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A New Approach to Korovkin-Type Theorems based on
Deferred Nörlund Summability Mean
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Abstract. This paper aims to introduce the notions of deferred Nörlund statistical Riemann

integrability and statistical deferred Nörlund Riemann summability for sequence of real-valued

functions and to apply them in Korovkin-type new approximations. First, we present an
inclusion theorem to understand the connection between these new notions. Then, based

on these potential notions we establish new versions of Korovkin-type theorems with three

algebraic test functions. Finally, we compute an example, under the consideration of a positive
linear operator in association with the Bernstein polynomials to exhibit the effectiveness of

our findings.
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1. Introduction and motivation

The study of convergence on sequence space is one of the most important and fascinat-
ing aspects in the domain of real and functional analysis. The gradual improvement
on this study leads to the development of statistical convergence which is more gen-
eral than the usual convergence. The credit for independently defining this beautiful
concept goes to both Fast [8] and Steinhaus [25]. Now a days, this potential notion of
statistical convergence has been a field of interest of many researchers and becoming
an active research area in various fields of pure and applied Mathematics. In particu-
lar, it is very much useful in the study of Machine Learning, Soft Computing, Number
Theory, Measure theory, Probability Theory etc. For some recent research works in
this direction, see [1], [3], [4], [7], [15], [16], [20] and [22] .

Suppose J ⊆ N, and let Jk = {ξ : ξ 5 k and ξ ∈ J}. Then the natural density
d(J) of J is defined by

d(J) = lim
k→∞

|Jk|
k

= ρ,

where the number ρ is real and finite, and |Jk| is the cardinality of Jk.

A given sequence (ηk) is statistically convergent to α if, for each ε > 0,

Jε = {ξ : ξ ∈ N and |ηξ − α| = ε}
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has zero natural density (see [8] and [25]). Thus, for each ε > 0, we have

d(Jε) = lim
k→∞

|Jε|
k

= 0.

We write
stat lim

k→∞
ηk = α.

Let [a, b] ⊂ R, and for all k ∈ N there is a function gk : [a, b] → R and it is called
a sequence (gk) of functions on [a, b].

We now define the Riemann sum of a sequence (gi) of functions associated with a

tagged partition Ṗ which is given by

δ(gi; Ṗ) :=

k∑
i=1

g(γi)(ri − ri−1).

Next, we recall the definition of Riemann integrability of a sequence of functions
over an interval [a, b].

A sequence (gk)k∈N of functions is Riemann integrable to a function g on [a, b]

if, for all ε > 0 there exists σε > 0 and let Ṗ be any tagged partition of [a, b] with

‖Ṗ‖ < σε such that

|δ(gk; Ṗ)− g| < ε.

We now present the definition of statistical convergence of Riemann integrable
functions.

A sequence (gk)k∈N of functions is statistically Riemann integrable to a function g

on [a, b] if, for all ε > 0 and for each x ∈ [a, b], there exists σε > 0, and for Ṗ be any

tagged partition of [a, b] with ‖Ṗ‖ < σε, the set

Jε = {ξ : ξ ∈ N and |δ(gξ; Ṗ)− g| = ε}
has zero natural density. That is, for every ε > 0,

d(Jε) = lim
k→∞

|Jε|
k

= 0.

We write
statRie lim

k→∞
δ(gk; Ṗ) = g.

The following example demonstrates that every Riemann integrable function is
statistically Riemann integrable; however the converse is not true.

Example 1.1. Let gk : [0, 1]→ R be a sequence of functions defined by

gk(x) =


1
2 (x ∈ Q ∩ [0, 1]; k = j2, j ∈ N)

n
n+1 (otherwise).

(1)

It is easy to see that the sequence (gk) of functions is statistically Riemann inte-
grable to 1 over [0, 1], but not Riemann integrable (in the ordinary sense) over [0, 1].

Motivated essentially by the above-mentioned investigations and studies, we in-
troduce here the notions of deferred Nörlund statistical Riemann integrability and
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statistical deferred Nörlund Riemann summability for sequence of real-valued func-
tions. We first present an inclusion theorem connecting these new notions. Moreover,
as an application point of view, we state and prove new versions of Korovkin-type
theorems with three algebraic test functions by using these potential notions. Fi-
nally, we compute an example under the consideration of a positive linear operator in
association with the Bernstein polynomials to exhibit the effectiveness of our findings.

