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Abstract. Let Fq be a finite field, where q is a power of a prime p such that p ≥ 5. Let α be
a root of a monic polynomial of a minimal degree over Fq . In this paper, we will study elliptic

curves over (Fq [α],+, ∗), where + is the usual addition and ∗ represent a non-standard product

law over Fq [α]. Using elliptic curves over this ring can result in a cryptographic method that
is fast, simple and secure.
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1. Introduction

Let Fq be a finite field, where q is a power of a prime p such that p ≥ 5. An elliptic
curve Ea,b over Fq is given by the Weierstrass equation Y 2Z = X3 + aXZ2 + bZ3,
where the coefficients a, b are in Fq.
It is well known that elliptic curves are a versatile cryptographic tool [2, 4, 6, 19, 20,
21, 22, 25], and in particular, that their group structure plays a crucial role in such
applications, see [13, 14, 18, 23].
This work follows the series of works that study elliptic curves on finite rings. This
study was introduced by M. Virat over the ring Fq[e], e2 = 0, where q is a prime ≥ 5
[29]. Then the second author A. Chillali develops and generalizes this work to the
ring Fq[e], en = 0 [9]. In addition, elliptic curves on a local ring of characteristic 3
have been studied by Hassib et al [11]. For the characteristic 2, the study is done
by Tadmori et al in [27]. Also, he studied in [25, 26] such curves over a non-local
ring. In the same context of a nonlocal ring, Boulbot et al have studied this kind of
curve over Fq[e], e3 = e2 [4], and over Fq[e], e2 = e [5]. In this work, we study elliptic
curves defined on the ring Fq[α], where α is a root of a monic polynomial P (X) of
minimal degree denoted by n on Fq. The new advantage of this approach is to obtain
a large number of points with a smaller prime p, because we will prove ]Ea,b(Fq[α]) =∏n−1
k=0 ]Ek (Corollary 3.6), in order to reserve memory for the calculations. Moreover,

the group law of Ea,b is easy to calculate in the forward direction, but difficult in
the reverse direction. Thus, in this paper, we will define a non-standard way of
multiplying ∗ elements on Fq[α], as follows, for X =

∑n−1
k=0 xkα

k, Y =
∑n−1
k=0 ykα

k,
we have

X ∗ Y =

n−1∑
k=0

Akα
k, such thatA0 = x0y0, Ak = Pk(X)ϕk−1(Y ) + Pk(Y )ϕk(X)
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where Pk and ϕk are a collection of maps from Fq[α] to Fq defined as follows:

Fq[α]
Pk−→ Fq

X 7−→ xk
and

Fq[α]
ϕk−→ Fq

X 7−→
∑k
j=0 Pj(X)

.

In the rest of this paper, we will use the following notation:
• For X ∈ Fq[α], we have X∗n = X ∗X ∗ ... ∗X︸ ︷︷ ︸

n times

,

• Ea,b for an elliptic curve over the ring (Fq[α],+, ∗) given by a Weierstrass equa-
tion Y ∗2∗Z = X∗3+aX∗Z∗2+bZ∗3, such that the discriminant D = 4a∗3+27b∗2

is invertible in Fq[α].
Another objective of this work is the application of these results in cryptography.
We describe here one of the variants of the ElGamal public key encryption scheme
[10], the Cramer-Shoup elliptic curve encryption scheme [7]. In the same context
of Cramer-Shoup encryption, the second author et al presents a new variant of the
Cramer-Shoup public key encryption system on a twisted Hessian curve over the ring
Fq[ε], ε4 = 0 [15]. Since we are working in the ring Fq[α], the new scheme that we will
define on the elliptic curve Ea,b has the advantage of having a low complexity cost
compared to the elliptic curves over a field.

2. The ring (Fq[α],+, ∗)

In this section we will give some results concerning the ring (Fq[α],+, ∗), which are
useful for the rest of this article. We keep the same notation as above. So, let Fq[α]

be the set endowed by the usual addition X + Y =
∑n−1
k=0(xk + yk)αk, and by the

product law *, X ∗ Y =
∑n−1
k=0 Akα

k where A0 = x0y0, and Ak = Pk(X)ϕk−1(Y ) +
Pk(Y )ϕk(X).
We then have the following results.

