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Continuous Dependence of Renormalized Solution for
Convection-diffusion Problems Involving a Nonlocal Operator

DOFYNIWASSOUANI ALAIN HOUEDE, ADAMA OUEDRAOGO, AND IBRAHIM Ly

ABSTRACT. In Ouédraogo A. et al (cf. [30]), it is provided existence and uniqueness results
of L' —renormalized entropy solution for the Cauchy problem associated to the following vast
class of nonlinear anisotropic degenerate parabolic-hyperbolic equations involving a nonlocal
diffusion term:
N
Ou+V.F(u)= Y 95 Aij(w)—Lufu] = f(w) in Q= (0,7)xRY withT >0and N > 1.
i,j=1

Our goal is to complement this previous work with a continuous dependence result of the
L' —solution with respect to the data set (F,a, y1, f,uo). The strategy is to follow the approach
developed by Karlsen and Ulusoy in [28]. However, we must manage the difficulties due to
the fact that we are working in the whole space RV with an only integrable initial datum wug
and the term source f depends on the unknown function w.
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1. Introduction

This paper deals with continuous dependence of renormalized entropy solution of
anisotropic diffusion-convection problems involving a nonlocal diffusion term. More
precisely, we consider initial-value problems of the form:

N
Opu+V.F(u) = > 92, Aij(u) = Luu] = f(u) in Q= (0,T)xRY, ”

u(0,.) = ug in RN,

(cp)

where u = u(t,z) is the scalar unknown function, V denotes the gradient operator
with respect to x; £, is a nonlocal operator properly defined on the Schwartz class
S(RY) via the Lévy-Khintchine formula by

L, [u)(t,x) = /RN (u(t, o+ 2) —u(t,z) — 2.Vully<1y) du(z) for ae. (t,z) €Q, (2)
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where du is a measure on RY satisfying du(z) = g(z) dz with g > 0, g(—2) =
g(z) for all z € RY and

min(1, |z|*)g(z) dz < +oc; (3)
RN
f:R — R is a term source depending on the unknown function u and satisfies
f € Lip(R) with f(0) =0, (4)

where Lip(R) is the set of Lipschitz functions on R; the flux function F : R — RY
is assumed to satisfy

F € Lipioc(R; RY); (5)
a = (aij)1<ij<n IS a nonnegative symmetric matrix with nonnegative and locally
integrable coefficients such that

K
aij(u) = Zagk(u)o;k(u), 0<o%(u)e L (R),i=1,...,Nand k=1,...K (6)
k=1

with 1 < K < N
we define the diffusion matrix A = (A4;;)1<i,j<n with respect to a;; by nonlinearities

() = [ aiy(©dg i, =L N @
0
the initial datum ug is assumed to satisfy
up € L'(RY). (8)

The problem (CP) on which we would like to investigate and its variants appear in
many different areas of research and in a wide variety of important physical problems,
including overdriven detonations of gases (cf. [22]), anomalous diffusion in semicon-
ductor growth (cf. [38]), flows in porous media (cf. [24]), radiation hydrodynamics
(cf. [33, 34, 30]), mathematical models in finance (cf. [11, 12, 23, 26, 35]), molecular
biology [1, 25], . . . So the mathematical theory received much attention from several
authors. Let us give some representative examples of (CP) :
e dropping the nonlocal term L,[u], we fall into the pure local non isotropic
diffusion-convection problem which seems to be well understood with the pi-

oneer’s work of Chen and Perthame [20] from which other extensions have also
been derived (see. [10, 19, 31, 32]);
N
e if we remove the diffusion term Z Qfm A;j(u), we recover the fractal conser-
i,j=1

vation laws of which the well-posedness issue is solved by Alibaud (see [1]) in the
sense of entropy solutions when initial data are bounded functions. From other
extensions, we refer to [2, 6, 7, 8, 13, 15, 16, 17].

