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C12-modules via left exact preradicals

Figen Takil Mutlu and Adnan Tercan

Abstract. In this paper, we study modules with the condition that images of all submodules
under a left exact preradical for the category of right modules over a ring can be essentially

embedded in direct summands. This new class of modules properly contains the class of C12-

modules (and hence also CS-modules and uniform modules). It is shown that any module
isomorphic to a direct summand of a module which satisfies the rC12 property. In contrast to

CS-modules, it is shown that the class of modules with the former property is closed under

essential extensions whenever any module in the new class is relative injective with respect to
its essential extensions.
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1. Introduction

Throughout this article, all rings are associative with identity and all modules are
unitary right modules. Let R be a ring and M an R-module. A submodule N of M
is essential (or large) in M if for every 0 6= K submodule of M , we have N ∩K 6= 0.
Given a submodule L of M , by a complement (submodule) of L in M , we mean a
submodule C of M , maximal with respect to L ∩ C = 0. A module is said to be
CS (or extending) or said to satisfy the C1 condition if every submodule is essential
in a direct summand. Equivalently, every complement is a direct summand (see, [6],
[15]). Several generalizations of the CS notion have been worked out extensively by
many authors (see, [1], [2], [3], [4], [5], [11], [14], [16]). Amongst other generalizations
in particular, recall that a module is called a C12-module (or satisfy C12) if every
submodule is essentially embedded in a direct summand (see, [13]). In this trend,
as the first attempt, Tercan [14] defined ES-module notion in terms of left exact
preradicals for a ring R. Recall that a functor r from the category of the right R-
modules to itself is called a left exact preradical if it has the following properties
(i) r(M) is a submodule of M for every right R-module M ,

(ii) r(N) = N ∩ r(M) for every submodule N of a right R-module M ,

(iii) ϕ(r(M)) ⊆ r(M
′
) for every homomorphism ϕ : M → M

′
for right R-modules

M , M
′
.

Let r be a left exact preradical in the category of right R-modules. Amongst the
aforementioned properties, r(M1 ⊕ M2) = r(M1) ⊕ r(M2) holds true for all right
R-modules M1, M2. Observe that the singular submodule and socle are left exact
preradicals and the identity (id) and zero functors are trivial left exact preradicals.
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For a good source of left exact preradicals the reader is referred to [12]. Recently
rC11-modules are investigated in [16]. Recall that a module M is called rC11-module
provided for every submodule N of M , r(N) has a complement which is a direct
summand of M .

In this paper, we deal with a class of modules which properly contains the class
of C11-modules and rC11-modules. We define rC12-modules in terms of left exact
preradicals for the category of right modules. In other words, we focus on the only
images of all submodules of the module under the left exact preradical rather than
all submodules of the module in the definition of C12-modules. Formerly, we obtain
basic structural properties of rC12-modules and determine connections with the other
class of modules.

Since any result including a left exact preradical in the category of right R-modules
constructs a framework, we make special choice of left exact preradicals to provide
counter examples. Incidentally, we show that rC12 property is not inherited by direct
summands of a module. In contrast to the latter closure property we prove that direct
sums of distributive rC12-modules enjoy with the property under a certain condition.

We use r to denote a left exact preradical in the category of right R-modules.
Moreover, letM be a module. ThusN ≤M , SocM , Z(M), and rR(x) will stand forN
is a submodule of M , socle of M , singular submodule of M , and the right annihilator
of an element x in M , respectively. For any other terminology or unexplained notions,
we refer to [4], [6], [8], [12], [15].

2. Basic results

This section contains basic structural properties of rC12-modules. Also, we think of
connections between rC12 condition and the rC11 property as well as direct sum-
mands of a module satisfying the rC12 property. Let us begin with mentioning of the
definition of rC12 property.

Definition 2.1. A right R-module M is called rC12-module (or satisfies rC12) for
any submodule N of M , there exist a direct summand K of M and a monomorphism
α : r(N)→ K such that α(r(N)) is essential in K.

