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On a Fractional Operator of Adjoint Hybrid Fractional
Derivative Operator

Mine Aylin Bayrak and Ali Demir

Abstract. The achievement of this paper is to propose a new kind of fractional derivative
which is called New Constant Proportional Caputo (NCPC) operator and to construct the

solution of time-fractional initial value problem (TFIVPs) with NCPC derivative by taking

the combination of Laplace transform (LT) and Homotopy Analysis method (HAM) into
account. Later, the obtained solution is compared with the solutions of TFIVPs with Caputo

and Constant Proportional Caputo (CPC) derivatives. The gained results reveal that the

combination of LT and HAM together form an efficient method to build the approximate
results of TFIVPs in NCPC sense.

2010 Mathematics Subject Classification. 35R11; 26A33.

Key words and phrases. Time fractional initial value problem, Caputo Fractional derivative,

Homotopy analysis method.

1. Introduction

Last couple of decades, utilizing fractional derivatives in mathematical models of pro-
cesses draws remarkable attention from many scientists, since fractional derivative
plays a critical role for modeling non-local dynamical behaviors of processes arising in
various important phenomena in many branches of physics, economics, engineering,
and biology, by fractional differential equations [1, 2, 3, 4, 5, 6, 7]. Since modelling
many systems with the memory and hereditary by using fractional derivatives and in-
tegrals is better, there is a growing need to construct new kinds of fractional operators
such as Atangana-Baleanu fractional and Caputo-Fabrizio operators, to offer much
more better mathematical models of systems as compared to the other fractional
operators. As a result, significant developments in the definition of new fractional
derivatives have been done and based on their structure and properties, various frac-
tional derivatives such as Riemann-Liouville, Caputo, Marchaud, tempered, Hilfer,
and Atangana-Baleanu etc. have been defined [8, 9, 10, 11, 12, 13, 14, 15] which allow
us to model real data from diverse processes.
The main aim of the present research involves proposition of new kind of fractional
operator NCPC and the construction of the truncated solution of TFIVPs includ-
ing NCPC operator proposed by applying the combination of LT and HAM. Hybrid
fractional operator [16, 17], utilizing the Caputo derivative, the Riemann-Liouville in-
tegral and CPC proposed by Baleanu et all. [16] together. New proportional Caputo
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operator is defined as

NPC
0 Dβ

t f(t) =
1

Γ(1− β)

∫ t

0

(
M0(β, ζ)f(ζ) +M1(β, ζ)C0D

1
n
t f(ζ)

+M2(β, ζ)f ′(ζ),

)
(t−ζ)−βdζ (1)

where the functions M0,M1 and M2 depend on fractional order β ∈ [0, 1] and fulfill
the following properties

lim
β→0+

M0(β, t) = 1, lim
β→( 1

n )−
M0(β, t) = 0;M0(β, t) 6= 0, β ∈ [0,

1

n
), (2)

lim
β→( 1

n )+
M0(β, t) = lim

β→1−
M0(β, t) = 0;M0(β, t) 6= 0, β ∈ (

1

n
, 1), (3)

lim
β→0+

M1(β, t) = 0, lim
β→( 1

n )−
M1(β, t) = 1;M1(β, t) 6= 0, β ∈ (0,

1

n
], (4)

lim
β→( 1

n )+
M1(β, t) = 1, lim

β→1−
M1(β, t) = 0;M1(β, t) 6= 0, β ∈ [1/n, 1), (5)

lim
β→0+

M2(β, t) = lim
β→( 1

n )−
M2(β, t) = 0;M2(β, t) 6= 0, β ∈ (0,

1

n
), (6)

lim
β→( 1

n )+
M2(β, t) = 0, lim

β→1−
M2(β, t) = 1;M2(β, t) 6= 0, β ∈ (

1

n
, 1], (7)

and f is a Caputo differentiable function of t ∈ R.
Especially, by taking the functions M0,M1 and M2 independent of t, we have the
definition of NCPC operator which is formalised as follows:

NCPC
0 Dβ

t f(t) =
1

Γ(1− β)

∫ t

0

(
M0(β)f(ζ) +M1(β)C0D

1
n
t f(ζ)

+M2(β)f ′(ζ)