More recently the concept of kinetic solution is extended to nonlocal conser-
vation laws problems by Alibaud N. et al in [4]. For the same notion of solution,
we refer to [29, 37]. For other important contributions on this topic, we refer the
reader to [3, 5, 14, 18, 21, 27, 25, 26] and the references cited therein.
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The purpose of the present paper is to complement the study of the Cauchy problem
(CP) provided in [30] with a continuous dependence result of the L!— renormalized
solution. So, we will get the well-posedness of this problem in the sense of Hadamard
and this will predispose us in a future work to develop numerical schemes. Our
approach in this investigation lies essentially on ideas and techniques developed in
[19, 28] where authors deal only with bounded variation space on R" denoted by
BV (RNM).

The remaining part of this work is organized as follows: in Section 2, we present
some preliminary results and recall the definitions of the type of solutions that we use
(entropy solution and renormalized solution) as well as the useful results presented in
[30]; in Section 3, we will restrict our attention to state and prove our main result.

2. Preliminary results and definitions

We recall some useful notations and results already used in [30] and [31].
e For any € > 0, we define the operators H, Hy and H. respectively by:

1 if s>0 -1 if s<0
H(s):=<¢ [0,1] if s=0 , Ho(s):=¢ 0 if s=0 , (9)

0 if s<0 1 if s>0

-1 if s < —¢
H.(s) := ¢ sin (;—53) if [s|] <e (10)
1 ifs>e
for any fixed real k£ and for 7,5 = 1,..., N, we introduce the corresponding
entropy functions :

T e (r — / H.(s— (11)
T 0 i (r — /H (s — k)F}(s)ds, (12)
T Ve i ( / H.(s — k)a;;(s)ds; (13)

o fori,j=1,..,N, we set p:= (p;;) and p" := (p;;) with

T T
psr) o= [ otmar, o) = [ notrian v e cmy;
o for any C? convex entropy function v : R — R, we define the entropy flux
0:=(0;):R=>RY, v:=(y):R—=RVNxRN by 0'(r) :=+'(r)F'(r), V'(r):

' (r)a(r).
In addition, we complete the above notations by setting that:
e for a function 7: Q = R, (t,z,2) € (0,7) x R? and 7 € (0,1),

On(tyxy2) = w(t,x+2)—7(t,x), (14)
" (t,x,z) = (1—7)n(t,z)+7r(t,z+ 2), (15)

Yt z) = /0(1—7)7’/(7#(75,;3,2)) dr; (16)

r
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e for any test function ¢ € D(Q),

L) = [ (0t +2) = o(ta) = 2V,00 gc) du(z). (1)
Now, we can state the following elementary lemma
Lemma 2.1. For any function v € C2(R), one has:
y(w(t, @+ 2)) — y(r(t,z) — ¥ (7(t, )05 (t, 2, 2) = T2 (¢, 2, 2)862 (L, x, 2). (18)
Proof. The proof trivially follows from the Taylor’s Formula with integral reminder

applied to 7 in the neighborhood of 7 (t,z). O
Remark 2.1. For any r, k € R and ¢ = 1, ..., N, we have:

He(r) = —He(=r), 7e(r—k)=r:(k—r), (19)
Oci(r—k)=0-,(k—r), veij(r—Fk)=ve;;(k—r). (20)

Besides, when ¢ goes to zero, then
H.(r) — Hp(r)ae (21)
Ye(r—k) — ~(r—k)=Ho(r —k)(r — k) ae., (22)
Oci(r—k) — 60;,(r—Fk)=Ho(r—k)(Fi(r) — F;(k)) a.e, (23)
Veij(r—k) — wvi(r—k)=Ho(r —k)(Ai;(r) — Ai;(k)) ae. (24)

Remark 2.2. If the density function g is not defined in Ogp~, under the assumptions
of the introduction, the integral

Llel = po [ (plat2) = pla) dul2) (25)

is always well-defined in the principal value sense whenever ¢ € S(RY).
This principal value is defined as the limit

Lulele = lim (p(z + 2) — p(x)) du(2).
40 |z|>7
Now, in order to recall the notion of entropy solution as given in [28, 30], we suppose
that the initial datum satisfies the following assumption
up € L= RY)n LY (RY). (26)