Lemma 2.1. Let M be a module and L ≤ N ≤M . If L is essential in N then r(L)
is essential in r(N).

Proof. Let 0 6= x ∈ r(N). Then x ∈ N and hence there exists t ∈ R such that
0 6= xt ∈ L. Also xt ∈ r(N) since r(N) ≤ M . Thus 0 6= xt ∈ r(N) ∩ L = r(L). It
follows that r(L) is essential in r(N). �

Proposition 2.2. Let M be an rC12-module. Then r(M) is a C12-module.

Proof. Let N be a submodule of r(M). Note that r(N) = N . By assumption, there
exist submodulesK,K ′ such thatM = K⊕K ′ and a monomorphism α : N → K, such
that α(N) is essential in K. Then r(M) = r(K)⊕ r(K ′) and α(r(N)) ≤ r(K) ≤ K.
Hence α(N) is essential in r(K). It follows that r(M) is a C12-module. �

Next fact characterizes rC12-modules in terms of complement submodules.

Lemma 2.3. Let M be a right R-module. Then M satisfies rC12 if and only if for
every complement submodule N of M there exist a direct summand K of M and a
monomorphism α : r(N)→ K such that α(r(N)) is essential in K.
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Proof. Assume that M satisfies rC12. Then, M has the stated property by definition.
Conversely, let X ≤M . Then there exist a complement submodule N of M such that
X is essential in N . Thus r(X) is essential in r(N) by Lemma 2.1. By assumption,
there exist a direct summand K of M and a monomorphism α : r(N) → K such
that α(r(N)) is essential in K. Since α is a monomorphism, α(r(X)) is essential in
α(r(N)) and so, α(r(X)) is essential in K. Thus M satisfies rC12. �

It is clear from Lemma 2.3 that any C12-module satisfies rC12. In particular,
C11-modules (and hence CS or uniform modules) satisfy rC12. Recall that any in-
decomposable C12-module over a right Noetherian ring is uniform (see [13, Lemma
1.1]). However, there are indecomposable rC12-modules for special choices of r over
right Noetherian rings which are not uniform as the following example illustrates.
This example also shows that the class of C12-modules is properly contained in the
class of rC12-modules.

Example 2.1. (i) The Specker group ZN does not satisfy C12 (see, [11, Lemma 3.4]).
Now, let r = Z. Then, from [8, Proposition 1.22], r(ZN) = 0. It follows that ZN is an
rC12-module.

(ii) Let R be a principal domain and r = Soc. If R is not a complete discrete
valuation ring, then there exists an indecomposable torsion-free R-module M of rank
2 [9, Theorem 19]. For M , r(M) = 0. Hence M satisfies rC12. It is clear that MR

has uniform dimension 2. Since M is not uniform, M does not satisfy C12.

Now we intend to show that rC12 property is not inherited by direct summands.
Before doing so, we obtain the following fact. For this recall that a module M satisfies
rC11 if for every submodule N of M , r(N) has a complement which is a direct
summand of M (see, [16]).

Proposition 2.4. If M satisfies rC11, then M satisfies rC12.

Proof. Let N ≤ M . Then there exist direct summands K,K
′

of M such that M =
K ⊕ K ′

, r(N) ∩ K ′
= 0 and r(N) ⊕ K ′

is essential in M . Let π : M → K be the
canonical projection and let α = π|r(N)

: r(N) → K. So α is a monomorphism. Let

0 6= k ∈ K. Then there exists r ∈ R such that 0 6= kr = x + k
′

for some x ∈ r(N),

k
′ ∈ K

′
. Since kr = π(kr) = π(x + k

′
) = π(x) = α(x), kR ∩ α(r(N)) 6= 0 for all

0 6= k ∈ K. Hence α(r(N)) is essential in K. �

The next result which has already pointed out previously brings up a different
behavior of the rC12 condition from the other extending properties.

Proposition 2.5. Let M be any module. Then M is isomorphic to a direct summand
of a module which satisfies rC12.

