Annals of University of Craiova, Math. Comp. Sci. Ser.
Volume 31, 2004, Pages 109-121
ISSN: 1223-6934

Classification and comparison of information structures from a
web page

MIREL COSULSCHI, NICOLAE CONSTANTINESCU, AND MIHAI GABROVEANU

ABsTrACT. This paper is closely related to the web structure analysis based on visual rep-
resentation direction, a new and promising one, from which many web application such as
information retrieval, information extraction can take advantage of. Page segmentation can
be used to improve the query process in information retrieval, to simplify the work of auto-
matic wrappers and to eliminate irrelevant data such as navigational bar and advertisement.
Simple DOM based segmentation did not show satisfactory results, but the combination of
DOM features with visual characteristics lead to a better partitioning.

2000 Mathematics Subject Classification. 68P20,68U99.
Key words and phrases. web information retrieval, visual features, association graph .

1. Introduction

The vast amount of information on World Wide Web cannot be fully exploited
due to its main characteristics: web pages are designed with respect to the human
readers, who interact with the systems by browsing HTML pages, rather than to be
used by a computer program. The semantic content structure of web pages is the
principal element exploited by many web applications: one of the latest directions is
the construction of wrappers in order to structure web data using regular languages
and database techniques. A subsequent problem arisen here is the necessity to divide
web documents into different information chunks. The mere segmentation based on
DOM tree representation [1] does not have enough power to semantically decompose
a web page.

A HTML page may contain many types of information presented in different forms,
such as text, image or applets (programs written in Java and executed, better said
interpreted, inside a wvirtual machine - Java Virtual Machine, browser integrated).
Hyper Text Markup Language [2] is a language designed for data presentation, and
was not intended as a mean of structuring information and easing the process of
structured data extraction. Another problem of HTML pages is related to their bad
construction, language standards {requently being broken (i.e. improper closed tags,
wrong nested tags, bad parameters and incorrect parameter value).

Web pages from commercial websites are usually generated dynamically using dif-
ferent scripts and data stored in a back-end DBMS. The visitor can easily notice
the usage of a few templates in the same site, with slight differences between them.
Page-generation process can be seen as the result of two activities:

e the execution of some queries targeted at the support database

Received: September 20, 2004.

109

110 MIREL COSULSCHI, NICOLAE CONSTANTINESCU, AND MIHAI GABROVEANU

e the source dataset is intertwined with HTML tags and other strings in a process
that can be called codification. Eventually, URL links and banners or images can
also be inserted .

A wrapper is a program whose scope is to extract data from various web sources.
In order to accomplish this task the wrapper must identify data of interest and put
them into some suitable formats, and eventually store back into a relational database.

The problem of generating wrapper for Web data extraction can be stated as
follows. Given a web page S containing a set of input objects, determine a mapping
W that populates a data repository R with the objects in S. The mapping W must
also be capable of recognizing and extracting data from any other page S’ similar to
S [16].

In the past years various tools for data extraction have been proposed in the lit-
erature with the goal of efficiently solving this problem. Data published in the pages
of very large sites and the higher rate of newcomer sites increased demand for semi-
automatic or automatic systems. The cost of a reliable application whose maintenance
requires human intervention and which will provide information with a high degree
of precision increases linearly with the number of wrapped sources.

For example, RoadRunner [12] generates a schema for the data contained in many
similar pages during an iterative process in which the current schema at step k, Tk
is tested and eventually updated against a new web page S, resulting a new schema
T(k+1). The algorithm compares HTML tag structure of two or more pages from the
same class (they are generated by the same script and are based on the same template).
If the pages are not part of the same class the result will be a very general schema,
which can extract data contained only in common structures, while the elements
from a singular structure remain unknown because they cannot be identified. Based
on the schema T a grammar is constructed capable of recognizing among other things,
nested-structured data objects with a variable number of values corresponding to their
attributes.

1.1. Related Work. Xiaoli Li et al [20] proposed a similar method for segment-
ing a web page: they introduced the notion of micro information units (MIU). A
HTML page is decomposed in many MIU elements by merging adjacent paragraphs,
exploiting text font property and term set similarity.