)
(t− ζ)−βdζ

= M0(β)RL0 J
1−β
t f(t) +M1(β)C0D

β− (n−1)
n

t f(t) +M2(β)C0D
β
t f(t),(8)

where
C
0D

β
t f(t) = RL

0 J
1−β
t f ′(t).

Remark 1.1. We originally wrote this paper using the specific case

M0(β) = n(β − 1)(β − 1

n
),

M1(β) = − n2

n− 1
(β − 1)(β − 1

n
), (9)

M2(β) =
n

n− 1
β(β − 1

n
)

which is afforded special attention in [16].
This operator may arise in mathematical modelling of various processes such as control
theory, medicine, etc., since it can be considered as expansion of different fractional
derivatives.
In order to establish the numerical solution of TFIVPs with NCPC derivative, first
LT is applied to reduced the time fractional diffusion equation into a simpler equation
and then HAM is utilized to establish the numerical solution.
This paper is organised as: In Section 2, Fundamental concepts in fractional calculus
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are presented. Section 3 covers application of LT and HAM to the (TFIVPs). Illus-
trative examples of the proposed fractional derivative with mathematical problems
are given in Section 4. The last section includes the concluded results.

2. Preliminaries

Definition 2.1. [18]

RL
0 J

β
t f(t) =

1

Γ(β)

∫ t

0

(t− ζ)β−1f(ζ)dζ, β > 0, t > 0,

J0f(t) = f(t). (10)

where f ∈ Cµ, µ ≥ −1 and β denotes to order of the operator, is called the Riemann-
Liouville fractional integral operator.

Definition 2.2. [18] The fractional derivative in Caputo sense is defined as

C
0D

β
t f(t) =


1

Γ(n−β)

∫ t
0

f(n)(ζ)
(t−ζ)β+1−n dζ, n− 1 < β ≤ n,

dn

dtn f(t) , β = n ∈ N

where β > 0, t ∈ R .
Theorem 2.3. [16] The operator NCPC for a differentiable function f(t) fulfilling
the conditions f, f ′ ∈ L1 locally has the LT as follows:

L
{
NCPC
0 Dβ

t f(t)
}

=
(M0(β)

s
+
M1(β)

s
1
n

+M2(β)
)
sβF (s)

−
(M1(β)

s
(n+1)
n

+
M2(β)

s

)
sβf(0) (11)

where F (s) denotes the LT of f(t).

3. Analysis of LT and HAM

In this section, main steps of the method presented in this study are established on
the following FPDEs.

(Dβw)(ξ, τ) + Lw(ξ, τ) +Nw(ξ, τ) = f(ξ, τ), 0 < β ≤ 1, (12)

where N,L and f represent the nonlinear operator, linear operator and source func-
tion, respectively and (Dβw) is the fractional differential operator.
Employing the LT to (12) with the CPC fractional derivative we have

(CDβw)(ξ, τ) +
M0(β)

M2(β)
L−1{ 1

s1−βL{w(ξ, τ)}}+
M1(β)

M2(β)
(CDβ− (n−1)

n w)(ξ, τ)

− 1

M2(β)
[L(w(ξ, τ)) +N(w(ξ, τ))− f(ξ, τ)] = 0, (13)
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where (CDβw)ξ, τ is the βth-order fractional derivative in Caputo sense. The defor-
mation equation of order 0 is constructed by HAM [19, 20, 21],

(1− p)L[φ(ξ, τ ; p)− w0(ξ, τ)] = p~H(ξ, τ)
[
CD

β
φ(ξ, τ ; p)

+
M0(β)

M2(β)
L−1{ 1

s1−βL{φ(ξ, τ ; p)}}+
M1(β)

M2(β)
CDβ− (n−1)

n φ(ξ, τ ; p)

− 1

M2(β)
[L(φ(ξ, τ ; p)) +N(φ(ξ, τ ; p))− f(ξ, τ)]

]
, (14)

where φ(ξ, τ ; p) with parameter p ∈ [0, 1] is defined on R, ~ 6= 0 and w0(ξ, τ) represent
an parameter and an starting point, respectively. Furthermore, we take H(ξ, τ) = 1
in the computations. It follows from Eq. (15) that

φ(ξ, τ ; 0) = w0(ξ, τ), φ(ξ, τ ; 1) = w(ξ, τ). (15)

Thus as p tempts to 1, the initial guess w0(ξ, τ) tempts to w(ξ, τ). The function
φ(ξ, τ ; p) can be rewritten in the series form as

φ(ξ, τ ; p) = w0(ξ, τ) +

∞∑
m=1

wm(ξ, τ)pm, (16)

where

wm(ξ, τ) =
1

m!