Definition 2.1. (Entropy solution of (CP))
Let ug satisfying (26). An entropy solution of (C'P) is a measurable function u : Q —
R such that:

(i) u e L™ (O,T;Ll(RN NL>(Q Za pij(u L*(Q), for any j =1,..., N and

/ 62(t,x,2) du(z) < 4o0. (27)
Q /RN

(#3) For j=1,...,N and for any ¢ € C(R)

Z&; pi;(u Z@w pij(u), a.e and in L*(Q). (28)
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(#i1) For any entropy flux triple (v, 1, ) and for any nonnegative function ¢ € D(Q),

/Q V()0 + ¥ (u V¢+Zvu 030,60 + Y (WLLG] + 7 (W) f(w)o | dwdt

3,5=1
+ [ wo@)o2) dez [ (w0 m) o dadr

where

mzl (t,z) = /]RN I‘ZU (t,x,2)02(t, x, 2) du(z).

Let us introduce the Lipschitz continuous truncation function T} : R — R at height
k> 0:

kif s>k

Tk (s) := sgn(s) min(k, |s|) = s if|s| <k (30)
—k if s < —k.

Definition 2.2. (Renormalized solution of (C'P))
Let ug satisfying (8). A renormalized entropy solution of (CP) is a measurable
function u : @ — R such that:

(i) u € L* (0,T; L' (RY)), Za .0ij(Ti(u)) € L*(Q), for any k> 0andj =1,..., N

and
/ 6Tk(u)(t x,z) du(z) < +oo. (31)
Q /RN

(ii) For j=1,...,N, for any ¢ € C(R) and for any k > 0,

Z Oz p” (Tk (u Z 02, pij(Ti(w)), a.e in Q and in L?(Q). (32)

(#91) For any k > 0 and any entropy flux triple (v, 0, v) with |7/| < K (for some given
positive constant K ), there exists a nonnegative bounded Radon measure mZ’K on @
such that

N

/Q (V)i + BT () T+ 3 13y (T (), & + 3Tk (w)) 0] ) it

4,j=1

+ / o (T(w)) £ (Ti (w) dudt + / (T (o) (2)) (0, 2) dz (33)
Q RN

> /Q (n" +m = mp™) o daat,
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for any nonnegative function ¢ € D(Q) where
, N N )
() = A (Tut,2) Y (Y Orpis (Tulult, 2))))
j=1 =1

"

i) = [T (628, (0 2) dulo) (34)
(iv) The total mass of the renormalized measure mZ’K vanishes as k 1 oo:

. u, K o

fim i (@) = 0.

Remark 2.3. For any k > 0, Tj(u) belongs to L>(Q) and (33) is well defined.
Moreover, if u is bounded on @, taking k larger than ||u|pe (o 7,11 =)y, One can see
that Ty (u) = w and u satisfies Definition 2.1. This means that any bounded renor-
malized solution of (CP) is also an entropy solution of the same problem although
the concept of renormalized solution is more general. Therefore, in L™ framework,
the two notions of solutions are equivalent.

Theorem 2.2. (Comparison principle)  Let u,v be two renormalized solution of
(CP)(A,F, f,uo,L,) and (CP)(A, F,g,vo,L,,) respectively with ug and vy satisfying
(26). For a.e.t € (0,T), we have
/ (u(t,z) —v(t,z))" de < / (uo(x) — vo(z))" da
RN RN
t
+ / / & (f(u(r,2)) — g(o(r,2))) dadr (35)
0 JrRV

with k € H(u — v) a.e. so that:

t
lu(t) — o)L @y < lluo — voll 1wy +/o £ (w) = g(v)|| L1 mn)yds. (36)

After this preliminary part, we are now in the position to state and prove our con-
tinuous dependence result.