Our approach is more similar to Gu’s approach [15]: they rely on breaking out the
DOM tree and compare similarities among all the basic DOM nodes.

Other approaches that combine DOM structure and visual cues can be encountered
in [22],[21].

The motivation of our work is to decompose a web page into fine grained and
also simpler parts, elements that can be used as inputs for automatic wrappers (by
example [12]). In the paper [21], the authors demonstrate that the problem of schema
inference from many web pages in the presence of nullable attributes, belongs to the
NP-complete class of problems. The size reduction of input data for the program that
constructs the schema during an inference process thus becomes a must.

In the paper [23], the authors motivate their attempt to decompose a web page in
small items called pagelets that simplify the page structure, by the fact that templates
reduce precision, and navigation bar and paid advertisement contradict Hypertext IR
Principles.

CLASSIFICATION AND COMPARISON OF INFORMATION STRUCTURES 111
2. Method outline

Obtaining some meaningful results with the proposed method depends on using as
input data some web pages with a similar structure (they were generated with the
same script and share a common template). How can web pages with such property
be obtained? The first approach implies the participation of a human operator who
will classify the pages, while the second one is an automatic one: in the last years
there were some attempts to cluster web pages of a web site taking into consideration
structure and links. The link analysis starts with the following assumption: if there is
a link between two pages then there is some relationship between the two whole pages.
This assumption is more general than the reality, in most cases a link from page P;
to page P» indicates that there may be some relationship between a certain part of
P; and a certain part of P». Resulting classes of a specific clustering algorithm which
uses page structure and /or link analysis (see [13]) it is supposed to have homogeneous
elements with respect to the clustering criteria.

A web page must undergo some intermediary transformations in order to be able
to apply the proposed algorithm:

e HTML->XHTML transformation (basically a cleaning-up process)

e extraction of bounding box for each element

2.1. HTML->XHTML transformation. World Wide Web consortium has warmly
recommended usage of stricter standard Markup Languages, such as XHTML and
XML, in order to reduce errors resulted in the process of parsing various web pages
created by disobeying the basic rules. Despite this recommendation, there still re-
mains a huge quantity of web pages that do not respect the new standards, and with
whom, the parser of search engine must cope.

We transform each HTML page into a well-formed XHTML page. Of the applica-
tions that can be involved in this process, we enumerate two of them:

e JTidy, a Java tool based on HTML Tidy [4] that is a W3C open source software

e Neko HTMLParser [3]

These are complex programs, with a great degree of generality, trying to satisfy
overall demands. During their usage we encounter situations when the result was not
totally satisfactory.

We devised a simpler algorithm called GoodDom which performed well with respect
to our necessities. We implemented it in Java as part of the whole system developed.

>From a constructed XHTML file, the DOM tree representation used in the next
step of our process, can be created with no effort.

2.2. XHTML. XHTML (Extensible HyperText Markup Language) [5] represents a
family of document types which extends HTML4 language. In other words, XHTML
is a redefinition of HTML 4.01 standards with the help of XML. Its goal is to replace
the HTML language in the future and obtain cleaner documents.

e documents must be well-formed: all elements must be nested inside on unique
root element <html>, any element can have children elements; children ele-
ments must be correctly closed and properly nested.
<html>

<head>...</head>
<body>...</body>
</html>
e tag names must be in lowercase

112 MIREL COSULSCHI, NICOLAE CONSTANTINESCU, AND MIHAI GABROVEANU

<body>
<p> Numele unui tag trebuie scris cu litere mici </p>
</body>

e empty elements must be closed
Textul va fi separat de o linie orizontala. <hr />
Tar imaginea
trebuie inchisa

e all XHTML elements must be closed
Wrong: <p> Un text
Correct: <p> Un text </p>

o XHTML elements must be properly nested
Wrong: <i> Bold, italic urmat de bold, italic</i>
Correct:<i> Bold, italic urmat de italic, bold</i>

e attribute names must be in lower case
Wrong: <table WIDTH="100%">
Correct: <table width="100%">

e attribute values must be quoted
Wrong: <table width=100%>
Correct: <table width="1007%'">

e attribute minimization is forbidden
Wrong: <frame noresize>
Correct: <frame noresize="noresize" />

e the id attribute replaces the name attribute
Wrong:
Correct:

e the lang attribute applies to almost every XHTML element. It specifies the
language of the content within an element.