∂mφ(ξ, τ ; p)

∂pm

∣∣∣
p=0

. (17)

The correct choices lead to the following convergent series,

w(ξ, τ) = w0(ξ, τ) +

∞∑
m=1

wm(ξ, τ). (18)

Hence for H(ξ, τ) = 1,

L[wm(ξ, τ)− κmwm−1(ξ, τ)] = ~Rm(w→m−1) (19)

with the requirements

w(k)
m (ξ, 0) = 0, k = 0, 1, 2, ...,m− 1, (20)

where

Rm(w→m−1) =
1

(m− 1)!

∂m−1

∂pm−1

[
CD

β
φ(ξ, τ ; p)

+
M0(β)

M2(β)
L−1{ 1

s1−βL{φ(ξ, τ ; p)}}+
M1(β)

M2(β)
CDβ− (n−1)

n φ(ξ, τ ; p)

− 1

M2(β)
[L(φ(ξ, τ ; p)) +N(φ(ξ, τ ; p))− f(ξ, τ)]

]∣∣∣
p=0

, (21)

and

κm =

{
0,m ≤ 1,
1,m > 1.

(22)

Employing the operator Jβ in Eq. (20) leads to

wm(ξ, τ) = κmwm−1(ξ, τ)− κm
n−1∑
i=0

w
(i)
m−1(ξ, 0+)

τ i

i!
+ ~Jβ [Rm(w→m−1)]. (23)
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In this manner, we establish the approximate solution w(ξ, τ) in terms of wm(ξ, τ) as
follows

w(ξ, τ) =

M∑
m=0

wm(ξ, τ). (24)

Note that as M tends to infinity, the exact analytical solution of Eq.(14) is obtained.

4. Numerical examples

In this work, we consider the following time fractional diffusion equation
NCPC
0 Dβ

τw(ξ, τ) = λwξξ(ξ, τ)− (F (ξ)w(ξ, τ))ξ, 0 < β ≤ 1, ξ > 0, τ > 0 (25)

with initial condition

w(ξ, 0) = ϕ(ξ). (26)

Here, λ is a positive constant, F (ξ) is the external force, w(ξ, τ) represents the prob-
ability density function of finding a particle at the point ξ in the time τ .

Example 1. Taking F (ξ) = −ξ, λ = 1 and choosing ϕ(ξ) = 1, we get the following
initial value problem:

NCPC
0 Dβ

t w(ξ, τ) = wξξ(ξ, τ) + w(ξ, τ) + ξ(w(ξ, τ))ξ (27)

w(ξ, 0) = 1. (28)

Thus, the exact solution of the above problem with Caputo derivative is given by

w(ξ, τ) = Eβ(tβ). (29)

The solution for the deformation equations of the order m is constructed for n = 2 as
follows:

wm(ξ, τ) = (κm + ~)(wm−1(ξ, τ)− wm−1(ξ, 0)) + ~Jβ [Rm(w→m−1)], (30)

where

Rm(w→m−1) =CD
β

τwm−1(ξ, τ) +
M0(β)

M2(β)
L−1{ 1

s1−βL{wm−1(ξ, τ)}}

+
M1(β)

M2(β)
CD

β− 1
2

τ wm−1(ξ, τ)

− 1

M2(β)
[(wm−1)ξξ(ξ, τ)− wm−1(ξ, τ)− ξ(wm−1)ξ(ξ, τ)]. (31)

As a result, we obtain:
w0(ξ, τ) = 1,

w1(ξ, τ) = ~(M0(β)
M2(β)τ + M1(β)

M2(β)
τ

1
2

Γ( 3
2 )
− 1

M2(β)
τβ

Γ(1+β) ),

w2(ξ, τ) = (~ + ~2)(M0(β)
M2(β)τ + M1(β)

M2(β)
τ

1
2

Γ( 3
2 )
− 1

M2(β)
τβ

Γ(1+β) ) + M0(β)
M2(β)~

2(M0(β)
M2(β)

τ2

Γ(3)

+ M1(β)
M2(β)

τ
3
2

Γ( 5
2 )
− 1

M2(β)
τβ+1

Γ(2+β) ) + M1(β)
M2(β)~

2(M0(β)
M2(β)

τ
3
2

Γ( 5
2 )

+ M1(β)
M2(β)τ −

1
M2(β)

τβ+
1
2

Γ(β+ 3
2 )

)

− 1
M2(β)~

2(M0(β)
M2(β)

τβ+1

Γ(β+2) + M1(β)
M2(β)

τβ+
1
2

Γ(β+ 3
2 )
− 1

M2(β)
τ2β

Γ(1+2β) ),

and so on.
The figures of numerical solution with 3-terms are given in Figs. 1-6. Table 1 presents
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Table 1. HAM solutions (~ = −1) with exact solution at x = 0.8
of Example 1 with different fractional derivatives and for various α.