Proof. For any module X, let E(X) denote the injective hull of X. Let M
′

=

E(E(M) ⊕ E(M) ⊕ · · · ). Note that M
′

is injective. Let M
′′

= M ⊕M ′
. So, M

is isomorphic to M ⊕ 0 which is a direct summand of M
′′
. Let us show that M

′′

satisfies rC12. Note that E(M
′′
) = E(M) ⊕M ′

= E(E(M) ⊕ E(M) ⊕ · · · ) which

is isomorphic to M
′

and hence there exists a monomorphism β : M
′′ → M

′
. Let N

be a submodule of M
′′
. Then β(r(N)) is a submodule of M

′
. But M

′
is injective

thus there exists a direct summand K of M
′

and hence of M
′′

such that β(r(N)) is

essential submodule of K. Thus M
′′

satisfies rC12. �
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Lemma 2.6. The Specker group ZN does not satisfy rC12 with nonzero image under
a left exact preradical r.

Proof. Let M be the Specker group ZN and let N be the subgroup
∞
⊕
i=1

Z of M . Suppose

that there exists a direct summand K of M and a monomorphism α : r(N)→ K such
that α(r(N)) is essential in K. Note that r(N) is isomorphic to α(r(N)). By Nunke’s
theorem [10, Theorem 5], K is isomorphic to M . This implies that K has uncountable
rank. But α(r(N)) has countable rank. Thus α(r(N)) cannot be essential in K. �

Corollary 2.7. There exists a Z-module M satisfying rC12 such that some direct
summand K of M does not satisfy rC12.

Proof. By Proposition 2.5 and Lemma 2.6. �

Notice that Corollary 2.7 provides existence of a group (i.e., Z-module) which
satisfies rC12 but it has a direct summand which does not satisfy the rC12 property.
Moreover, the following proposition makes it clear that the converse of Proposition
2.4 is not true, in general.

Lemma 2.8. [16, Corollary 3.19]Let M be a module which satisfies rC11. Let N be a
direct summand of M such that M/N is an injective module. Then N satisfies rC11.

Proposition 2.9. There exists a Z-module M which satisfies rC12 but M does not
satisfy rC11.

Proof. By the construction of Proposition 2.5, if M is the Specker group ZN then
there exists an injective Z-module M

′
such that M

′′
= M ⊕M ′

satisfies rC12. By
Lemma 2.8, Proposition 2.4 and Lemma 2.6, M

′′
does not satisfy rC11.

�

3. Direct sums and summands of rC12-modules

In this section, we consider direct sums and direct summands of modules which satisfy
the rC12 property. We show that the class of distributive rC12-modules is closed
under direct sums under a certain condition. On the other hand, Corollary 2.7 shows
that the rC12 property is not inherited by direct summands. We provide a concrete
example which exhibits the failure of the latter closure property.

By modifying Lemma 2.1 in [7] for noncommutative rings, we get the following
theorem.

Theorem 3.1. Let M ⊕N be a direct sum of two R-modules with the property rC12.
If rR(x) + rR(y) = R for all x ∈M and all y ∈ N , then M ⊕N is an rC12-module.

Proof. Let X be any submodule of M ⊕N . From Lemma [7, Lemma 2.1], X = A⊕B
for some submodule A of M and some submodule B of N . By the rC12 assumption,
there exist a direct summand K of M , a direct summand L of N , and monomorphisms
α : r(A) → K and β : r(B) → L such that α(r(A)) is essential in K and β(r(B))
is essential in L . Note that K ⊕ L is a direct summand of M ⊕ N and r(X) =
r(A⊕B) = r(A)⊕ r(B). Define

θ : r(X)→ K ⊕ L by θ(x) = θ(a+ b) = α(a) + β(b)
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where x ∈ r(X), a ∈ r(A), b ∈ r(B). It is easy to check that θ is a monomorphism.
Furthermore, θ(r(X)) = α(r(A)) ⊕ β(r(B)) is essential submodule of K ⊕ L. Thus
M satisfies rC12. �

Recall that a submodule X of M is said to be fully invariant if f(X) ≤ X for
all f ∈ EndR(M). Any direct sum of rC12-modules need not to be an rC12-module.
For example, consider the Specker group ZN. Let r = id. Then ZN is not an rC12-
module by Lemma 2.6, although ZZ is an rC12-module (see, [11, Lemma 3.4]). Now
we prove that any direct sum of distributive rC12-modules is again an rC12-module
under a certain condition. Recall that a module is called distributive if its lattice of
submodules is a distributive lattice.