2. Deferred Nörlund statistical Riemann integrability

Let (φk) and (ϕk) be sequences of non-negative integers satisfying the regularity con-
ditions, φk < ϕk and limk→∞ ϕk = +∞, and let (pi) be a sequence of non-negative
real numbers such that Pk =

∑ϕk
i=φk+1 pϕk−i.

Then, we define the deferred Nörlund summability mean for the Riemann sum of
a sequence of functions δ(gk; Ṗ) with tagged partition Ṗ of the form,

N (δ(gk; Ṗ)) =
1

Pk

ϕk∑
%=φk+1

pϕk−% δ(g%; Ṗ). (2)

We now present the notions of statistical Riemann integrability and statistical
Riemann summability of a sequence of functions via deferred Nörlund mean.

Definition 2.1. Let (φk) and (ϕk) be sequences of non-negative integers, and let
(pk) be a sequence of non-negative real numbers. A sequence (gk)k∈N of functions is
deferred Nörlund statistically Riemann integrable to a function g on [a, b] if, for all

ε > 0 there exists σε > 0, and for Ṗ be any tagged partition of [a, b] with ‖Ṗ‖ < σε,
the set

{ξ : ξ 5 Pk and pξ|δ(gξ; Ṗ)− g| = ε}
has zero natural density. This implies that for each ε > 0,

lim
k→∞

|{ξ : ξ 5 Pk and pξ|δ(gξ; Ṗ)− g| = ε}|
Pk

= 0.

We write

DNRstat lim
k→∞

δ(gk; Ṗ) = g.

Definition 2.2. Let (φk) and (ϕk) be sequences of non-negative integers and let
(pk) be a sequence of non-negative real numbers. A sequence (gk)k∈N of functions is
statistically deferred Nörlund Riemann summable to a function g on [a, b] if, for all

ε > 0 there exists σε > 0, and for Ṗ be any tagged partition of [a, b] with ‖Ṗ‖ < σε,
the set

{ξ : ξ 5 k and |N (δ(gξ; Ṗ))− g| = ε}
has zero natural density. This implies that for all ε > 0,

lim
k→∞

|{ξ : ξ 5 k and |N (δ(gξ; Ṗ))− g| = ε}|
k

= 0.

We write

statDNR lim
k→∞

δ(gk; Ṗ) = g.
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Now, we establish an inclusion theorem between these two new potentially use-
ful notions that every deferred Nörlund statistically Riemann integrable sequence of
functions is statistically deferred Nörlund Riemann summable, but the converse is not
true.

Theorem 2.1. Let (φk) and (ϕk) be sequences of non-negative integers and let (pk)
be a sequence of non-negative real numbers. If a sequence (gk)k∈N of functions is
deferred Nörlund statistically Riemann integrable to a function g on [a, b], then it is
statistically deferred Nörlund Riemann summable to the same function g on [a, b], but
not conversely.

Proof. Suppose (gk)k∈N is deferred Nörlund statistically Riemann integrable to a func-
tion g on [a, b], then by Definition 2.1, we have

lim
k→∞

|{ξ : φk < ξ 5 ϕk and pξ|δ(gξ; Ṗ)− g| = ε}|
Pk

= 0.

Now assuming two sets as follows:

Lε = {ξ : φk < ξ 5 ϕk and pξ|δ(gξ; Ṗ)− g| = ε}

and

Lcε = {ξ : φk < ξ 5 ϕk and pξ|δ(gξ; Ṗ)− g| < ε},

we have∣∣∣N (δ(gk; Ṗ))− g
∣∣∣ =

∣∣∣∣∣∣ 1

Pk

ϕk∑
%=φk+1

pϕk−%δ(g%; Ṗ)− g

∣∣∣∣∣∣
5

∣∣∣∣∣∣ 1

Pk

ϕk∑
%=φk+1

pϕk−%

[
δ(g%; Ṗ)− g

]∣∣∣∣∣∣+

∣∣∣∣∣∣ 1

Pk

ϕk∑
%=φk+1

pϕk−%g − g

∣∣∣∣∣∣
5

1

Pk

ϕk∑
%=φk+1
(ξ∈Lε)

pϕk−%

∣∣∣δ(g%; Ṗ)− g
∣∣∣+

1

Pk

ϕk∑
%=φk+1
(ξ∈Lcε)

pϕk−%

∣∣∣δ(g%; Ṗ)− g
∣∣∣

+ |g|

∣∣∣∣∣∣ 1

Pk

ϕk∑
%=φk+1

pϕk−% − 1

∣∣∣∣∣∣
5

1

Pk
|Lε|+

1

Pk
|Lcε| = 0.