α = 0.95 α = 0.9 α = 0.85

t Exact Caputo CPC NCPC Caputo CPC NCPC Caputo CPC NCPC

0 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000
0.25 1.28125 1.31273 1.31441 1.22167 1.34778 1.35541 1.15930 1.38682 1.40640 1.09454
0.5 1.62500 1.67489 1.67756 1.55477 1.72849 1.74036 1.47948 1.78595 1.81583 1.39855
0.75 2.03125 2.09329 2.09660 1.96030 2.15797 2.17242 1.88201 2.22509 2.26070 1.79486
1 2.50000 2.56777 2.57135 2.43690 2.63624 2.65162 2.36502 2.70490 2.74191 2.28217

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Exact

=1

=0.95

=0.9

=0.85

Figure 1. The graphics of approximate solutions for Ex.1 with Ca-
puto derivative for various α.

the values of approximate solutions.

Example 2. Taking F (ξ) = −ξ, λ = 1 and choosing ϕ(ξ) = ξ, we get the following
initial value problem:

NCPC
0 Dβ

t w(ξ, τ) = wξξ(ξ, τ) + w(ξ, τ) + ξ(w(ξ, τ))ξ (32)

w(ξ, 0) = ξ. (33)

Thus, the exact solution of the above problem with Caputo derivative is given by

w(ξ, τ) = ξEβ(2τβ). (34)

The solution for the deformation equations of the order m is constructed as follows:

wm(ξ, τ) = (κm + ~)(wm−1(ξ, τ)− wm−1(ξ, 0)) + ~Jβ [Rm(w→m−1)], (35)
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Figure 2. The graphics of approximate solutions for Ex.1 with CPC
derivative for various α .
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Figure 3. The graphics of approximate solutions for Ex.1 with
NCPC derivative for various α and n = 2.

where

Rm(w→m−1) =CD
β

τwm−1(ξ, τ) +
M0(β)

M2(β)
L−1{ 1

s1−βL{wm−1(ξ, τ)}}

+
M1(β)

M2(β)
CD

β− 1
2

τ wm−1(ξ, τ)

− 1

M2(β)
[(wm−1)ξξ(ξ, τ)− wm−1(ξ, τ)− ξ(wm−1)ξ(ξ, τ)]. (36)

The first three deformation equations are established for n = 2 as follows:
w0(ξ, τ) = ξ,

w1(ξ, τ) = ~ξ(M0(β)
M2(β)τ + M1(β)

M2(β)
τ

1
2

Γ( 3
2 )
− 1

M2(β)
2τβ

Γ(1+β) ),
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Figure 4. The graphics of approximate solutions for Ex.1 with
NCPC derivative for various α < 1

2 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.5

2

2.5

Exact

=1

=0.95

=0.9

=0.85

=0.8

Figure 5. The graphics of approximate solutions for Ex.1 with
NCPC derivative for various α and n = 3.

w2(ξ, τ) = (~ + ~2)ξ(M0(β)
M2(β)τ + M1(β)

M2(β)
τ

1
2

Γ( 3
2 )
− 1

M2(β)
2τβ

Γ(1+β) ) + M0(β)
M2(β)~

2ξ(M0(β)
M2(β)

τ2

Γ(3)

+ M1(β)
M2(β)

τ
3
2

Γ( 5
2 )
− 1

M2(β)
2τβ+1

Γ(2+β) ) + M1(β)
M2(β)~

2ξ(M0(β)
M2(β)

τ
3
2

Γ( 5
2 )

+ M1(β)
M2(β)τ −

1
M2(β)

2τβ+
1
2

Γ(β+ 3
2 )

)

− 2
M2(β)~

2ξ(M0(β)
M2(β)

τβ+1

Γ(β+2) + M1(β)
M2(β)

τβ+
1
2

Γ(β+ 3
2 )
− 1

M2(β)
2τ2β

Γ(1+2β) ),

and so on.
The figures of numerical solution with 3-terms are given in Figs. 7-12. Table 2
presents the values of approximate solutions.
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Figure 6. The graphics of approximate solutions for Ex.1 with
NCPC derivative for various α < 1

3 .

