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Inverse Coefficient Problem by Fractional Taylor Series
Method
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Abstract. This study focus on determining the unknown function of time or space in space-

time fractional differential equation by fractional Taylor series method. A significant advantage
of this method is that over-measured data is not used unlike most inverse problems. This ad-

vantage allows us to determine the unknown function with less error. The presented examples

illustrate that the obtained solutions are in a high agreement with the exact solutions of the
corresponding inverse problems.
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1. Introduction

Since fractional derivatives have non-locality properties, fractional differential equa-
tions provide a significant tool for modelling of many processes. As a result, this
subject draws interest of many scientists in various research areas [1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12]. Therefore, inverse problems including fractional differential equations
becomes an essential part of diverse processes in science [13, 14, 15, 16].

In this study, we focus on establishing unknown coefficient in space-time fractional
differential equations by means of fractional Taylor series, which is a Taylor series
including fractional powers. This series also allows us to solve direct problems in-
cluding fractional differential equations efficiently. Unlike, many methods in inverse
problems, this method does not require any over-measured data which makes solution
of inverse problem more precise. Furthermore, a few condition is taken into account
in determination of unknown coefficient. The main goal in this article is to reveal the
unknown coefficient of the following inverse space-time fractional diffusion problem:

Dα
t u(x, t) = D2β

x u(x, t) + rf(x, t), 0 < α, β ≤ 1, (1)

u(x, 0) = ϕ(x), (2)

u(0, t) = µ1(t), (3)

u(1, t) = µ2(t) (4)

where r = r(t) or r = r(x) is the unknown function.
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2. Preliminaries

Essential concepts and features of fractional derivatives are presented in this section
[1, 2, 3, 4].

Definition 2.1. The Riemann-Liouville fractional integral of order α (α > 0) is given
as

Jαf(x) =
1

Γ(α)

∫ x

0

(x− t)α−1f(t)dt, α > 0, x > 0, (5)

J0f(x) = f(x). (6)

Definition 2.2. The Liouville-Caputo fractional derivative of order α is given as

Dαf(x) = Jn−αDnf(x) =

∫ x

0

(x− t)n−α−1 d
n

dtn
f(t)dt, n− 1 < α < n, x > 0, (7)

where Dn denotes the ordinary derivative of order n.

Definition 2.3. The αth order derivative of u(x, t) in Liouville-Caputo sense is given
as

Dα
t u(x, t) =

{
1

Γ(n−α)

∫ t
0
(t− ξ)n−α−1 ∂

nu(x,ξ)
∂tn dξ, n− 1 < α < n,

∂nu(x,t)
∂tn , α = n ∈ N.

(8)

Definition 2.4. An (α, β)-fractional Taylor series is defined as follows [17]:

∞∑
i+j=0

gi,jt
iαxjβ = g0,0︸︷︷︸

i+j=0

+ g1,0t
α + g0,1x

β︸ ︷︷ ︸
i+j=1

+...+

n∑
k=0

gn−k,kt
(n−k)αxkβ︸ ︷︷ ︸

i+j=n

+... (9)

where gi,j , i, jεN are the coefficients of the series.

Based on definition 2.4 fractional Taylor series of u(x, t) can be written in the
following form:

u(x, t) =

∞∑
i+j=0

Diα
t D

jβ
x (u(x, t))|(x,t)=(0,0)

Γ(iα+ 1)Γ(jβ + 1)
tiαxjβ . (10)

Lemma 2.1. Let u(x, t) has a fractional Taylor series representation as (9) for
(x, t)ε[0, Rx)× [0, Rt). If Drα

t Dsβ
x u(x, t)ε((0, Rx)× (0, Rt)) for r, sεN , then

Drα
t u(x, t) =

∞∑
i+j=0

gi+r,j
Γ((i+ r)α+ 1)

Γ(iα+ 1)Γ(jβ + 1)
tiαxjβ (11)

Dsβ
x u(x, t) =

∞∑
i+j=0

gi,j+s
Γ((j + s)β + 1)

Γ(iα+ 1)Γ(jβ + 1)
tiαxjβ (12)
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3. Fractional Taylor series method

In order to determine the unknown coefficient r(t) of time in the space-time fractional
diffusion problem (1)-(4), in the series form we plug the fractional Taylor series of
u = u(x, t) and r = r(t) into (1)-(4) which leads to:

∞∑
i+j=0

gi+1,j
Γ((i+ 1)α+ 1)

Γ(iα+ 1)Γ(jβ + 1)
tiαxjβ =

∞∑
i+j=0

gi,j+2
Γ((j + 2)β + 1)

Γ(iα+ 1)Γ(jβ + 1)
tiαxjβ

+

∞∑
k=0

rk

{ ∞∑
i+j=0

Diα
t D

jβ
x (f(x, t))|(x,t)=(0,0)

Γ(iα+ 1)Γ(jβ + 1)Γ(kα+ 1)
t(i+k)αxjβ

}
(13)

Making two series on both sides of above equation equal to each other, the unknown
coefficients in the fractional Taylor series of r(t) are acquired.