This implies that

|N (δ(gk; Ṗ))− g| < ε.

Thus, the sequence of functions (gk) is statistically deferred Nörlund Riemann sum-
mable to the function g on [a, b].

Next, in view of the non-validity of the converse statement, the following exam-
ple illustrates that a statistically deferred Nörlund Riemann summable sequence of
functions is not deferred Nörlund statistically Riemann integrable.
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Example 2.1. Let φk = 2k − 1, ϕk = 4k − 1 and pk = 1 and let gk : [0, 1]→ R be a
sequence of functions of the form given by

gk(x) =


0 (x ∈ Q ∩ [0, 1]; k is even)

1 (x ∈ R−Q ∩ [0, 1]; k is odd).

(3)

The given sequence (gk) of functions trivially indicates that it is neither Riemann
integrable nor deferred Nörlund statistically Riemann integrable. However, as per
our proposed mean (2), it is easy to see that

N (δ(gk; Ṗ)) =
1

ϕk − φk

ϕk∑
%=φk+1

δ(g%; Ṗ)

=
1

2k

4k∑
m=2k+1

δ(g%; Ṗ) =
1

2
.

Thus, the sequence (gk) of functions has deferred Nörlund Riemann sum 1
2 under the

tagged partition Ṗ. Therefore, the sequence (gk) of functions is statistically deferred
Nörlund Riemann summable to 1

2 over [0, 1] but it is not deferred Nörlund statistically
Riemann integrable.

�

3. Korovkin-type theorems via the N (δ(gk; Ṗ))-mean

Very recently, a number of researchers worked toward extending (or generalizing)
various aspects of the Korovkin-type approximation theorems with several settings in
different fields of mathematics such as (for example) sequence spaces, Banach space,
Probability space, Measurable space, and so on. This concept is quite valuable in Real
Analysis, Functional Analysis, Harmonic Analysis, and other related areas. Here, in
this connection, we choose to refer the interested readers to the recent works [5], [6],
[9], [10], [11], [13], [17], [18], [19] and [21].

Let [0, 1] ⊂ R and suppose C[0, 1] be the space of all continuous real-valued func-
tions defined on [0, 1]. Also, it is a complete normed linear space (Banach space) with
the norm ‖.‖∞. Then for g ∈ C[0, 1], the norm of g is given by,

‖g‖∞ = sup{|g(ζ)| : 0 5 ζ 5 1}.

We say that a sequence of linear operators Aj : C[0, 1]→ C[0, 1] is positive if

Aj(g; ζ) = 0 as g = 0.

Now, in view of our proposed mean, we use the notion of statistical Riemann
integrability (DNRstat) and statistical Riemann summability (statDNR) for sequence
of functions to establish and prove the following new Korovkin-type approximation
theorems.

Theorem 3.1. Let

Aj : C[0, 1]→ C[0, 1]
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be a sequence of positive linear operators. Then, for all g ∈ C[0, 1],

DNRstat lim
j→∞

‖Aj(g; ζ)− g(ζ)‖∞ = 0 (4)

if and only if

DNRstat lim
j→∞

‖Aj(1; ζ)− 1‖∞ = 0, (5)

DNRstat lim
j→∞

‖Aj(ζ; ζ)− ζ‖∞ = 0 (6)

and

DNRstat lim
j→∞

‖Aj(ζ2; ζ)− ζ2‖∞ = 0. (7)

Proof. Since each of the following functions:

g0(ζ) = 1, g1(ζ) = 2ζ and g2(ζ) = 3ζ2

belongs to C[0, 1] and is continuous, the implication given by (4) implies (5) to (7) is
trivial.

In order to complete the proof of Theorem 3.1, we first assume that the conditions
(5) to (7) hold true. If g ∈ C[0, 1], then there exists a constant J > 0 such that

|g(ζ)| 5 J (∀ ζ ∈ [0, 1]).

We thus find that

|g(r)− g(ζ)| 5 2J (r, ζ ∈ [0, 1]). (8)

Clearly, for given ε > 0, there exists δ > 0 such that

|g(r)− g(ζ)| < ε (9)

whenever

|r − ζ| < δ, for all r, ζ ∈ [0, 1].

Let us choose

µ1 = µ1(r, ζ) = (2r − 2ζ)2.