Theorem 3.2. Let M = ⊕λ∈ΛMλ be a direct sum of distributive rC12-modules. If
every submodule of M is fully invariant (i.e., M is a duo module), then M is an
rC12-module.

Proof. Let Mλ (λ ∈ Λ) be a non-empty collection of distributive modules, each satis-
fying rC12. Let M = ⊕λ∈ΛMλ. Let N be any submodule of M . Let λ ∈ Λ. Note that
N ∩Mλ is a submodule of Mλ and Mλ satisfies rC12. There exists a direct summand
Kλ of Mλ and a monomorphism α : r(N ∩Mλ) → Kλ such that α(r(N ∩Mλ)) is

essential in Kλ. Let Λ
′

be a non-empty subset of Λ containing λ such that there exists
a direct summand K

′
of M

′
= ⊕λ∈Λ′Mλ and a monomorphism α

′
: r(N ∩M ′

)→ K
′

such that α
′
(r(N ∩M ′

)) is essential in K
′
. Suppose Λ

′ 6= Λ. Let µ ∈ Λ, µ /∈ Λ
′
. Now

N ∩Mµ is a submodule of Mµ, so there exists a direct summand Kµ of Mµ and a

monomorphism α
′′

: r(N ∩Mµ) → Kµ such that α
′′
(r(N ∩Mµ)) is essential in Kµ.

Let Λ
′′

= Λ
′ ∪ {µ} and M

′′
= ⊕λ∈Λ′′Mλ = M

′ ⊕Mµ. It is clear that K
′ ∩Kµ = 0.

Let K
′′

= K
′ ⊕Kµ. Note that K

′′
is a direct summand of M

′′
.

Consider the submodule N ∩M ′′
. Since M is a duo module, it is distributive by

[7, Propositon 2.3]. Hence N ∩M ′′
= N ∩ (M

′ ⊕Mµ) = (N ∩M ′
)⊕ (N ∩Mµ). Then

r(N ∩M ′′
) = r(N ∩M ′

)⊕ r(N ∩Mµ). Define

β : r(N ∩M
′′
)→ K

′
⊕Kµ by β(n) = β(m1 +m2) = α

′
(m1) + α

′′
(m2)

where n ∈ r(N ∩M ′′
), m1 ∈ r(N ∩M

′
), m2 ∈ r(N ∩Mµ). It is easy to check that β is

a monomorphism. Furthermore, β(N ∩M ′′
) = α

′
(N ∩M ′

)⊕α′′
(N ∩Mµ) is essential

submodule of K
′ ⊕Kµ. Repeating this argument, there exists a direct summand K

of M and a monomorphism γ : r(N)→ K such that γ(N) is essential in K. Thus M
satisfies rC12. �

Our next objective is to give a condition when the rC12 property is inherited by
essential extensions.

Theorem 3.3. Let M and T be right R-modules such that MR is essential in TR and
MR satisfies rC12. If MR is T -injective then TR satisfies rC12.

Proof. Let X be any submodule of TR. LetX = X∩M . Since MR is an rC12-module,
there exist e2 = e ∈ End(MR) and a monomorphism ϕ : r(X) → eM such that
ϕ(r(X)) is essential in eM . By relative injectivity assumption, there exists θ : X → T
which lifts ϕ to X. Let π : T → eT be the canonical projection with kernel (1− e)T .
So, define α : r(X) → eT by α(x) = π(θ(x)) where x ∈ r(X). Then it is easy to see
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that α is a monomorphism. Now, we show that α(r(X)) is essential in eT . For, let
0 6= et ∈ eT . Hence there exists r ∈ R such that 0 6= etr ∈M . Thus 0 6= etr ∈ eM . It
follows that there exists s ∈ R such that 0 6= etrs ∈ ϕ(r(X)). Hence 0 6= etrs = ϕ(a)
for some a ∈ r(X). Therefore α(a) = π(θ(a)) = π(ϕ(a)) = ϕ(a) = etrs. Thus
α(r(X)) is essential in eT which yields that TR satisfies rC12. �

It is natural to think of whether we can remove the relative injectivity assumption
in the previous theorem. However the following example illustrates that the relative
injectivity condition is not superfluous.