e the XHTML DTD defines mandatory elements: the ’html’, ’head’ and ’body’
elements must be present, and the ’title’ must be present inside the head element;
all XHTML documents must have a DOCTYPE declaration
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-strict.dtd">
<html xmlns="http://wuw.w3.org/1999/xhtml">

<head>

<title>Titlu </title>
</head>

<body> Continut </body>
</html>

2.3. GoodDOM Algorithm description. GoodDOM algorithm consists of the
following main steps:

Algorithm 1 Algorithm GoodDOM
1: Parse HTML page obtaining base elements (tags and text strings)
2: Call Forward-Pass
3: Call Backward-Pass

The description of Forward-Pass step can be found here 2.

CLASSIFICATION AND COMPARISON OF INFORMATION STRUCTURES 113

Algorithm 2 Algorithm Forward-Pass
Input: A - the vector contains token list from original HTML page
Output: B - the vector contains the modified token list

1: for each item from A do

2: if (item doesn’t have a closing tag OR can be empty) then
3: add item to B

4: else

5: if (item is a tag) then

6: first test some special cases

7: if (item is open-tag) then

8: push item on Stack

9: else

10: if exists on the stack the pair of item element) then
11: while (Stack is not empty) do

12: pop from the Stack and save into tmpTab
13: if (tmpTag # tag) then

14: add to B a closed-tag in correspondence to tmpTag
15: else

16: break

17: end if

18: end while

19: end if

20: add item to B

21: end if

22: end if

23: end if

24: end for

After the input page was parsed and decomposed in atomic units, called tokens, the
algorithm starts processing those elements using a stack for help. The stack will keep
all open tags, tags for which their closing pair was not encountered yet. According
to the rules of XHTML, a close tag must correspond to each element. If such a tag
cannot be found on input, then it will be created (line 14).

In lines 2-3, elements which cannot have a closing tag (e.g. <style>, <script>)
or can be empty (e.g. <hr>,
,) are directly added to vector B. In line
06 the special cases are treated first: we are talking about particular chaining of
tags which will be handled differently for each situation. Due to the HTML loose
syntax, there is a very high number of improper tag combinations, an exhaustively
handling of all these possibilities being difficult either to foresee or to implement. In
our implementation we handled the majority of situations that can be encountered
in common applications with a high probability and which proved to be adequate for
our proposed goal.

If the element is an open tag then it will be pushed onto the stack (line 7) and
added to the output vector B (line 20). If the current element is a close tag, and
if his related item (open tag) is presented into the stack, then all elements between
this item and the stack’s top will be extracted (line 12). For each element extracted
from the stack, it will be created a corresponding close tag subsequently added to the
vector B (line 14).

The Backward-Pass step is described in Algorithm 3.

114 MIREL COSULSCHI, NICOLAE CONSTANTINESCU, AND MIHAI GABROVEANU

Algorithm 3 Algorithm Backward-Pass
Input: A - the vector contains token list resulted from Forward-Pass call
Output: B - the vector contains the modified token list

1: the order of elements from the vector A is reversed

2: for each item from A do

3: if (item doesn’t have a closing tag OR can be empty) then

4: add item to B

5: else

6: if (item is a tag) then

7: if (item is close-tag) then

8: push item on Stack

9: else

10: if exists on the stack the pair of item element) then
11: while (Stack is not empty) do

12: pop from the Stack and save into tmpTab
13: if (tmpTag # tag) then

14: add to B an open-tag in correspondence to tmpTag
15: else

16: break

17: end if

18: end while

19: end if

20: add item to B

21: end if

22: end if

23: end if

24: end for

25: the order of elements from vector B is reversed

Looking at the subroutine 3, it can easily be seen that Backward-Pass is very
similar to Forward-Pass: in this situation the stack will be used to keep track of close
tags. The element list will be run through backwards, from the last element to the
first element; to keep things in an unitary way the first operation is to reverse the
input vector (line 1).