If

|r − ζ| = δ,

then we obtain

|g(r)− g(ζ)| < 2J
θ2
µ1(r, ζ). (10)

From equation (9) and (10), we get

|g(r)− g(ζ)| < ε+
2J
θ2
µ1(r, ζ),

which implies that

−ε− 2J
θ2
µ1(r, ζ) 5 g(r)− g(ζ) 5 ε+

2J
θ2
µ1(r, ζ). (11)
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Now, since Am(1; ζ) is monotone and linear, by applying the operator Am(1; ζ) to
this inequality, we have

Am(1; ζ)

(
−ε− 2J

θ2
µ1(r, ζ)

)
5 Am(1; ζ)(g(r)− g(ζ))

5 Am(1; ζ)

(
ε+

2J
θ2
µ1(r, ζ)

)
.

We note that ζ is fixed and so g(ζ) is a constant number. Therefore, we have

−εAm(1; ζ)− 2J
θ2

Am(µ1; ζ) 5 Am(g; ζ)− g(ζ)Am(1; ζ)

5 εAm(1; ζ) +
2J
θ2

Am(µ1; ζ). (12)

Also, we know that

Am(g; ζ)− g(ζ) = [Am(g; ζ)− g(ζ)Am(1; ζ)] + g(ζ)[Am(1; ζ)− 1]. (13)

Using (12) and (13), we have

Am(g; ζ)− g(ζ) < εAm(1; ζ) +
2J
θ2

Am(µ1; ζ) + g(ζ)[Am(1; ζ)− 1]. (14)

We now estimate Am(µ1; ζ) as follows:

Am(µ1; ζ) = Am((2r − 2ζ)2; ζ) = Am(2r2 − 8ζr + 4ζ2; ζ)

= Am(4r2; ζ)− 8tAm(r; ζ) + 4ζ2Am(1; ζ)

= 4[Am(r2; ζ)− ζ2]− 8t[Am(r; ζ)− ζ]

+ 4ζ2[Am(1; ζ)− 1].

Using (14), we obtain

Am(g; ζ)− g(ζ) < εAm(1; ζ) +
2J
θ2
{4[Am(r2; ζ)− ζ2]

− 8ζ[Am(r; ζ)− ζ] + 4ζ2[Am(1; ζ)− 1]}
+ g(ζ)[Am(1; ζ)− 1].

= ε[Am(1; ζ)− 1] + ε+
2L
θ2
{4[Am(r2; ζ)− ζ2]

− 8ζ[Am(r; ζ)− ζ] + 4ζ2[Am(1; ζ)− 1]}
+ g(ζ)[Am(1; ζ)− 1].

Since ε > 0 is arbitrary, we can write

|Am(g; ζ)− g(ζ)| 5 ε+

(
ε+

8J
θ2

+ J
)
|Am(1; ζ)− 1|

+
16J
θ2
|Am(r; ζ)− ζ|+ 8J

θ2
|Am(r2; ζ)− ζ2|

5 A(|Am(1; ζ)− 1|+ |Am(r; ζ)− ζ|
+ |Am(r2; ζ)− ζ2|), (15)

where

A = max

(
ε+

8J
θ2

+ J , 16J
θ2

,
8J
θ2

)
.



A NEW APPROACH TO KOROVKIN-TYPE THEOREMS 309

Now, for a given ω > 0, there exists ε > 0 (ε < ω) such that

Lm(ζ;ω) = {m : m 5 Pk and pϕk−% |Am(g; ζ)− g(ζ)| = ω} .
Furthermore, for ν = 0, 1, 2, we have

Lν,m(ζ;ω) =

{
m : m 5 Pk and pϕk−% |Am(g; ζ)− gν(ζ)| = ω − ε

3A

}
,

so that

Lm(ζ;ω) 5
2∑

ν=0

Lν,m(ζ;ω).

Clearly, we obtain

‖Lm(ζ;ω)‖C[0,1]
Pk

5
2∑

ν=0

‖Lν,m(ζ;ω)‖C[0,1]
Pk

. (16)

Now, using the above assumption about the implications in (5) to (7) and by Definition
2.1, the right-hand side of (16) tends to zero as n→∞. Consequently, we get

lim
k→∞

‖Lm(ζ;ω)‖C[0,1]
Pk

= 0 (δ, ω > 0).