Lemma 2.1. ϕk is a surjective morphism.

Proof. First we will prove that for each k ∈ {0, ..., n− 1}, ϕk is a morphism:

Let X =
∑n−1
k=0 xkα

k and Y =
∑n−1
k=0 ykα

k be two elements of Fq[α].

• ϕk(X + Y ) =
∑k
j=0 Pj(X + Y ) =

∑k
j=0(Pj(X) + Pj(Y )) =

∑k
j=0 Pj(X) +∑k

j=0 Pj(Y ) = ϕk(X) + ϕk(Y )

• For k = 0, ϕ0(X ∗ Y ) = A0 = x0y0 = ϕ0(X)ϕ0(Y ). Suppose that for k ∈
{0, ..., n− 1} ϕk−1(X ∗ Y ) = ϕk−1(X)ϕk−1(Y ), then we obtain

ϕk(X ∗ Y ) = ϕk−1(X ∗ Y ) +Ak = ϕk−1(X)ϕk−1(Y ) + xkϕk−1(Y ) + ykϕk(X).

On the other hand, for any element s in Fq, we put X=s then we have ϕk(X) = s for
all k ∈ {0, ..., n− 1}, hence ϕk is surjective. �

Lemma 2.2. The product law ∗ is well defined.

Proof. We will show respectively, that ∗ is commutative, associative and distributive
with respect to the law +.
Let X, Y and Z be elements of Fq[α]:
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• Put X ∗Y =
∑n−1
k=0 Akα

k and Y ∗X =
∑n−1
k=0 Bkα

k, we shall prove that X ∗Y =
Y ∗X this turns out to prove that Ak = Bk for all k ∈ {0, ..., n− 1}.
This follows immediately that:

Ak = Pk(X)ϕk−1(Y ) + Pk(Y )ϕk(X)

= Pk(X)ϕk−1(Y ) + Pk(Y )ϕk−1(X) + Pk(Y )Pk(X) = Bk.

• We shall prove that X ∗ (Y ∗ Z) = (X ∗ Y ) ∗ Z. Put X ∗ (Y ∗ Z) =
∑n−1
k=0 Ckα

k

and (X ∗ Y ) ∗ Z =
∑n−1
k=0 Dkα

k.
We have Ck = ϕk(X ∗ (Y ∗Z))−ϕk−1(X ∗ (Y ∗Z)) and Dk = ϕk((X ∗Y ) ∗Z)−
ϕk−1((X ∗ Y ) ∗ Z).
Thus, we obtains:

Ck = ϕk(X ∗ (Y ∗ Z))− ϕk−1(X ∗ (Y ∗ Z)) = ϕk(X)ϕk(Y ∗ Z)− ϕk−1(X)ϕk−1(Y ∗ Z)

= ϕk(X)ϕk(Y )ϕk(Z)− ϕk−1(X)ϕk−1(Y )ϕk−1(Z)

= ϕk(X ∗ Y )ϕk(Z)− ϕk−1(X ∗ Y )ϕk(Z)

= ϕk((X ∗ Y ) ∗ Z)− ϕk−1((X ∗ Y ) ∗ Z)

= Dk

• Put X∗Y =
∑n−1
k=0 Bkα

k and X∗Z =
∑n−1
k=0 Ckα

k, where Bk = Pk(X)ϕk−1(Y )+
Pk(Y )ϕk(X) and Ck = Pk(X)ϕk−1(Z) + Pk(Z)ϕk(X).

So from the definition of ∗ it follows that, X ∗ (Y + Z) =
∑n−1
k=0 Akα

k,
where Ak = Pk(X)ϕk−1(Y + Z) + Pk(Y + Z)ϕk(X), then

Ak = Pk(X)(ϕk−1(Y ) + ϕk−1(Z)) + (Pk(Y ) + Pk(Z))ϕk(X)

= Pk(X)ϕk−1(Y ) + Pk(X)ϕk−1(Z) + Pk(Y )ϕk(X) + Pk(Z)ϕk(X)

So Ak = Bk + Ck.
�

Corollary 2.3.
• The set Fq[α] endowed by the laws ” + ” and ” ∗ ” is a finite unitary commutative
ring.
• Fq[α] is a vector space over Fq of dimension n, and (1, α, ..., αn−1) is its basis.