The vector A is traversed element by element. Each element of vector A which
does not have a closing tag or can be empty is added to the result vector B (line 3-4).
If item is a close tag then it will be pushed onto the stack (line 8) and added to vector
B. Lines 10-19 handle the case when an open-tag is encountered to whom must be
associated a close tag. If there are other elements between stack’s top and the position
of close tag, then for each such element a correspondent open tag is created(line 14).

Example. Let us consider the following page:

<head>
<title> First Test Page </title>
</head>
<body>

<tagl>

<tag2>
<tag3>
Inside Tag3

CLASSIFICATION AND COMPARISON OF INFORMATION STRUCTURES 115

</tag3>
Outside Tag3, inside Tag2
<tag2>
Open second Tag2, Close Tagl
</tagl>
Close second Tag2
</tag2>
Close first Tagl
</tagl>
</body>
</html>

The page tokenisation result is: <head>, <title>, ’First Test Page’, </title>,
</head>, <body>, <tagl>, <tag2>, <tag3>, ’Inside Tag3’, </tag3>, ’0Outside
Tag3, inside Tag2’, <tag2>, ’Open second Tag2, Close Tagl’, </tagl>, ’Close
second Tag2’, </tag2>, ’Close first Tagl’, </tagl>, </body>, </html>.

After the call of Forward-Pass, the output vector will contain the following ele-
ments: <html>, <head>, <title>, ’First Test Page’, </title>, </head>,
<body>, <tagl>, <tag2>, <tag3>, ’Inside Tag3’, </tag3>, ’Outside Tag3,
inside Tag2’, <tag2>, ’Open second Tag2, Close Tagl’, </tag2>, </tag2>,
</tagl>, ’Close second Tag2’, </tag2>, ’Close first Tagl’, </tagl>, </body>,
</html> (new tags are marked with bold).

After the call of the last processing step, Backward-Pass, the page will look like:

<html>
<head>
<title>
First Test Page
</title>
</head>
<body>
<tagl> - new
<tag2> - new
<tagl>
<tag2>
<tag3>
Inside Tag3
</tag3>
Outside Tag3, inside Tag2
<tag2>
Open second Tag2, Close Tagl
</tag2> - new
</tag2> - new
</tagl>
Close second Tag2
</tag2>
Close first Tagl
</tagl>
</body>
</html>

116 MIREL COSULSCHI, NICOLAE CONSTANTINESCU, AND MIHAI GABROVEANU

2.4. Element bounding box extraction. The second preliminary step of our al-
gorithm consists of extracting the bounding box corresponding to each element from
the DOM tree. The bounding box represents the smallest rectangle that fully covers
an element of the DOM tree when it is rendered in a browser along with the whole
page to which it belongs.

To efficiently discover bounding box coordinates we tested many rendering engines
from various browsers. In order to be taken into consideration a web browser must
fulfill the following conditions:

e to be able to embed it in our Java project
e to offer an access point to the internal representation of a web page
e to have a minimal documentation

We lead our experiments with the following Java web browsers:

o Grand-Rapid Browser (http://www.meyou.com/grandrapid/) provides excel-
lent support for the general web and comes with a variety of customization
features, but it is like a black-box for a programmer who likes to use it inside
an application.

o NetClue (http://www.netcluesoft.com/desktop/) renders standard web sites
almost identically to ots elder brother Netscape and IE. The programmers
have access to virtually every event and to directly manipulate DOM content.

o WebRenderer (http://www.webrenderer.com/) is a wrapper library which has
support for the most encountered operating systems. The wrapper gives ac-
cess to all internal events.

o WebWindow (http://www.javio.com/webwindow/) is a web browser devel-
oped entirely in Java, with two versions, one for Swing and one for AWT.
The renderer is quite fast, presenting nice features for zooming text and im-
ages.

o JceBrowser (http://www.icesoft.com/products/icebrowser.html) is one of the
oldest Java web browsers which reached its maturity. We can say that its
performances are excellent from the hackability’s point of view.

e JRex (http://jrex.mozdev.org) acts like a wrapper for Mozilla, using the full
power of its libraries. Jrex has APIs to receive events and access DOM and
supports XUL. It can be used as an embedded browser into an application.

o Flying Saucer (https://xhtmlrenderer.dev.java.net/) is the newest member of
this family’, being still under development.