Therefore, the implication (4) holds true. This completes the proof of Theorem 3.1.
�

Theorem 3.2. Let

Aj : C[0, 1]→ C[0, 1]

be a sequence of positive linear operators. Then, for all g ∈ C[0, 1],

statDNR lim
j→∞

‖Aj(g; ζ)− g(ζ)‖∞ = 0 (17)

if and only if

statDNR lim
j→∞

‖Aj(1; ζ)− 1‖∞ = 0, (18)

statDNR lim
j→∞

‖Aj(ζ; ζ)− ζ‖∞ = 0 (19)

and

statDNR lim
j→∞

‖Aj(ζ2; ζ)− ζ2‖∞ = 0. (20)

Proof. The proof of Theorem 3.2 is similar to the proof of Theorem 3.1. We, therefore,
choose to skip the details involved. �

In view of Theorem 3.2, here we consider an example that a sequence of positive
linear operators that does not work via the statistical version of the deferred Nörlund
Riemann integrable sequence of functions (Theorem 3.1). However, it fairly works on
Theorem 3.2. In this sense we say that Theorem 3.2 is a non-trivial extension of the
statistical Nörlund Riemann integrable sequence of functions (Theorem 3.1).

We now recall the operator

ζ(1 + ζD)

(
D =

d

dζ

)
, (21)
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which was used by Al-Salam [2] and, more recently, by Viskov and Srivastava [26]
(see [14] and [23]).

Example 3.1. Consider the Bernstein polynomial Bn(g;β) on C[0, 1] given by (see
also [24])

Bk(g;β) =

k∑
%=0

g
(%
k

)(k
%

)
β%(1− b)k−% (β ∈ [0, 1]; k = 0, 1, · · ·). (22)

We now introduce the positive linear operators on C[0, 1] under the composition of
Bernstein polynomial and the operators given by (21) as follows:

A%(g;β) = [1 + g%]β(1 + βD)B%(g;β) (∀ g ∈ C[0, 1]), (23)

where (g%) is the same as mentioned in Example 2.1.

We now estimate the values of each of the testing functions 1, β and β2 by using
our proposed operators (23) as follows:

A%(1;β) = [1 + g%]β(1 + βD)1 = [1 + g%]β,

A%(t;β) = [1 + g%]β(1 + βD)β = [1 + g%]β(1 + β)

and

A%(t
2;β) = [1 + g%]β(1 + βD)

{
β2 +

β(1− β)

%

}
= [1 + g%]

{
β2

(
2− 3β

%

)}
.

Consequently, we have

statDNR lim
%→∞

‖A%(1;β)− 1‖∞ = 0, (24)

statDNR lim
%→∞

‖A%(β;β)− β‖∞ = 0 (25)

and

statDNR lim
%→∞

‖A%(β2;β)− β2‖∞ = 0, (26)

that is, the sequence A%(g;β) satisfies the conditions (18) to (20). Therefore, by
Theorem 3.2, we have

statDNR lim
%→∞

‖A%(g;β)− g‖∞ = 0.

The given sequence (gk) of the functions mentioned in Example 2.1 is statistically
deferred Nörlund Riemann summable, but not deferred Nörlund statistically Riemann
integrable. Therefore, our proposed operators defined by (23) satisfy Theorem 3.2;
however, they do not satisfy the statistical versions of deferred Nörlund Riemann
integrable sequence of functions (Theorem 3.1).
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4. Conclusion

In this concluding section of our investigation, we further observe the potentiality of
our Theorem 3.2 over Theorem 3.1 as well as over classical version of the Korovkin-
type approximation theorems.

Let us consider sequence (g%)%∈N of functions in Example 2.1 and also that (g%) is
statistically deferred Nörlund Riemann summable, so that

statDNR lim
%→∞

δ(g%; Ṗ) =
1

2
on [0, 1].

Then we have

statDNR lim
k→∞

‖Ak(gν ; ζ)− gν(ζ)‖∞ = 0 (ν = 0, 1, 2). (27)

Thus, by Theorem 3.2, we immediately get

statDNR lim
j→∞

‖Ak(g; ζ)− g(ζ)‖∞ = 0, (28)

where

g0(ζ) = 1, g1(ζ) = ζ and g2(ζ) = ζ2.

As the given sequence (gk) of functions is statistically deferred Nörlund Riemann sum-
mable, but neither deferred Nörlund statistically Riemann integrable nor classically
Riemann integrable. Therefore, our Korovkin-type approximation Theorem 3.2 prop-
erly works under the operators defined in the equation (23), but the classical as well
as statistical versions of deferred Nörlund Riemann integrable sequence of functions
do not work for the same operators. In view of this observation, we certainly say
that our Theorem 3.2 is a non-trivial extension of Theorem 3.1 as well as the classical
Korovkin-type approximation theorem [12].
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