Table 2. HAM solutions (~ = −1) with exact solution at x = 0.8
of Example 2 for various α.

α = 0.95 α = 0.9 α = 0.85

t Exact Caputo CPC NCPC Caputo CPC NCPC Caputo CPC NCPC

0 0.80000 0.80000 0.80000 0.80000 0.80000 0.80000 0.80000 0.80000 0.80000 0.80000
0.25 1.30000 1.36323 1.38317 1.32224 1.43516 1.48773 1.36821 1.51703 1.62057 1.45504
0.5 2.00000 2.11443 2.16482 2.11430 2.23965 2.36614 2.29297 2.37633 2.61406 2.58212
0.75 2.90000 3.05616 3.14717 3.15091 3.22138 3.44178 3.52297 3.39530 3.79512 4.10052
1 4.00000 4.18402 4.32536 4.42875 4.37236 4.70479 5.04943 4.56365 5.14942 5.99169
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Figure 7. The graphics of approximate solutions for Ex.2 with Ca-
puto derivative for various α.
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Figure 8. The graphics of approximate solutions for Ex.2 with CPC
derivative for various α .
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Figure 9. The graphics of approximate solutions for Ex.2 with
NCPC derivative for various α and n = 2.

Example 3. Taking F (ξ) = −ξ, λ = 1 and choosing ϕ(ξ) = ξ2, we get the following
initial value problem:

NCPC
0 Dβ

t w(ξ, τ) = wξξ(ξ, τ) + w(ξ, τ) + ξ(w(ξ, τ))ξ (37)

w(ξ, 0) = ξ2. (38)

Thus, the exact solution of the above problem with Caputo derivative is given by

w(ξ, τ) = Eβ(rτβ) (39)

where r = 3k(1 + ξ2) − 1, k = 0, 1, 2, .... The solution for the deformation equations
of the order m is constructed as follows:

wm(ξ, τ) = (κm + ~)(wm−1(ξ, τ)− wm−1(ξ, 0)) + ~Jβ [Rm(w→m−1)], (40)
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Figure 10. The graphics of approximate solutions for Ex.2 with
NCPC derivative for various α < 1
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Figure 11. The graphics of approximate solutions for Ex.2 with
NCPC derivative for various α and n = 3.

where

Rm(w→m−1) =CD
β

τwm−1(ξ, τ) +
M0(β)

M2(β)
L−1{ 1

s1−βL{wm−1(ξ, τ)}}

+
M1(β)

M2(β)
CD

β− 1
2

τ wm−1(ξ, τ)

− 1

M2(β)
[(wm−1)ξξ(ξ, τ)− wm−1(ξ, τ)− ξ(wm−1)ξ(ξ, τ)]. (41)

The first three deformation equations are constructed for n = 2 as follows:
w0(ξ, τ) = ξ2,

w1(ξ, τ) = ~(M0(β)
M2(β)ξ

2τ + M1(β)
M2(β)ξ

2 τ
1
2

Γ( 3
2 )
− 1

M2(β) (2 + 3ξ2) τβ

Γ(1+β) ),



32 MINE AYLIN BAYRAK AND ALI DEMIR

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

200

400

600

800

1000

1200

=1/4

=1/5

=1/6

=1/7

Figure 12. The graphics of approximate solutions for Ex.2 with
NCPC derivative for various α < 1

3 .

Table 3. HAM solutions (~ = −1) with exact solution at x = 0.8
of Example 3 for various α.