The coordinates of a bounding box are obtained from a software module specially
written to catch events generated by rendering engine’s components.

To each element to whom it corresponds a visual representation (inside a HTML
page there could be elements without any visual representation, for example com-
ments), we add 4 new attributes. For example, the next tag

<IMG height="40" width="285" border="0"
src="car08_file/ab41.gif" alt="Yahoo! Autos"/>
becomes
<IMG dy="44" dx="285" ly="14" 1x="127"
height="40" width="285" border="0"
src="car08_file/ab41.gif" alt="Yahoo! Autos"/>
Attributes dx, dy, Ix, ly have the following semantics:

e Ix and ly represent the coordinates of the upper-left corner of the bounding
rectangle

CLASSIFICATION AND COMPARISON OF INFORMATION STRUCTURES 117

Java Servlet Programming Bible
Fataopan

FIGURE 1

e dx and dy represent the width and height of the bounding rectangle

In the figure 1 the reader can see the result of rendering a HTML web page inside
a web browser (IceBrowser).

3. Spatial relationships

A page description can be made using the information related to its content and
to objects positions (the coordinates of associated bounding box). This assumption
leads us to the fact that the rebuilding of a web page can be made of two kinds of
features:

- geometric features
- content-related features

Geometric features of an object can be stored in a vector, thus every object can be
assimilated to a point in a multi-dimensional space, each dimension corresponding to
a feature. Among geometric parameters which define an object aiming to describe a
whole cathegory of diverse documents, we can process the ratio of bounding rectangles
length and width, the ratio of rectangle area and page area, the style and font size of
the paragraph text, the length of the text.

Besides previous descriptive elements which characterize the document from a static
point of view, another type of geometric relations is necessary to capture dynamic
interactions related to absolute objects positioning inside a web page and also to
their relative positioning.

Having as a starting point the interval relationships [6] defined in the context of
temporal intervals, the paper [19] describes an extension for bidimensional space.

When considering the OX axis and two intervals u = (2}, z%) and v = (2}, %), we
have the following seven situations:

Definition 3.1e u precedes v: z§ < x¥
o u meets v: T§ =7
o u overlay v: x% < zj siaf < af <y

118 MIREL COSULSCHI, NICOLAE CONSTANTINESCU, AND MIHAI GABROVEANU

u start v: x{ = 7 si x5 < x5

u during v: % > zf six§ < b
u finishes v: zt > xy si 25 = 13
u equals v: % = zf si 28 = 23

4. Object correspondence

The main part of the presented method consists of constructing a pairs list. A pair
is composed of two objects, between which there is a correspondence (relation), each
object representing a node in the DOM tree created as a result of parsing a XHTML
file.

Problem description. Let us suppose we have two DOM trees, TreeA and TreeB,
associated with two XHTML pages, pageA and pageB. The goal is to determine a
list with elements in this format {(a1,b1), (az,b2),..., (an,by)} where a1,aq,...,a, €
TreeA, by, bs, ..., b, € TreeB, and each pair (a;, b;) must fulfill certain conditions.

4.1. Association graph.

Definition 4.1. In the following, let A and B be two finite, nonempty sets, having
cardinalities n and m respectively. We will call the following structure an association
graph G = (V, E), where:

o V is the set of vertices, V= A x B,V = {(z,y)|z € A,y € B}
e E is the set of edges, E CV x V,E = {(u,v)|u,v € V}

G is an undirected graph. The edge e = (u,v) € E if and only if the vertices u
and v are compatible. Two vertices are said to be compatible if their association
respects some conditions which can differ from a certain problem to another.

|V| = nxm and |E| < n?xm?

After creating the association graph the initial problem, related to constructing
a correspondence mapping, becomes the problem of determining an optimal mapping
between two well structured models. It is worth noting that optimality means here
maximality. The solution for our problem is represented by maximal clique.