In order to determine the unknown coefficient r(x) of time in the space-time frac-
tional diffusion problem (1)-(4), in the series form we plug the fractional Taylor series
of u = u(x, t) and r = r(x) into (1)-(4) which leads to:

∞∑
i+j=0

gi+1,j
Γ((i+ 1)α+ 1)

Γ(iα+ 1)Γ(jβ + 1)
tiαxjβ =

∞∑
i+j=0

gi,j+2
Γ((j + 2)β + 1)

Γ(iα+ 1)Γ(jβ + 1)
tiαxjβ

+

∞∑
k=0

rk

{ ∞∑
i+j=0

Diα
t D

jβ
x (f(x, t))|(x,t)=(0,0)

Γ(iα+ 1)Γ(jβ + 1)Γ(kβ + 1)
tiαx(j+k)β

}
(14)

Making two series on both sides of above equation equal to each other, the unknown
coefficients in the fractional Taylor series of r(x) are acquired.

4. Illustrative examples

The following example is about unknown coefficient depending on t.

Example 1. Consider the inverse coefficient problem involving space-time fractional
differential equations:

Dα
t u(x, t) = D2β

x u(x, t) + r(t)Eα(tα)sinβ(xβ), (15)

u(x, 0) = sinβ(xβ), (16)

u(0, t) = 0, (17)

u(1, t) = Eα(2tα)sinβ(1), (18)

where sinβ(xβ) =
∞∑
j=1

(−1)jx(2j+1)β

Γ((2j+1)β+1) is the fractional generalization of the function

sin(x). We determine the unknown function r(t) in fractional Taylor series form as
follows:

r(t) =

∞∑
k=0

rk
tkα

Γ(1 + kα)
, 0 < α ≤ 1. (19)
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∞∑
i+j=0

gi+1,j
Γ((i+ 1)α+ 1)

Γ(iα+ 1)Γ(jβ + 1)
tiαxjβ =

∞∑
i+j=0

gi,j+2
Γ((j + 2)β + 1)

Γ(iα+ 1)Γ(jβ + 1)
tiαxjβ

+

∞∑
k=0

rk

{ ∞∑
i+j=0

(−1)j
t(i+k)αx(2j+1)β

Γ(iα+ 1)Γ(kα+ 1)Γ((2j + 1)β + 1)

}
(20)

with the initial coefficients

g0,2j+1 =
(−1)j

Γ((2j + 1)β + 1)
, (21)

g0,0 = 0 (22)

The coefficients gi,j are obtained by equating two series in Eq. (20), which enable us
to form the solution of Eq.(15) as follows:

u(x, t) =
xβ

Γ(1 + β)
+ (r0 − 1)

tα

Γ(1 + α)

xβ

Γ(1 + β)
+ (r1 + 1)

t2α

Γ(1 + 2α)

xβ

Γ(1 + β)

− x3β

Γ(1 + 3β)
+
(
− 1 + r0 − r1 + r2 +

r1Γ(1 + 2α)

Γ(1 + α)2

) t3α

Γ(1 + 3α)

xβ

Γ(1 + β)

+(1− r0)
tα

Γ(1 + α)

x3β

Γ(1 + 3β)
+ ... (23)

In order to determine the unknown coefficient r(t) the boundary condition at x = 1
into account in (23) produce the coefficients rk as follows:
r0 = 3,
r1 = 3,

r2 = 9− 3 Γ(1+2α)
(Γ(1+α))2 ,

...
As a result, the unknown coefficient r(t) determine in the series of as follows:

r(t) = 3 + 3
tα

Γ(1 + α)
+
(

9− 3
Γ(1 + 2α)

(Γ(1 + α))2

) t2α

Γ(1 + 2α)
+ ... (24)

The following example is about unknown coefficient depending on x.