2.1. Inverse elements over Fq[α]. The next proposition characterize the set (Fq[α])×

of invertible elements in Fq[α].

Proposition 2.4. Let X =
∑n−1
k=0 xkα

k ∈ Fq[α], then X ∈ Fq[α]× if and only if
ϕk(X) 6= 0 for all k ∈ {0, 1, ..., n− 1}. The inverse is given by:

X−1 = ϕ0(X)−1 −
n−1∑
k=1

xkϕk−1(X)−1ϕk(X)−1αk

Proof. Let X be an invertible element of Fq[α], then there exists Y in Fq[α] such that

X ∗ Y =
∑n−1
k=0 Akα

k = 1 so for each k such that 1 ≤ k ≤ n− 1, A0 = 1 and Ak = 0,

then we have y0 = x−10 and Ak = ϕk(X ∗ Y )− ϕk−1(X ∗ Y ) = 0.
It follows that ϕk(X)ϕk(Y )−ϕk−1(X)ϕk−1(Y ) = 0, then (ϕk−1(X)+xk)(ϕk−1(Y )+
yk)− ϕk−1(X)ϕk−1(Y ) = 0.
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Therefore ykϕk−1(X) + xkϕk−1(Y ) + xkyk = 0, so yk[ϕk−1(X) + xk] = −xkϕk−1(Y ).
we get that {

y0 = x−10 ,
yk = −xkϕk(X)−1ϕk−1(X)−1 1 ≤ k ≤ n− 1.

Then we have

Y = X−1 = ϕ0(X)−1 −
n−1∑
k=1

xkϕk−1(X)−1ϕk(X)−1αk.

From the above, it follows that X is invertible in Fq[α] if and only if ϕk(X) 6=
0 for all k in {0, 1, ..., n− 1}.
In the following proposition, we prove that Fq[α] endowed by the law ” + ” and ” ∗ ”
is a non local ring. �

Proposition 2.5. (Fq[α],+, ∗) is a non local ring.

Proof. Consider I = ∪n−1k=0Ik the set of non invertible elements of Fq[α] with

Ik = {X ∈ Fq[α]/ϕk(X) = 0}

We shall prove that the set of non invertible elements over Fq[α] is not an ideal, so
for a ∈ Fq let X = a − aα, Y = aα two elements of I, then X + Y = a ∈ Fq, hence
the result. �

3. Elliptic curves over Fq[α]

In most situations in this article, we will refer to an elliptic curve, E, by an equation
of the form

y2 = x3 + ax+ b,

called the Weierstrass equation for E, where a and b are constants. In our case, they
are elements of a finite field Fq or of the ring Fq[α].
In what follows, we study the elliptic curve Ea,b over Fq[α]. For this purpose, we
define restrictions Ek of Ea,b on the finite field Fq.

3.1. The elliptic curves Ek. In what follows, we will use the following notation,
for a =

∑n−1
k=0 akα

k and b =
∑n−1
k=0 bkα

k in Fq[α] we put

for k ∈ {0, 1, ..., n−1} , Ek = {[X : Y : Z] ∈ P 2(Fq)/Y 2Z = X3+ϕk(a)XZ2+ϕk(b)Z3}

and Dk = 4ϕk(a)3 + 27ϕk(b)2 is its discriminant.
The following theorem gives a link between Ea,b(Fq[α]) and Ek.