The problem of determining a maximal clique is not a new one, this subject
being intensely studied in the past two decades. It is not an easy problem, and it
belongs to the class of NP-hard problems from the complexity point of view, a class
with other famous representatives: the problem of minimum cover set, the problem
of maximal independent set.

Many approaches for solving this problem have been proposed, every method at-
tempting to introduce new conditions and optimizations to the huge amount of com-
putations.

The process of finding maximal clique is modeled by one of the newest optimized
algorithms [18].

5. Algorithm outline

MatchViews procedure (Algorithm 4) has as input variables two sets A and B
composed by visual elements (View type) and returns a subset of cartesian product
A X B.

For "NodeA and NodeB respect visual conditions" we will employ Allen’s rela-
tions [6] or an extension to Allen’s interval relations called Thick Boundary Rectangle
Relations - TBRR [19].

CLASSIFICATION AND COMPARISON OF INFORMATION STRUCTURES 119

Algorithm 4 Algorithm MatchViews

Input: firstSet - an array formed by View references, representing
the first set of elements
secondSet - the second set of views

Output: a PairView array

Local: graph - a Graph object

1: for (each element ViewA in firstSet of Views) do

2 for (each element ViewB in secondSet of Views) do

3: if (PairConditions for ViewA and ViewB is satisfied) then

4 graph.addGraphNode(new GraphNode(new PairView(ViewA,
ViewB)))

5: end if

6: end for

7: end for

> adds edges
8: for (each element NodeA belonging to the graph nodes set do
9: for (each element NodeB belonging to the graph nodes set) do

10: if (NodeA and NodeB respect visual conditions) then
11: graph.addEdge(NodeA, NodeB)

12: end if

13: end for

14: end for

15: return graph.getMaxClique()

y

:

il
|

I

=

=
1

I
o Al

L

L

FIGURE 2

The results of a working prototype of algorithm Match applied to two similar
pages with the one presented in figure 1 are captured in Figure 2.
The proposed method can be applied in different ways:

120 MIREL COSULSCHI, NICOLAE CONSTANTINESCU, AND MIHAI GABROVEANU

(1) The algorithm can be applied only at the level of leaves, e.g. only to the
terminal vertices from the two trees.
The number of leaves vertices from a DOM tree associated with an average
HTML page, can exceed 500, and thus the number of nodes in the association
graph can exceed 5002500 = 250.000.

(2) In the first phase, there are computed the pairs of corresponding nodes by
ingpecting those at depth 1, after that the nodes at depth 2, and so on.
The motivation for this approach is: the corresponding leaves are embedded
inside more complex structures, so called containers, which, in their turn,
must be able to be correspondent.

6. Conclusions

In this article, the principal problems encountered during segmentation of two web
pages and their blocks correspondence were presented. Various solutions to overcome
the situations were presented and analysed in detail. Our future work will mainly
consists in investigating other heuristic conditions that can improve the selection
process. For web pages that have many elements at the same level of the DOM tree
the time of response can become unfeasible, running time of algorithm for finding
maximal clique heavily depending on the size of inputs. So the main concern is the
size reduction on the number of elements for candidate sets.

7. Acknowledgements

The first author would like to express his gratitude to Professor Paolo Merialdo
and Valter Crescenzi from University Roma Tre, for their kindly support and many
interesting discussion about the subject.