3. The main result
Theorem 3.1. Let u and U be two renormalized solutions of (CP) respectively with

data sets (F,a,p, f,up) and (ﬁ,fi, ﬁ,f,ﬁo) satisfying (3)—(8). Then, for all T > 0
and for any t € (0,T), we have:

t
[ult, ) —u(t, )lp@yy < [luo — UollLrww) +/0 £ () = f(@)]|£1 r)ds
+C1ty/ || F — Fllip(ry + CaVEo® = 0%|| oo (e (37)

OV < /| _FPIe) 36 dz> en /| _ Fllo) =3t d=

where I is some bounded subset of R and the constants C;, i = 1,--- ,4 depend on the
data and the norms ||ul| L1 w~y and [[ull 1 @y -
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Proof. Let u and u be renormalized entropy solutions of (C'P) with respect to
(F,a,p, f,up) and (ﬁ ,a, ﬁ,f,ﬂo) respectively. From the definition of renormalized
solution for u = u(t, z) and v = v.(r —c¢) for any ¢ € R, let us take ¢ = ¢(¢,2) € D(Q)
as a nonnegative test function in (33) , we obtain for any k > 0

N
/Q e (Th () — €)Dy dadt + /Q (OE(Tk(u) — O Vo+ Y v (Tilu) — )02, qS) dudt

ij=1

+ [ (0w ~ Ll + HATw) - o (Ti(w)0) dad
Q
+ /]RN Ye (T (1) — ¢)é(0, x) dx

N N 2
> /Q H.(Ti(w) = ) Y (32 0y (Titw))) 0 dodt

j=1 =1
+/Q (/ Fis(u)(t,a:,z)5%k(u)(t,a:,z) du(z) )qu dxdt

— [ m(t,2)¢ dadt. (38)
Q

Similarly, specifying @ = u(s, y) and v = v.(r —c¢) for any ¢ € R, we take ¢ = ¢(s,y) €
D(Q) as a nonnegative test function in (33) and obtain for any k& > 0

N
/Q Y (Ti(@) = €)05 dyds + /Q (@(Tk(a)—c).V¢+iglag,ij<Tk<a>—c>8§iyj¢)dyds

~

+ /Q (4 (Tu(@) — ) Lal6], + Ho(Ti(@) — O F (Tu(@)6) dyds

+ [ TG0 = )o(0.9) dy

> /Q H(T},(@) - c) i (ZNja iﬁum(m))% dyds

j=1 =1

H. _
+L (/RN FT;(a)(S,y,Z)(s%k(g)(S,y,Z) d:u‘(z) )¢ dyds

—/Qﬁzg’K(s,y)qb dyds. (39)

Now we take ¢ = Tj(u(s,y)) in (38) and integrate with respect to (s,y), then we take
¢ = Ti(u(t,x)) in (39) and integrate with respect to (¢,z). Thanks to (19) and (20),
by summing up the results we obtain

Itkime (6) + Iforw (6) + ILIiciffus (5) + I]]”Cdiff (5) + Ifource(a)
+ Izknlt (E) Z I({iciss (5) + I)]”Cdiss (6) - Irl’cenormeas (E)ﬂ (40)
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where

Iie(e) = / Ve (Ti(u) — T (@) (0; + 9s) ¢ dadydtds
QxQ

Lno(€) = / 0. (T (u) — Ti(W)).Vad + 0o (Th, (@) — Ty, (u)). Vo dadydtds
QxQ

N T (w) K
Ingfus(é‘) = /(;xQ Zl/ (kz HE § Tk lk(g)a_;'lk(g) d§> afwnjgb dﬂ?dydtds
1,]= 1

Tk ()
N T (u) - i
- /QxQ”z:1 /Tk(u) (; H.(¢ —Ty(u (f)ajk(f) df) 8%%.(]5 dxdydtds
Ifyips(e) = /Q 1e(0(0) = Tu(@) (Culel + L3l0l,) dadydds
Lpuree(€) = H. (Ti(u) = To(@)) (F(Ti(w) ~ F(Tu(@) ) & dadydtds
QxXQ