α = 0.95 α = 0.9 α = 0.85

t Exact Caputo CPC NCPC Caputo CPC NCPC Caputo CPC NCPC

0 0.64000 0.64000 0.64000 0.64000 0.64000 0.64000 0.64000 0.64000 0.64000 0.64000
0.25 2.05000 2.25251 2.34374 2.37228 2.48735 2.72062 2.86035 2.75979 3.20986 3.64430
0.5 4.32000 4.72840 4.97990 5.22195 5.18121 5.80028 6.57917 5.68159 6.82843 8.74057
0.75 7.45000 8.04309 8.51975 9.16501 8.67631 9.81521 11.72432 9.34859 11.3939115.75163
1 11.4400012.1705012.9344214.1798312.9234614.7047418.2330513.6934316.8129724.53891
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2
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2(M0(β)
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2 τ
3
2

Γ( 5
2 )

+

M1(β)
M2(β)ξ

2τ− 1
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1
2
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2 )

)− 2
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2(M0(β)
M2(β)ξ

2 τβ+1

Γ(β+2)+M1(β)
M2(β)ξ

2 τβ+
1
2
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2 )
− 1
M2(β) (2+
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1
2

Γ(β+ 3
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+ 6
M2(β) (1 + ξ2) τ2β

Γ(1+2β) ),

and so on.
The figures of numerical solution with 3-terms are given in Figs. 13-18. Table 3
presents the values of approximate solutions.

Example 4. Taking F (ξ) = e−ξ, λ = 1 and choosing ϕ(ξ) = eξ, we get the following
initial value problem:

NCPC
0 Dβ

t w(ξ, τ) = wξξ(ξ, τ) + e−ξw(ξ, τ)− e−ξ(w(ξ, τ))ξ (42)

w(ξ, 0) = eξ. (43)
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Figure 13. The graphics of approximate solutions for Ex.3 with
Caputo derivative for various α.
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Figure 14. The graphics of approximate solutions for Ex.3 with
CPC derivative for various α.

Thus, the exact solution of the above problem with Caputo derivative is given by

w(ξ, τ) = eξEβ(τβ). (44)

The solution for the deformation equations of the order m is constructed as follows:

wm(ξ, τ) = (κm + ~)(wm−1(ξ, τ)− wm−1(ξ, 0)) + ~Jβ [Rm(w→m−1)], (45)
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Figure 15. The graphics of approximate solutions for Ex.3 with
NCPC derivative for various α and n = 2.
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Figure 16. The graphics of approximate solutions for Ex.3 with
NCPC derivative for various α < 1

2 .

where

Rm(w→m−1) =CD
β

τwm−1(ξ, τ) +
M0(β)

M2(β)
L−1{ 1

s1−βL{wm−1(ξ, τ)}}

+
M1(β)

M2(β)
CD

β− 1
2

τ wm−1(ξ, τ)

− 1

M2(β)
[(wm−1)ξξ(ξ, τ) + e−ξwm−1(ξ, τ)− e−ξ(wm−1(ξ, τ))ξ]. (46)

The first three deformation equations are constructed for n = 2 as follows:
w0(ξ, τ) = eξ,

w1(ξ, τ) = ~eξ(M0(β)
M2(β)τ + M1(β)

M2(β)
τ

1
2

Γ( 3
2 )
− 1

M2(β)
τβ

Γ(1+β) ),
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Figure 17. The graphics of approximate solutions for Ex.3 with
NCPC derivative for various α and n = 3.
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Figure 18. The graphics of approximate solutions for Ex.3 with
NCPC derivative for various α < 1

3 .

w2(ξ, τ) = (~ + ~2)eξ(M0(β)
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and so on.
The figures of numerical solution with 3-terms are given in Figs. 19-24. Table 4
presents the values of approximate solutions.
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Table 4. HAM solutions (~ = −1) with exact solution at x = 0.8
of Example 4 for various α .

α = 0.95 α = 0.9 α = 0.85

t Exact Caputo CPC NCPC Caputo CPC NCPC Caputo CPC NCPC

0 2.225542.225542.225542.225542.225542.225542.225542.225542.225542.22554
0.252.851472.921542.924892.718872.999553.015542.580073.086423.128182.43593
0.5 3.616503.727543.731973.460213.846823.869623.292643.974704.034623.11254
0.754.520634.658714.519754.362734.802654.826994.188484.952035.017353.99454
1 5.563855.714685.934425.423435.867065.887785.263466.019866.078505.07905
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Figure 19. The graphics of approximate solutions for Ex.4 with
Caputo derivative for various α.
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Figure 20. The graphics of approximate solutions for Ex.4 with
CPC derivative for various α.
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Figure 21. The graphics of approximate solutions for Ex.4 with
NCPC derivative for various α and n = 2..
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Figure 22. The graphics of approximate solutions for Ex.4 with
NCPC derivative for various α < 1
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