Example 3.1. Let T = F [x]/ < x4 >= {a1 + bx+ cx2 + dx3 | a, b, c, d ∈ F and x =
x+ < x4 >} where F is a field. Let R = F + Fx2 + Fx3 = {a1 + cx2 + dx3 | a, c, d ∈
F} ≤ T a subring of T . Then Z(R) = {a+ bx2 + cx3 | (a+ bx2 + cx3)(Fx2 +Fx3) =
0} = Fx2 + Fx3 = SocRR is essential in RR. Also, SocRR is not R-injective. In
fact, note that Fx2 is an ideal of R. Let f : Fx2 → SocR defined by f(ax2) = ax3,
where a ∈ F . Hence f is an R-homomorphism. But there is no α ∈ R such that
αax2 = ax3 for all a ∈ F . So, SocR is not R-injective by Baers Criterion. The ideals
of R are 0, R, Fx2, Fx3 and Fx2 + Fx3. So, the ideals of SocR are 0, SocR, Fx2 and
Fx3. Also, Z(Fx2) = Fx2 and Z(Fx3) = Fx3. Now, it is easy to see that SocRR
satisfies rC12 for r = Z. Let us show that RR does not satisfy rC12 for r = Z. Note
that R is an indecomposable R-module. Let N = Fx2. Assume that RR satisfy rC12.
Then there exist a monomorphism α : Z(Fx2)→ R such that α(Z(Fx2)) = α(Fx2) is
essential in R. Thus, α(Soc(Fx2)) = SocR = Fx2⊕Fx3. Since α is a monomorphism,
Fx2 ∼= α(Fx2) = α(Soc(Fx2)) = Fx2 ⊕ Fx3, a contradiction. Hence, RR does not
satisfy rC12.

The following proposition is useful in the sense of determining when a direct sum-
mand of an rC12-module satisfies the rC12 property.

Proposition 3.4. Let M = M1 ⊕M2 be a direct sum of submodules M1 and M2 of
M . Then M1 is an rC12-module if and only if for every submodule N of M1, there
exists a direct summand K of M and ϕ monomorphism on N such that M2 ⊆ K,
ϕ(r(N)) ∩K = 0 and ϕ(r(N))⊕K is an essential submodule of M .

Proof. Assume M1 satisfies rC12. Let N be any submodule of M1. Then there exists
a direct summand H of M1 and a monomorphism α : r(N) → H such that ϕ(r(N))
is an essential submodule of H. Thus M1 = H ⊕ L for some submodule L of M .
Now, it is clear that L⊕M2 is a direct summand of M , (L⊕M2)∩ϕ(r(N)) = 0 and
(L ⊕M2) ⊕ ϕ(r(N)) is an essential submodule of M . Conversely, suppose that M1

has the stated property. Let N be a submodule of M1. By hypothesis, there exists
a direct summand K of M and a monomorphism α on r(N) such that M2 ⊆ K,
α(r(N)) ∩ K = 0 and α(r(N)) ⊕ K is an essential submodule of M . Since K =
K ∩ (M1 ⊕M2) = (K ∩M1) ⊕M2, K ∩M1 is a direct summand of M , and hence
also of M1. Let M1 = (K ∩M1)⊕X for some submodule X of M1 and π : M → X
be the canonical projection with kernel K. Now, let us define ϕ : r(N) → X by
ϕ(n) = π(α(n)) where n ∈ r(N). It is easy check that ϕ is a monomorphism. Now,
let us show that ϕ(r(N)) is essential in X. For, let 0 6= x ∈ X. Then there exists
r ∈ R such that 0 6= xr ∈ α(r(N))⊕K. Thus xr = π(xr) = π(n+ k) = ϕ(n) + π(k)
for some n ∈ r(N), k ∈ K. Hence 0 6= xr = ϕ(n) ∈ ϕ(r(N)). It follows that ϕ(r(N))
is an essential submodule of X. So, M1 is an rC12-module. �
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Proposition 3.5. If M is an rC12-module, then M = M1⊕M2 for some submodules
M1, M2 such that r(M1) is essential in M1.