/ / e (T (uo(2)) — T(@(5,9)))$(0, 2, 5,y) dedyds

/ / Ve Tk UO Tk( ( )))¢(t,x,0,y) dxdydt

N 2
Iigs(€) = H_(Ti(u) — Ty(a Z <Z O, Pij (Tk(u))> ¢ dxdydtds

QXQ —

N /N 2
+ [ HATe(w) = Ti(@) Y (Z@ iﬁij(ma))) ¢ dudydtds

QxQ j=1 \i=1
I i () = D (£, 2)03, (o (8,7, 2) dp(2) ) ¢ dudydtds
oxo Ugs ™ e
+ / < / Fgf(a)(s,y,z)5%k(a)(s,y,z) dii(z) ) ¢ dadydtds
QxQ \JrNy °F
Iﬁenormeas (E) = / (mZ’K(t7 x) + mZ’K(S7 y)) qs dxdydtd&
QxXQ

Otherwise, one can see that for any k£ > 0 and for any nonnegative ¢ = ¢(t,z, s,y) €
D(Q x Q), thank to the inequality “a® + b? > 2ab” we have I¥,_ (e) > Ik () with

I (e) =2 H_(Ti,(u) — Tr (@)
QxQ

1,7=1

Next, for positive real parameters o, A and «, we define mollifier sequences v, and
0y such that 1, € D((—0,0)) and §y € D(B(0,)) of symmetric approximate delta
functions. Herein, B(0, \) is the open ball centered at Og~ and of radius A. We take
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the test function 0 < ¢ = ¢(¢,x, s,y) € D(Q X Q) to be of the form

o(t, @, 5,y) = o (s = 1)0r(y — ¥)Xalt), (42)
where, for a fixed time 7 € (0,T), we define for any o > 0 with 0 < a < min(7y,T—7).
Yalt) = Ha(t) — Ha(t — 1), / alo

so that X (t) = Ya(t) — Ya(t — 7).
Simple calculations reveal that:

(0 + 05)p = Yo (s — )6, (y — x)X/a(t)v (Vo +Vy)¢p=0 and 32 ¢ yzyﬁb

In the rest of this proof, putting the above test function in previous calculations, we
are looking for the expected estimates by analyzing the differents terms.

Lemma 3.2. From Inequality (5.16) in [19], we deduce
hm Idzss = —2/
QxQ i,j=1 k: 1
T () R R )
<[ o (B0~ T @)on 7 0e) 3,0 dodytas. (43

If we use the test function given in (42) and sending € — 0 in (40), we find:
(e,0,a,A) < hm Ik (e,0,0,\) + lim Ifjiffus(e, o, )

— hm Ik o

time

- hm [d“s(a o, /\) + hm Ifdsz(g o0, \) + hm Igowce(s,a,a,)\). (44)

e Estimate of — (}}LI}) ;11)% 6hm IE (e, 0,0, )).
This test function allows to rewrite our first term as follow:
~Lhime(e.0,0,0) = — /QXQ Ve (T(w) = T(@))tho (s = 1)0r(y — )Xo (£) dudydtds.
Sending ¢ to 0, one has
—lim I, (2 0.00) = - /Q () T@ o5 — 09y — ), () s
x

so, using triangle’s inequality, we observe that:

- /Q (8, 2)) = T, 0) o 5 — 0 — 20, 1) ey
> [ [Tilult ) ~ Te(alt,p)la(s ~ 0n(y — D).(0)] dedydeds
QxXQ
- /Q TG 9) = TR 1) 5~ 0y = 2, (0)] oy

- /Q o T (ult, ) — Tr(u(t, y) o (s — 1) (y — 2)|xo (1) dadydtds

= L(o,a,\) + R' (0,0, \) + R*(0, 1, \).
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Next, proceeding as [9] and [19], we show that:
lim L(o, a, A) = [lu(7,-) = a(7, )l 1@y = lluo = Uoll 1@y as k — +oo,
c}i_% R'(o,a,)\) =0 and 1ir(£1_s>gp |R* (0, o, A)| < 2M[Ju(7, ) || L1y as k — +oo.
Thus, by passing to the limit, we obtain the following estimate:
i o g e 2,00

> Jlu(r, ) = u(r, )l ryy = luo = ol @) + 2A[[u(T, )@y, (49)

as k — +o0.

e Estimate of ilg%) Clrlg%) lim Iconv(e,a,a, A).