Example 2. Consider the inverse coefficient problem involving space-time fractional
differential equations:

Dα
t u(x, t) = D2β

x u(x, t) + r(x)Eα(−tα)Eβ(xβ), (25)

u(x, 0) = Eβ(2xβ), (26)

u(0, t) = Eα(−tα), (27)

u(1, t) = Eα(−tα)Eβ(2), (28)



296 M. A. BAYRAK AND A. DEMIR

Table 1. Comparison of absolute errors at t = 0.5 with E(α, β) of
Example 1.

x Exact E(1, 1) E(1, 0.9)E(1, 0.8)E(0.9, 1)E(0.9, 0.9)E(0.9, 0.8)E(0.8, 1)E(0.8, 0.9)E(0.8, 0.8)

0.10.266221.11e-04 2.71e-03 8.07e-03 2.72e-03 4.69e-04 7.73e-03 9.53e-03 6.57e-03 1.91e-03

0.20.529788.89e-04 6.54e-03 1.72e-02 4.46e-03 3.05e-03 1.81e-02 1.76e-02 9.08e-03 1.01e-02

0.30.788003.00e-03 1.26e-02 2.97e-02 4.24e-03 9.11e-03 3.37e-02 2.29e-02 6.19e-03 2.67e-02

0.41.038227.11e-03 2.18e-02 4.66e-02 1.08e-03 1.98e-02 5.59e-02 2.38e-02 3.67e-03 5.32e-02

0.51.277781.39e-02 3.48e-02 6.84e-02 6.01e-03 3.62e-02 8.56e-02 1.90e-02 2.20e-02 9.10e-02

0.61.504002.40e-02 5.22e-02 9.57e-02 1.80e-02 5.92e-02 1.23e-01 7.10e-03 5.00e-02 1.41e-01

0.71.714223.81e-02 7.48e-02 1.29e-01 3.59e-02 8.97e-02 1.70e-01 1.34e-02 8.92e-02 2.04e-01

0.81.905785.69e-02 1.03e-01 1.69e-01 6.06e-02 1.29e-01 2.26e-01 4.40e-02 1.41e-01 2.81e-01

0.92.076008.10e-02 1.38e-01 2.15e-01 9.32e-02 1.77e-01 2.93e-01 8.60e-02 2.06e-01 3.73e-01

1 2.222221.11e-01 1.79e-01 2.69e-01 1.35e-01 2.35e-01 3.69e-01 1.41e-01 2.86e-01 4.80e-01

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3
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6

7

8

9

Figure 1. The graphics of approximate solutions of r(t).

where Eβ(2xβ) =
∞∑
j=1

2jxjβ

Γ(jβ+1) is the fractional generalization of the function exp(2x).

We determine the unknown coefficient r(x) in fractional Taylor series form as follows:

r(x) =

∞∑
k=0

rk
xkβ

Γ(1 + kβ)
, 0 < β ≤ 1. (29)

∞∑
i+j=0

gi+1,j
Γ((i+ 1)α+ 1)

Γ(iα+ 1)Γ(jβ + 1)
tiαxjβ =

∞∑
i+j=0

gi,j+2
Γ((j + 2)β + 1)

Γ(iα+ 1)Γ(jβ + 1)
tiαxjβ

+

∞∑
k=0

rk

{ ∞∑
i+j=0

2j
tiαx(j+k)β

Γ(iα+ 1)Γ(jβ + 1)Γ(kβ + 1)

}
(30)
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Figure 2. The graphics of approximate solutions for Example 1
when α = 1, β = 1.
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Figure 3. The graphics of approximate solutions for Example 1
when α = 0.9, β = 0.9.

with the initial coefficients

g0,j =
2j

Γ(jβ + 1)
, g0,0 = 1 (31)
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The coefficients gi,j are obtained by equating two series in Eq. (30), which enable us
to form the solution of Eq.(25) as follows:

u(x, t) = 1 + (4 + r0)
tα

Γ(1 + α)
+ 2

xβ

Γ(1 + β)
+
(

16 + r2 + r1
Γ(1 + 2β)

(Γ(1 + β))2

) t2α

Γ(1 + 2α)

+ (8 + r0 + r1)
tα

Γ(1 + α)

xβ

Γ(1 + β)
+ 4

x2β

Γ(1 + 2β)

(
64 + r0 + r4 − r2

+
(r1 + r3)Γ(1 + 4β)

Γ(1 + β)Γ(1 + 3β)
+
f2Γ(1 + 4β)

(Γ(1 + 2β))2
− r1Γ(1 + 2β)

(Γ(1 + β))2

) t3α

Γ(1 + 3α)

+
(

32− r1 + r3 +
(r1 + r2)Γ(1 + 3β)

Γ(1 + 2β)Γ(1 + β)

) t2α

Γ(1 + 2α)

xβ

Γ(1 + β)

+
(

16 + r0 + r2 +
r1Γ(1 + 2β)

Γ(1 + 2β)Γ(1 + β)

) tα

Γ(1 + α)

x2β

Γ(1 + 2β)
+ 8

x3β

Γ(1 + 3β)
+ ...