Theorem 3.1. Let Fq be a finite field where q = pd, d is a positive integer, p ≥ 5 is
a prime number, and α be a root of a monic polynomial P (X) of a minimal degree
over Fq denoted by n. Then there exist elliptic curves Ek defined over Fq, for k ∈
{0, ..., n− 1}, such that

Ea,b(Fq[α]) '
n−1∏
k=0

Ek

Lemma 3.2. D is invertible in Fq[α] if and only if Dk 6= 0 for all k ∈ {0, 1, ..., n− 1}.
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Proof. We have D = 4a∗3 + 27b∗2 ∈ Fq[α] such that a =
∑n−1
k=0 akα

k, b =
∑n−1
k=0 bkα

k

and D =
∑n−1
k=0 Akα

k. Since
∑k
j=0Aj = ϕk(D) = ϕk(4a∗3 + 27b∗2) = Dk, we have

Ak = ϕk(D) − ϕk−1(D) = Dk − Dk−1, so D =
∑n−1
k=0 Akα

k = D0 +
∑n−1
k=1(Dk −

Dk−1)αk. From the proof of the proposition 2.4 we deduce that, D is invertible in
Fq[α] if and only if Dk 6= 0 for all k ∈ {0, 1, ..., n− 1}. �

Corollary 3.3. Ea,b(Fq[α]) is an elliptic curve over Fq[α], if and only if Ek is an
elliptic curves over Fq for all k ∈ {0, ..., n− 1}.

The following theorem gives a relation between the elements of Ea,b(Fq[α]) and the
elements of Ek for all k ∈ {0, ..., n− 1}.
Theorem 3.4. Let X, Y and Z be elements of Fq[α], then the following statements
are equivalent:
• [X : Y : Z] ∈ Ea,b(Fq[α]),

• [ϕk(X) : ϕk(Y ) : ϕk(Z)] ∈ Ek, for all k ∈ {0, 1, ..., n− 1}.

Proof. Let [X : Y : Z] in Ea,b(Fq[α]) ⊂ P 2(Fq[α]), then there exist U, V and W in
Fq[α] such that,
U ∗X+V ∗Y +W ∗Z = 1. So, ϕk(U ∗X+V ∗Y +W ∗Z) = 1 for all k ∈ {0, 1, ..., n−1},
and then ϕk(U)ϕk(X) + ϕk(V )ϕk(Y ) + ϕk(W )ϕk(Z) = 1, for all k ∈ {0, 1, ..., n− 1}
and [ϕk(U) : ϕk(V ) : ϕk(W )] belong in P 2(Fq).
We deduce that (ϕk(X), ϕk(Y ), ϕk(Z)) 6= (0, 0, 0) and we have [ϕk(X) : ϕk(Y ) :
ϕk(Z)] ∈ Ek.

Reciprocally, let [xk : yk : zk] in Ek, and put X = x0 +
∑n−1
k=1(xk − xk−1)αk,

Y = y0 +
∑n−1
k=1(yk − yk−1)αk, Z = z0 +

∑n−1
k=1(zk − zk−1)αk.

If X is invertible then [X : Y : Z] ∈ P 2(Fq[α]). Suppose next, that X is not invertible
then there exists l ∈ {0, 1, ..., n− 1} such that ϕl(X) = 0.
Consider the set IX = {l | ϕl(X) = 0, l ∈ {0, 1, ..., n − 1}} and k = min IX , then
ϕk(X) = 0. It follows that ϕk(Y ) 6= 0 or ϕk(Z) 6= 0, because [ϕk(X) : ϕk(Y ) :
ϕk(Z)] ∈ Ek.
Without loss of generality, suppose that ϕk(Y ) 6= 0, and put T = X + αk ∗ Y .
If k = n − 1, then ϕn−1(Y ) 6= 0, thus T = X + αn−1 ∗ Y ∈ (Fq[α])×. On the other
hand we will distinguish between two cases:
If ϕj(X) 6= −ϕj(Y ), for k < j ≤ n− 1, then we have T = X + αk ∗ Y ∈ (Fq[α])×.
If there exists k < j ≤ n − 1, such that ϕj(X) = −ϕj(Y ) then ϕj(T ) = 0. Suppose
that j = min IT then we have ϕj(X) 6= 0 or ϕj(Y ) 6= 0 or ϕj(Z) 6= 0 and we apply
the above reasoning to T.
So on until we find an invertible element write in the form of linear combine of X, Y
and Z. �

Proposition 3.5. For i ∈ {0, 1, ..., n− 1}, the mappings ϕ̃i is well defined, and given
by:

Ea,b(Fq[α])
ϕ̃i−→ Ei

[X : Y : Z] 7−→ [ϕi(X) : ϕi(Y ) : ϕi(Z)]

Proof. According to the previous theorem, we have

[ϕi(X) : ϕi(Y ) : ϕi(Z)] ∈ Ei, for all i ∈ {0, ..., n− 1}.
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If [X : Y : Z] = [A : B : C], then there exists U ∈ (Fq[α])
×

such that: X = U ∗ A,
Y = U ∗B and Z = U ∗ C, then:

ϕ̃i ([X : Y : Z]) = [ϕi (X) : ϕi (Y ) : ϕi (Z)]

= [ϕi(U)ϕi(A) : ϕi(U)ϕi(B) : ϕi(U)ϕi(C)]︸ ︷︷ ︸
ϕi(U)∈F∗

q

= [ϕi (A) : ϕi (B) : ϕi (C)]

= ϕ̃i([A : B : C]).

It remains to check that this map is well defined in terms of Weierstrass equation.
Let X, Y, Z, a and b in Fq[α], so we have Y ∗2 ∗Z =

∑n−1
k=0 Akα

k, X∗3 =
∑n−1
k=0 Bkα

k,

a ∗X ∗ Z∗2 =
∑n−1
k=0 Ckα

k and b ∗ Z∗3 =
∑n−1
k=0 Tkα

k, such that
Ak = ϕk(Y )2ϕk(Z)− ϕk−1(Y )2ϕk−1(Z), Bk = ϕk(X)3 − ϕk−1(X)3,
Ck = ϕk(a)ϕk(X)ϕk(Z)2 − ϕk−1(a)ϕk−1(X)ϕk−1(Z)2 and Tk = ϕk(b)ϕk(Z)3 −
ϕk−1(b)ϕk−1(Z)3.
We deduce that Y ∗2 ∗Z = X∗3 +a∗X ∗Z∗2 +b∗Z∗3 if and only if Ak = Bk+Ck+Tk
for all k ∈ {0, 1, ...n− 1} hence the result. �

Proof of Theorem 3.1. To prove the isomorphism of the theorem, we will first prove
that the curve Ea,b(Fq[α]) is in bijection with

∏n−1
k=0 Ek. So we consider the mapping

ϕ̃ defined by

Ea,b(Fq[α])
ϕ̃−→

∏n−1
k=0 Ek

[X : Y : Z] 7−→
∏n−1
k=0 [ϕk(X) : ϕk(Y ) : ϕk(Z)]

• As ϕ̃k are well defined, then ϕ̃ is well defined.
• ϕ̃ is a surjective map:

Let [xk : yk : zk] ∈ Ek, then

[X : Y : Z] ∈ Ea,b(Fq[α])

where X = x0 +
∑n−1
k=1 (xk − xk−1)αk, Y = y0 +

∑n−1
k=1 (yk − yk−1)αk and Z =

z0 +
∑n−1
k=1 (zk − zk−1)αk.

So we have:

ϕ̃

([
x0 +

n−1∑
k=1

(xk − xk−1)αk : y0 +

n−1∑
k=1

(yk − yk−1)αk : z0 +

n−1∑
k=1

(zk − zk−1)αk

])

=

n−1∏
k=0

[ϕk(x0 +

n−1∑
k=1

(xk − xk−1)αk) : ϕk(y0 +

n−1∑
k=1

(yk − yk−1)αk) :

ϕk(z0 +

n−1∑
k=1

(zk − zk−1)αk)]

=

n−1∏
k=0

([xk : yk : zk])

hence ϕ̃ is a surjective mapping.
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• It’s remains to show that ϕ̃ is injective, for that lets [X : Y : Z] and [X ′ : Y ′ : Z ′]

in Ea,b(Fq[α]), where X =
∑n−1
k=0 xkα

k, Y =
∑n−1
k=0 ykα

k, Z =
∑n−1
k=0 zkα

k,

X ′ =
∑n−1
k=0 x

′
kα

k, Y ′ =
∑n−1
k=0 y

′
kα

k and Z ′ =
∑n−1
k=0 z

′
kα

k. Suppose that
[ϕk(X) : ϕk(Y ) : ϕk(Z)] = [ϕk(X ′) : ϕk(Y ′) : ϕk(Z ′)], then there exist βk ∈ (Fq)×
for all k ∈ {0, 1, ..., n− 1} such that ϕk(X) = βkϕk(X ′)