The second term that we analyze is defined by
Ik (e,0,a,))

= Joro He (T (ult, ) — Ti(t(s, ) [(F(Ti(u(t, 2))) — F(Ti(t(s,9))))
—(F(Ti(ult,2))) = F(T(@(s,9))))] Vadu(y = 2)tbo (s — t)xa(t) dudydtds.
When ¢ tends to 0, exploiting also that / |0, 05| < C/A, we have

hm |1k

conv (

| /Q Lt = FT(u(t,20) = (F(TL((5,9) = F(Ti(@ts.)]

XV, (y = @)t (5~ )xa(t) dudydtds|

g,0,a,\)]

< [ |l - Bt - (- FYT @) Va0 - o)
QxXQ

Xy (s — t)xa(t) dedydtds

(F, — F))(T, 2))) — (F; — F) (T (u(s, O 6x(y —

< /MZ‘ )(Ti(ult,2))) = (F = F) (T (@ y>>>| Ay —2)|
Yo (s — t)Xa(t) dedydtds

< HF—ﬁHLz’p(z)/ I T(u(t,2))0y,07(y = @) + Ti(@(5,9) 92,01y — )|
Xy (s — t)Xa(t) dedydtds

where
I =9() C Iy = [~k k] such as |F — F|lpipy = sup [|F = F||Lipeoc))

ﬂ(L)CIk

with 9(:) a neighborhood of ¢ € Ij.

A passage to the limit when o and « tend successively to 0 leads to

C ~
lim lim lim |15 (¢, 0,0, \)] < 2XT||F — Fllpipnyllulr, M myy  as k — +oo.

conv
a—00—0e—=0
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Choosing A\ = /|| F — ﬁ||Lip([), we obtain:
(}}1&) (}%i% |Ico7w(‘€a g, &, >‘)| <Cr \V HF - F”Lip([)- (46)

Esti f lim lim lim |7, 1} :
e Estimate o Jim lim lim [ Laifpus(o,a, A) — I (0, a, N

From the test function, we get

N
Iz];iffus(gv 0, a, )‘) - I_(]iciss(gv 0, )‘) = / Z Vo (5 - t)XOé(t)aa:ﬂ:J 6>\(y - l‘)
QxXQ ;=1

Tk (u)
x / HL(€ — To(@))e%0(€) dé dudydds,

Tk (@)

N
with <5%(6) = 3 (75 (€)0(€) — 205 ()o5(6) + o€ (€) ).
Letting € to 0, vl:lehave

. k -y
glj}}) |Idiffus(€, oy, ) — I (e,0,a, )|

Ty (u)
/Q S (s - Onal)02, 0w o) [ Ho(e - T@)el () de dodydtds,

xQ {52 T ()

Sending « and ¢ to 0 and exploiting also that / |0z,05] < C/X, we get the following

estimate

T c a a a aytr
tim T [Lig (.0, 8) — (0.0, )] € Sl (0 = 0M)(0" — %) | e v,

then we choose A = \/7[|0* — 07| Lo (7 gy xx) to obtain that

lim hm |Laif pus(o, 0, ) =I5 (0,0, \)| < OV/T|lo® — O'EHLOO(I,RNXK). (47)

a—0o0—

e Estimate of ilino ;%ilm Ifdlff(a 0,0, N).

Using the above test function, we have
Ifdsz(s o,a,\)
/ / 9 (Ti(w) = To(@) o5 — )xa(?)
QXQ {Z<T}
—z—z)—0(y—z)—2-Virly —2)) (9(2) — §(2)) dzdxdydtds
/ / Ti(w) = Th(@) (5~ Oxal®) (Br(y — 2 = 2) = d(y )
QxQ {Z>7"}

9(2) — §(2)) dzdzdydtds = Ifdszr(e og,a,\) + fdsz(s,a,a,)\).
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When e goes to 0, using the Taylor’s and Fubini’s theorems, we show that

lim IfdlffT(E ag,Q, )\)

e—0

— [ | Hou- @ - L@ (s~ Ol
QxQ J{z<r}
X ((A(y —xz—z)—0(y—a)—z-Vir(y — m))(g(z) — §(2)) dzdxdydtds