References

[1] Document Object Model (DOM) Level 1 specification. W3C Recommendation, October 1998.
http://www.w3.org/TR/REC-DOM-level-1.
| HTML 4.01, http://www.w3.org/TR/
| Neko HTML Parser, http://www.apache.org/ andyc/neko/doc/html/index.html
[4] W3C, HTML Tidy, http://www.w3.org/People/Raggett/tidy
| XHTML 1.0 The Eustensible HyperText Markup Language (Second Edition),
http://www.w3.org/TR/2002/REC-xhtml1-20020801
[6] James F. Allen, Maintaining Knowledge about Temporal Intervals, Communications of the
ACM, 26:832-843, 1983.
[7] A. Arasu, H. Garcia-Molina, Extracting structured data from web pages, ACM SIGMOD 2003,
2003.
[8] D. Cai, S. Yu, J.-R. Wen, M.-Y. Ma, Eztracting content structure for web pages based on visual
representation, 5th Asia Pacific Web Conference, Xi’an China, 2003.
[9] D. Cai, S. Yu, J.-R. Wen, M.-Y. Ma, VIPS-a vision based page segmentation algorithm, Mi-
crosoft Technical Report, MSR-TR-2003-79, 2003.
[10] Chia-Hui Chang,IEPAD: Information extraction based on pattern discovery, in Proceedings of
the tenth international conference on World Wide Web, 2001.
[11] M. Cosulschi, M. Gabroveanu, Information retrieval from web pages, in Proceedings of 4th
National Conference on Artificial Intelligence and Digital Communications, Craiova, 2004.
[12] V. Crescenzi, G. Mecca, P. Merialdo, RoadRunner: Automatic Data Eztraction from Data-
Intensive Web Sites, International Conference on Management of Data and Symposium on
Principles of Database Systems (SIGMOD02), 2002.

(13]
14]

[15]

CLASSIFICATION AND COMPARISON OF INFORMATION STRUCTURES 121

V. Crescenzi, G. Mecca, P. Merialdo, Wrapping-Oriented Classification of Web Pages, Sympo-
sium on Applied Computing (SAC02), 2002.

V. Crescenzi, P. Merialdo, P. Missier, Fine-grain web site structure discovery, Fifth Workshop
on Web information and data management, ACM Press, 2003.

X. Gu, J. Chen, W.-Y. Ma, G. Chen, Visual Based Content Understanding towards Web Adap-
tation, in Second International Conference on Adaptive Hypermedia and Adaptive Web-based
Systems (AH2002), Spain, 2002.

A. Laender, B. Ribeiro-Neto, A. Da Silva, J. Texeira, A Brief Survey of Web Data Extraction
Tools, ACM SIGMOD Record, 31(2), June 2002.

Z. Liu, Wee Keong Ng, Ee-Peng Lim, An automated algorithm for extracting website skeleton,
DASFAA 2004, 2004.

Patric J. Ostergard, A New Algorithm for The Maximum-weight Clique Problem, Nordic Journal
of Computing, 2001.

L. Todoran, M. Worring, M. Aiello, C. Monz, Document Understanding for a Broad Class of
Documents, ISIS TR Series, vol. 2001-15, oct 2001.

Xiaoli Li, Bing Liu, et al, Using Micro Information Units for Internet Search, ACM Special
Interest Group on Knowledge Discovery in Data (SIGKDDO02), 2002.

G. Yang, I. V. Ramakrishnan, and M. Kifer, On the complezity of schema inference fromWeb
pages in the presence of nullalbe data attributes, in ACM Internation Conference on Information
and Knowledge Management (CIKM), 2003.

Shipeng Yu, D. Cai, J.-R. Wen, W.-Y. MA, Extracting COntent Structure for Web Pages based
on Visual Representation, in The Fifth Asia Pacific Web Conference (APWeb2003), 2003.

Ziv bar-Yossef, Sridhar Rajagopalan, Template Detection via Data Mining and its Applications,
World Wide Web Conference (WWW02), 2002.

J. Wang, F.H. Lochovsky, Data-rich section extraction from html pages, 3rd International Con-
ference on Web Information Systems Engineering (WISE 2002), Singapore, December 2002,
Proceedings, IEEE Computer Society.

(Mirel Cosulschi) UnivErsiTY oF CRAIOVA
Facurty oF MATHEMATICS-INFORMATICS
DEPARTMENT OF INFORMATICS

E-mail address: mirelc@central.ucv.ro

(Nicolae Constantinescu) UNIVERSITY OF CRAIOVA
Facurty oF MATHEMATICS-INFORMATICS
DEPARTMENT OF INFORMATICS

E-mail address: nikyc@central.ucv.ro

(Mihai Gabroveanu) UNIVERSITY OF CRAIOVA
Facurty oF MATHEMATICS-INFORMATICS
DEPARTMENT OF INFORMATICS

E-mail address: mihaiug@central.ucv.ro