(32)

In order to determine the unknown coefficient r(x) the boundary condition at x = 1
into account in (31) produce the coefficients rk as follows:
r0 = −5,
r1 = −5,

r2 = −15 + 5Γ(1+2β)
(Γ(1+β))2 ,

r3 = −35− Γ(1+3β)(−20(Γ(1+β))2+5Γ(1+2β)))
Γ(1+2β)(Γ(1+β))3 ,

r4 = −75− Γ(1+4β)(−40Γ(1+2β)(Γ(1+β))3−Γ(1+3β)(−20(Γ(1+β))2+5Γ(1+2β)))
Γ(1+3β)Γ(1+2β)(Γ(1+β))4 + 10Γ(1+2β)

(Γ(1+β))2

− Γ(1+2α)Γ(1+4β)(−15(Γ(1+β))2+5Γ(1+2β)
Γ(1+3α)Γ(1+α)(Γ(1+β))2(Γ(1+2β))2 ,

...
As a result, the unknown coefficient r(x) determine in the series of as follows:

r(x) = −5− 5
xβ

Γ(1 + β)
+
(
− 15 +

5Γ(1 + 2β)

(Γ(1 + β))2

) x2β

Γ(1 + 2β)

+
(
− 35− Γ(1 + 3β)(−20(Γ(1 + β))2 + 5Γ(1 + 2β))

Γ(1 + 2β)(Γ(1 + β))3

) x3β

Γ(1 + 3β)

+

(
− 75 + 40

Γ(1 + 4β)

Γ(1 + 3β)Γ(1 + β)
+

Γ(1 + 4β)(−20(Γ(1 + β))2 + 5Γ(1 + 2β))

Γ(1 + 2β)(Γ(1 + β))4

− Γ(1 + 2α)Γ(1 + 4β)(−15(Γ(1 + β))2 + 5Γ(1 + 2β)

Γ(1 + 3α)(Γ(1 + 2β))2(Γ(1 + β))3Γ(1 + α)
+

10Γ(1 + 2β)

(Γ(1 + β))2

)
x4β

Γ(1 + 4β)
+ ...

(33)

5. Conclusion

In this research, we take the inverse coefficient problem including space-time fractional
differential equation in hand. Fractional Taylor series method is employed for this
inverse problem since we don’t need any over-measured data for the determination of
unknown function of space or time which is a substantial advantage to establish the
unknown function more precise. We first obtain the solution of the direct problem in
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Table 2. Comparison of absolute errors at t = 0.5 with E(α, β) of
Example 2.

x Exact E(1, 1) E(1, 0.9)E(1, 0.8)E(0.9, 1)E(0.9, 0.9)E(0.9, 0.8)E(0.8, 1)E(0.8, 0.9)E(0.8, 0.8)

0 0.60417 0.00 1.50e-02 1.30e-02 9.37e-02 6.16e-02 5.71e-02 3.46e-01 2.80e-01 2.56e-01

0.10.737892.61e-03 1.20e-02 8.98e-03 9.89e-02 6.78e-02 6.47e-02 3.56e-01 2.92e-01 2.71e-01

0.20.900614.22e-03 8.74e-03 5.07e-04 1.02e-01 7.25e-02 7.42e-02 3.63e-01 3.00e-01 2.84e-01

0.31.097178.00e-03 5.75e-04 2.07e-02 1.07e-01 8.23e-02 9.57e-02 3.70e-01 3.13e-01 3.07e-01

0.41.332391.71e-02 2.02e-02 5.90e-02 1.16e-01 1.02e-01 1.34e-01 3.82e-01 3.34e-01 3.48e-01

0.51.611113.47e-02 5.36e-02 1.18e-01 1.34e-01 1.35e-01 1.94e-01 4.01e-01 3.69e-01 4.09e-01

0.61.938176.40e-02 1.04e-01 2.00e-01 1.63e-01 1.86e-01 2.77e-01 4.31e-01 4.22e-01 4.94e-01

0.72.318391.08e-01 1.75e-01 3.07e-01 2.07e-01 2.58e-01 3.86e-01 4.77e-01 4.95e-01 6.07e-01

0.82.756611.70e-01 2.70e-01 4.42e-01 2.69e-01 3.54e-01 5.24e-01 5.41e-01 5.93e-01 7.49e-01

0.93.257672.53e-01 3.90e-01 6.07e-01 3.53e-01 4.76e-01 6.93e-01 6.27e-01 7.19e-01 9.23e-01

1 3.826393.61e-01 5.39e-01 8.03e-01 4.62e-01 6.29e-01 8.95e-01 7.38e-01 8.76e-01 1.13e+00

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Figure 4. The graphics of approximate solutions of r(x).

series for in terms of the coefficients of unknown function. Later, taking the boundary
condition into account the coefficients of the unknown functions are determined which
allows us to construct the unknown function in fractional Taylor series form. In the
future research, we apply this method or modification of this method to various
problem in science.
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