2}\right)=\left(K \cap M_{1}\right) \oplus M_{2}, K \cap M_{1}$ is a direct summand of M, and hence also of M_{1}. Let $M_{1}=\left(K \cap M_{1}\right) \oplus X$ for some submodule X of M_{1} and $\pi: M \rightarrow X$ be the canonical projection with kernel K. Now, let us define $\varphi: r(N) \rightarrow X$ by $\varphi(n)=\pi(\alpha(n))$ where $n \in r(N)$. It is easy check that φ is a monomorphism. Now, let us show that $\varphi(r(N))$ is essential in X. For, let $0 \neq x \in X$. Then there exists $r \in R$ such that $0 \neq x r \in \alpha(r(N)) \oplus K$. Thus $x r=\pi(x r)=\pi(n+k)=\varphi(n)+\pi(k)$ for some $n \in r(N), k \in K$. Hence $0 \neq x r=\varphi(n) \in \varphi(r(N))$. It follows that $\varphi(r(N))$ is an essential submodule of X. So, M_{1} is an $r C_{12}$-module.

Proposition 3.5. If M is an $r C_{12}$-module, then $M=M_{1} \oplus M_{2}$ for some submodules M_{1}, M_{2} such that $r\left(M_{1}\right)$ is essential in M_{1}.

Proof. Let $N=r(M)$. Then there exist a direct summand M_{1} of M and a monomorphism $\alpha: r(N) \rightarrow M_{1}$ such that $\alpha(N)$ is essential in M_{1}. So $M=M_{1} \oplus M_{2}$ for some submodule M_{2} of M. Since $\alpha(r(N))=\alpha(r(r(M)))=\alpha(r(M)) \leq r\left(M_{1}\right) \leq M_{1}$, $r\left(M_{1}\right)$ is essential in M_{1} as required.

The following theorem shows that the $r C_{12}$ property on distributive modules is inherited by direct summands.

Theorem 3.6. Let M be an $r C_{12}$-module. If M is distributive then any direct summand is also an $r C_{12}$-module.

Proof. Let N be a direct summand of M and X be any submodule of N. By hypothesis, there exist a direct summand K of M and a monomorphism $f: r(X) \rightarrow K$ such that $f(r(X))$ is essential in K. Now, $M=K \oplus K^{\prime}=N \oplus N^{\prime}$ for some submodules N^{\prime}, K^{\prime} of M. So, we have $N=N \cap\left(K \oplus K^{\prime}\right)=(N \cap K) \oplus\left(N \cap K^{\prime}\right)$. Let $\pi_{1}: M \rightarrow N$ and $\pi_{2}: N \rightarrow N \cap K$ be the canonical projections with $\operatorname{ker}\left(\pi_{1}\right)=N^{\prime}$, $\operatorname{ker}\left(\pi_{2}\right)=N \cap K^{\prime}$, respectively. Also, let $i: K \rightarrow M$ be the inclusion mapping. Define $\alpha: r(X) \rightarrow N \cap K$ by $\alpha(x)=\left(\pi_{2} \circ \pi_{1} \circ i\right)(f(x))$ where $x \in r(X)$. It is easy to check that α is a monomorphism. Let us show that $\alpha(r(X))$ is an essential submodule of $N \cap K$. For, let $0 \neq a \in N \cap K$. Then there exists $r \in R$ such that $0 \neq a r \in f(r(X))$. Now $\left(\pi_{2} \circ \pi_{1} \circ i\right)(a r)=\left(\pi_{2} \circ \pi_{1}\right)(a r)=\pi_{2}(a r)=a r \neq 0$. Hence $0 \neq a r \in \alpha(r(X))$. So, $\alpha(r(X))$ is essential in $N \cap K$. It follows that N is an $r C_{12}$-module.

We can not drop the module is being distributive in the previous result as the following example illustrates.

Example 3.2. Let \mathbb{R} be the real field and S the polynomial ring $\mathbb{R}[x, y, z]$. Then the ring $R=S / S s$, where $s=x^{2}+y^{2}+z^{2}-1$, is a commutative Noetherian domain. Let $r=i d$. The free R-module $M=R \oplus R \oplus R$ satisfies $r C_{12}$, but M contains a direct summand K which does not satisfy $r C_{12}$ (see [13]). It can be seen that M is not a distributive module. For this, if we choose three submodules I, J, and K in M such that neither J nor K is contained in I, then the distributivity fails.

Open Problem Whether being distributive and duo are superfluous in Theorem 3.2?

References

[1] T. Albu and M. Iosif, Modular C_{11} lattices and lattice preradicals, J.Algebra Appl. 16 (2017), no. 6,1750116 . DOI: 10.1142/S021949881750116X
[2] T. Albu, M. Iosif, and A. Tercan, The conditions $\left(C_{i}\right)$ in modular lattices and applications, J. Algebra Appl. 40 (2016), 1650001. DOI: 10.1142/S0219498816500018
[3] G.F. Birkenmeier, B.J. Müller, and S.T. Rizvi, Modules in which every fully invariant submodules essential in a direct summand, Comm. Algebra 30 (2002), no. 3, 1395-1415. DOI: 10.1080/00927870209342387
[4] G.F. Birkenmeier, J.K. Park, and S.T. Rizvi, Extensions of Rings and Modules, Birkhäuser, New York, 2013.
[5] G.F. Birkenmeier, A Tercan, and C.C. Yücel, The extending condition relative to sets of submodules, Comm. Algebra 42 (2014), 764-778. DOI: 10.1080/00927872.2012.723084
[6] N.V. Dung, D. Huynh, P.F. Smith, and R. Wisbauer, Extending Modules, Longman, Harlow, 1994.
[7] V. Erdoğdu, Distributive Modules, Canad. Math. Bull. 30(2) (1987), 1650001.
[8] K.R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Dekker, New York, 1976.
[9] I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1969.
[10] R.J. Nunke, On direct products of infinite cyclic groups, Proc. Amer. Math. Soc. 13 (1962), no. 1, 66-71.
[11] P.F. Smith and A. Tercan, Generalizations of CS-modules, Comm. Algebra 21 (1993), no. 6, 1809-1847. DOI: 10.1080/00927879308824655
[12] B. Stenström, Rings of Quotients, Springer-Verlag, New York, 1975.
[13] F. Takıl and A. Tercan, Modules whose submodules are essentially embedded in direct summands, Comm. Algebra 37 (2009), no. 2, 460-469. DOI: 10.1080/00927870802248688
[14] A. Tercan, Modules whose exact submodules are direct summands, An. Şt. Univ. Ovidius Constanta 8 (2000), no. 2, 143-150.
[15] A. Tercan and C.C. Yücel, Module Theory, Extending Modules and Generalizations, Birkhäuser, Basel, 2016.
[16] R. Yaşar, C_{11}-Modules via left exact preradicals, Turkish J. Math. 45 (2021), 1757-1766. DOI: 10.3906/mat-2101-103
(Figen Takil Mutlu) Department of Mathematics, Eskişehir Technical University, Eskisehir, 26470, Turkey
E-mail address: figent@eskisehir.edu.tr
(Adnan Tercan) Department of Mathematics, Hacettepe University, Ankara, 06800, Turkey
E-mail address: tercan@hacettepe.edu.tr