Proof. Let N = r(M). Then there exist a direct summand M1 of M and a monomor-
phism α : r(N) → M1 such that α(N) is essential in M1. So M = M1 ⊕M2 for
some submodule M2 of M . Since α(r(N)) = α(r(r(M))) = α(r(M)) ≤ r(M1) ≤M1,
r(M1) is essential in M1 as required. �

The following theorem shows that the rC12 property on distributive modules is
inherited by direct summands.

Theorem 3.6. Let M be an rC12-module. If M is distributive then any direct sum-
mand is also an rC12-module.

Proof. Let N be a direct summand of M and X be any submodule of N . By hy-
pothesis, there exist a direct summand K of M and a monomorphism f : r(X)→ K
such that f(r(X)) is essential in K. Now, M = K ⊕ K ′ = N ⊕ N ′ for some sub-
modules N ′, K ′ of M . So, we have N = N ∩ (K ⊕K ′) = (N ∩K) ⊕ (N ∩K ′). Let
π1 : M → N and π2 : N → N ∩K be the canonical projections with ker(π1) = N ′,
ker(π2) = N ∩K ′, respectively. Also, let i : K →M be the inclusion mapping. Define
α : r(X)→ N ∩K by α(x) = (π2 ◦ π1 ◦ i)(f(x)) where x ∈ r(X). It is easy to check
that α is a monomorphism. Let us show that α(r(X)) is an essential submodule of
N ∩K. For, let 0 6= a ∈ N ∩K. Then there exists r ∈ R such that 0 6= ar ∈ f(r(X)).
Now (π2 ◦ π1 ◦ i)(ar) = (π2 ◦ π1)(ar) = π2(ar) = ar 6= 0. Hence 0 6= ar ∈ α(r(X)).
So, α(r(X)) is essential in N ∩K. It follows that N is an rC12-module. �

We can not drop the module is being distributive in the previous result as the
following example illustrates.

Example 3.2. Let R be the real field and S the polynomial ring R[x, y, z]. Then the
ring R = S/Ss, where s = x2 +y2 +z2−1, is a commutative Noetherian domain. Let
r = id. The free R-module M = R ⊕ R ⊕ R satisfies rC12, but M contains a direct
summand K which does not satisfy rC12 (see [13]). It can be seen that M is not a
distributive module. For this, if we choose three submodules I, J , and K in M such
that neither J nor K is contained in I, then the distributivity fails.

Open Problem Whether being distributive and duo are superfluous in Theorem
3.2?
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[7] V. Erdoğdu, Distributive Modules, Canad. Math. Bull. 30(2) (1987), 1650001.
[8] K.R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Dekker, New York, 1976.

[9] I. Kaplansky, Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1969.

[10] R.J. Nunke, On direct products of infinite cyclic groups, Proc. Amer. Math. Soc. 13 (1962), no.
1, 66–71.

[11] P.F. Smith and A. Tercan, Generalizations of CS-modules, Comm. Algebra 21 (1993), no. 6,

1809–1847. DOI: 10.1080/00927879308824655
[12] B. Stenström, Rings of Quotients, Springer-Verlag, New York, 1975.

[13] F. Takıl and A. Tercan, Modules whose submodules are essentially embedded in direct sum-
mands, Comm. Algebra 37 (2009), no. 2, 460–469. DOI: 10.1080/00927870802248688

[14] A. Tercan, Modules whose exact submodules are direct summands, An. Şt. Univ. Ovidius Con-
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