ϕk(Y ) = βkϕk(Y ′)
ϕk(Z) = βkϕk(Z ′)

, so

 xk = βkϕk(X ′)− βk−1ϕk−1(X ′)
yk = βkϕk(Y ′)− βk−1ϕk−1(Y ′)
zk = βkϕk(Z ′)− βk−1ϕk−1(Z ′)

.

Then we have

 xk = βkx
′
k + (βk − βk−1)ϕk−1(X ′)

yk = βky
′
k + (βk − βk−1)ϕk−1(Y ′)

zk = βkz
′
k + (βk − βk−1)ϕk−1(Z ′)

.

Consider β = β0 +
∑n−1
k=1(βk − βk−1)α, it follows that xk = Pk(X ′)ϕk(β) + Pk(β)ϕk(X ′)
yk = Pk(Y ′)ϕk(β) + Pk(β)ϕk(Y ′)
zk = Pk(Z ′)ϕk(β) + Pk(β)ϕk(Z ′)

.

Finally we have X = β ∗ X ′, Y = β ∗ Y ′, Z = β ∗ Z ′ and β ∈ (Fq[α])× then
[X : Y : Z] = [X ′ : Y ′ : Z ′].
Hence ϕ̃ is a bijection.

We can show that the mapping ϕ̃−1 defined by:
ϕ̃−1(

∏n−1
k=0 [xk : yk : zk]) = [x0 +

∑n−1
k=1 (xk − xk−1)αk : y0 +

∑n−1
k=1 (yk − yk−1)αk :

z0 +
∑n−1
k=1 (zk − zk−1)αk]

is the inverse of ϕ̃. �

Corollary 3.6. With the same notation as above, we have

]Ea,b(Fq[α]) =

n−1∏
k=0

]Ek.

Example 3.1. Lets a = 2 + 3α+α2 − 5α3, b = 1 + 2α2 − 6α7 +α12 and α be a root
of a monic polynomial of a minimal degree over F691, such that d◦P (X) = 13. So, we
have
card(E0) = 726, card(E1) = 714, card(E2) = 678, card(E3) = 652, card(E4) = 652,
card(E5) = 652, card(E6) = 652, card(E7) = 732, card(E8) = 732, card(E9) = 732,
card(E10) = 732, card(E11) = 732 and card(E12) = 684.

In view of ]Ea,b =
∏12
k=0 ]Ek, we obtain

]Ea,b = 9129908315612361216892839871943540736.

To complete the proof of the Theorem 3.1, we will define the group law on Ea,b, in
the following subsection.

3.2. The group law ? over Ea,b. To define the group law ? over Ea,b, we use the
explicit formulas in the article [3] [pages : 236-238], and since ϕ̃ is bijection we can
define ? as follows P ? Q = ϕ̃−1(ϕ̃(P ) + ϕ̃(Q)) for P, Q ∈ Ea,b.

Lemma 3.7. The mapping

(Ea,b(Fq[α]), ?)
ϕ̃−→ (

∏n−1
k=0 Ek,+)

[X : Y : Z] 7−→
∏n−1
k=0 [ϕk(X) : ϕk(Y ) : ϕk(Z)]
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is an isomorphism of groups.

Proof. From the previous theorem we have ϕ̃ is a bijection and according to the
construction of the group law over Ea,b we have

ϕ̃([X : Y : Z] ? [X ′ : Y ′ : Z ′]) = ϕ̃([X : Y : Z]) + ϕ̃([X ′ : Y ′ : Z ′]).

So ϕ̃ is an isomorphism of groups. �

Which ends the demonstration of Theorem 3.1.

4. Applications

In cryptography applications, we have:
• If ]Ea,b(Fq[α]) := n is an odd number, then n =

∏n−1
k=0 nk is the factorization of

n, where nk := ]Ek, hence the cardinal of Ea,b(Fq[α]) is not a prime number.