— /(O,T)x(o,r) /{zgr} /o 1212 (1 — ) (s — ) xal(t)(g(z) — §(2))

X (/ Ho(u — ) (Ty(u(t, ) — Ti(U(s, y))) D*5x(y — x — £2) dxdy) dédzdtds
RN xRN

/OT)X«)T)/{M}/ 21— (s~ Dxal)a(2) — )

x (e, Yoy + s, Yo @) ) dédzdtds

<5( [, 1oP6e) ~ 3 &)

C ~
<[ Yol — x5 (It Mzaem) + (s, Msen ) deds.
(0,7)x (0,7) A
Passing to the limit, we reach to the following estimate

lim lim lim |Ifd7,ffr(€ o,o,\)] < — / 12|%1g(2) — §(2)| dz;
{lzl<r}

a—00—=0e—=0

and choosing A = ﬁ\// 12%9(2) — §(2)| dz, we get:
{lzl<r}

lim lim lim \Ifdlffr(s o,a, )| < Cf\// 12)%1g(2) — §(2)]| d=. (48)
{lzl<r}

a—00—=0e—=0

Similarly, we get:

lim lim lim \Ifdsz(e,a,a,)\ﬂ < CT/ |z||g(2) — §(2)] d=. (49)

oc—0a—0e—0 |z|>r

e Estimate of lim lim hm I

(X—)O O'—)OE SOUTC6(57 O—,Oé, )\)'
We have

Lipurce(€, 0,0, 0) = He(Ty (ult, x)) = Ti (u(s, 9)))

QxQ
x (f(Tulult,2)) = F(Th(i(s,9)))) (s — )0x(y — 2)xa(t) dudydtds.
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When ¢ goes to 0, by using triangle’s inequality, we have

hm |1k (e,0,a,N)|

source

~

/QXQ |f(Tk(u(t, ) = f(T(tls, y)|e (s — 1)6x(y — 2)Xa(t)dzdydtds

~

/Q FCE(t20) = FLEE )l ~ 0070~ 2)xalt) drdy

IN

~

+ / | (T (it 7)) = FTu(@(s,9)) o (s — )02 (y — 2)xa(t) dadydtds
QxQ

< / (Tt 2))) — FTR (@ ) tho (s — )05y — 2)xa(t)dadydtds
QxXQ

+ iy /Q . T (u(t, 2)) = T (u(s,y))[¢o (s = 1)0x(y — ) Xa(t) drdydids

and then
lim lim 1%, . (¢,0,0, )|
oc—0e—0
< [ 1560 = F@usit + 1Pl (s, + 1lrey).

as k — +oo.
We conclude

lim i |2, (., )] < / 17 (w) = F@l@mdt,  asA—0.  (50)
0

o—0e—0

e Estimate of lim lim lim 1%, (e, 0, a, \).
a—00—0e—0
We have
Iik’rnt(‘€ 0, Q, )‘
/ [ =(Tulun(e)) = Te(@ls.9))) (51635 — )0 0) ddyds
R

AL 0) ~ Tt ) ()00 — )1 e

Letting € to 0, we have

hm Iznzt (87 o, q, )‘)

/ | o)) = TG, ) (5655 = )0 0) s
f / Ti(@o(u)) ~ TiCult, 2o (~)65( — 2)xa(t) dudyds
Ol}_}rrb ;E)r%]ehm I (e 0,0, 0) = 2/RN /]RN |T5 (uo () — Tk (To(v))|0r(y — =) dzdy.
Then,

ili)r});%ggn |Iznzt(€707a7 )‘)| < 2)‘<HUOHL1(RN) + ||a0||L1(]RN)) as k — +oo.
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Finally,

. . . k _ .
c{% ;13%) glg% |I;(e,0,0,A)| =0 as A — 0. (51)

To end this proof, we add the estimates (45)-(51) and reach to the desired contin-
uous dependence result (37). O
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