• The discrete logarithm problem [1, 22] in Ea,b(Fq[α]) is equivalent to the

discrete logarithm problem in
∏n−1
k=0 Ek.

5. Cramer-Shoup Elliptic curve cryptosystem

The Cramer-Shoup cryptosystem for Ea,b essentially consists in mapping the oper-
ations usually performed in the multiplicative group Zp to the set of points of the
elliptic curve Ea,b, endowed with an additive group law.
Alice and Bob want to communicate in a secure way, for that they choose the ini-
tialization parameters of the Cramer-Shoup elliptic curve cryptosystem,
• A large prime number p, m,n ∈ N∗.

• A finite ring Fq[α].

• An elliptic curve Ea,b such that 4a3 + 27b2 is invertible in Fq[α].

• A point P ∈ Ea,b of large prime order τ and the cyclic group G = 〈P 〉.

5.1. Coding of the elements of G. Let for example P = [2 + 8α : 10 + 4α : 1] ∈
E1+2α,2 (F11[α]) , P is of order τ = 104.
We will use the subgroup G =< P > of E1+2α,2(F11[α]) to encrypt message. Thus,
for each element Q = m · P ∈ G, where m ∈ {1, 2, . . . τ}, we will give a code.
Let Q = [

∑n
k=0 xkα

k :
∑n
k=0 ykα

k :
∑n
k=0 zkα

k] where, xk, yk and zk are elements of
Fq, for i ∈ {0, ..., n}.
Thus, we code Q as follows:

Q = x0...xny0...ynz0...zn︸ ︷︷ ︸
3×(n+1)

We also attach any element Q ∈ G with a letter of the alphabet or a punctuation
sign.
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5.2. Cramer-Shoup Ea,b cryptosystem Key generation. The generation of a
public key in Ea,b is as follows:
• Alice chooses five random integers (c1, c2, s1, s2, x1, x2) ∈ (Fτ )5.
• Alice computes E1 = c1P, E2 = c2P, E3 = s1P + s2E1, E4 = x1P + x2E1.

Then, the public key is {P, E1, E2, E3, E4} and the private key is (c1, c2, s1, s2, x1, x2) .

5.2.1. Encryption of message. To encrypt a message Pm to Alice under her public
key {P, E1, E2, E3, E4}, we use the following statement:
• Bob converts the plaintext message Pm to a point Pm = (Xm, Ym, Zm) on the

elliptic curve Ea,b with Xm 6= 0, Ym 6= 1, Zm 6= 0.
• Bob chooses a random k ∈ Fτ , and calculates: W1 = kP , W2 = kE1, u =
kE2 + Pm, δ = H (W1,W2, u) (where H() is a collision-resistant hash function),
R = kE3 + kδE4.

• Bob sends the ciphertext (W1,W2, u,R) to Alice.

5.2.2. Decryption of message. To decrypt this message, with Alice’s secret key
(c1, c2, s1, s2, x1, x2) :
• Alice computes δ = H (W1,W2, u), and verifies that

s1W1 + s2W2 + δ (x1W1 + x2W2) = R.

If this test fails, further decryption is aborted and the output is rejected.
• Otherwise, Alice computes Pm = u − c2W1. The decryption stage correctly

decrypts any properly-formed ciphertext, since

u− c2W1 = kE2 + Pm − c2kP = kc2P + Pm − wkP = Pm.

5.3. Security of this protocol. In this section, we discuss the security and compare
it to other schemes.

5.3.1. Security. Our system is secure for the following reasons:
• Cramer-Shoup Ea,b cryptosystem is directly based on the difficulty of solving the
ECDLP over (G,+) of base P . In our system, we have V1 = kP, V2 = kQ, u =
kT + Pm, R = kE + kδK are the public equations. The point Pm = (Xm, Ym, Zm)
over Ea,b, the secret integer k and the collision-resistant hash function H are all
private.
• The security analysis of the Cramer-Shoup cryptosystem over Ea,b relies on the
difficulty of the decisional Diffie-Hellman (DDH) problem, which states that the tuple
(nP, mP, nmP) (where P is a base point) is indistinguishable from (nP, mP, eP),
where n, m, and e are integers randomly selected.

Remark 5.1. If we assume that we have the following two conditions:
• The hash function H is chosen in a universal one-way family.
• The Diffie-Hellman decision problem is difficult in the group G.
Then we have the following Lemma.

Lemma 5.1. The above cryptosystem is secure against adaptive chosen ciphertext
attack.

Proof. Since we assume that: the hash function H is chosen in a universal one-way
family, and The Diffie-Hellman decision problem is hard in the group G. which feels
the same conditions in Theorem 1, [Section 4] [7]. Hence the result. �
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5.4. Discussion and analysis. The Ea,b version of the Cramer-Shoup cipher is the
analog of the Cramer-Shoup cipher [7]. where,
• Multiplication operations replaced by additions.
• Exponentiation operations replaced by multiplication.
Since, ECLDP is hard to solve compared to DLP on fields, we can say that Cramer-
Shoup encryption at Ea,b is more secure than the original Cramer-Shoup encryption.
Moreover, we have sub-exponential algorithms that do DPL resolution over fields.
However, the cryptographic primitive used in our scheme is based on the difficulty of
DLP. Therefore, to ensure a sufficient level of security, it is necessary to work on large
fields, which means that we will increase the transmission costs, the implementation
and the computation time.
On the other hand, the Cramer-Shoup encryption over Ea,b is preferable to the one
over fields, due to the fact that the ECDLP is an exponential problem. In the same
context we cite two of the best algorithms in exponential time for solving the ECDLP
[16, 17, 22, 24] over an elliptic curve defined over finite fields. The Shanks Baby-Steps
Giant-Steps algorithm and Pollard’s p-method algorithm.
So, to ensure a maximum security of the cryptographic system, it is necessary to
choose well the elliptic curve on which we are going to work. For this reason our ellip-
tic curve Ea,b on the ring Fq[α] is to verify this condition because it increases the time

of resolution of the ECDLP because we have shown that ] (Ea,b(Fq[α])) =
∏n−1
k=0 ]Ek.

Therefore, we can say that the time needed to solve the ECLDP on Ea,b is larger than
the one for the elliptic curve on a finite field.
The Cramer-Shoup cryptosystem is one a more secure extension of ElGamal cryp-
tosystem. such as the 1st is based on (DDH-A)(Decisional Diffie-Hellman) on the
other hand ElGamal cryptosystem is based on (CDH-A)(Computational Diffie-Hellman
Assumption). Therefore, we have Cramer-Shoup on Ea,b is more secure than ElGa-
mal encryption scheme. On the other hand, among the inconviniant of Cramer-Shoup
cryptosystem on Ea,b is that the cipher text is longer than the plaintext.
Solving the ECLDP is more difficult than the IFP (Integer Factorization Problem).
Thus, the Cramer-Shoup cryptosystem on Ea,b is more secure than the RSA cryp-
tosystem. Moreover, ECLDP gives a higher level of security with small keys (in the
sense of sizes) than in the RSA or DSA cryptosystem.
Digital Signature Algorithm [8, 10]. The following table shows the length of the
key to achieve an appropriate security level of k-bit.

security symmetric elliptic curve asymmetric algorithms
level algorithms algorithms like: RSA, DSA and El Gamal
128 80 160 1024
1024 128 256 2048

We conclude that:
• the memory consumption in the Cramer-Shoup cryptosystem over Ea,b is much
lower than in the Cramer-Shoup signature scheme based on strong RSA [8].
• The size of the message encrypted in the Cramer-Shoup cryptosystem over Ea,b is
larger than in the RSA-based encryption.

5.5. Conclusion. In this work, we have extended the results for elliptic curves on
Fq[α] and related to elliptic curves over Fq by the Theorem 3.1. Moreover, we prove
that the discrete logarithm problem in Ea,b is equivalent to that in Ek. We also
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introduce the Cramer-Shoup cryptosystem on Ea,b which proves to be more secure
than his original cryptosystem [7] and his cryptosystem on elliptic curve [12, 28].
In other respects, it works with smaller key sizes than RSA, but results in a higher
ciphertext expansion rate.
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