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Some inequalities for sums involving the distance in metric
spaces

Silvestru Sever Dragomir

Abstract. Let (X, d) be a metric space and xi ∈ X, pi ≥ 0, i ∈ {1, ..., n} with
∑n

i=1 pi = 1.
In this paper we show among others that

2p−1

 n∑
k=1

pkd
2 (xk, x)−

(
n∑

k=1

pkd (xk, x)

)2
p

≤
∑

1≤i<j≤n

pipjd
2p (xi, xj) ≤ 22p−1

n∑
i=1

pid
2p (xi, x)

for p ≥ 1 and x ∈ X. Some examples for normed and inner product spaces are also given.
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1. Introduction

Let X be a nonempty set. A function d : X ×X → [0,∞) is called a distance on X
if the following properties are satisfied:
(d) d (x, y) = 0 if and only if x = y;

(dd) d (x, y) = d (y, x) for any x, y ∈ X (the symmetry of the distance);
(ddd) d (x, y) ≤ d (x, z) + d (z, y) for any x, y, z ∈ X (the triangle inequality).

The pair (X, d) is called in the literature a metric space.
Important examples of metric spaces are normed linear spaces. We recall that,

a linear space E over the real or complex number field K endowed with a function
‖·‖ : E → [0,∞), is called a normed space if ‖·‖ , the norm, satisfies the properties:
(n) ‖x‖ = 0 if and only if x = 0;

(nn) ‖αx‖ = |α| ‖x‖ for any scalar α ∈ K and any vector x ∈ E;
(nnn) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for each x, y ∈ E (the triangle inequality).

Further, we recall that, the linear space H over the real or complex number field
K endowed with an application 〈·, ·〉 : H ×H → K is called an inner product space, if
the function 〈·, ·〉 , called the inner product, satisfies the following properties:
(i) 〈x, x〉 ≥ 0 for any x ∈ H and 〈x, x〉 = 0 if and only if x = 0;

(ii) 〈αx+ βy, z〉 = α 〈x, z〉+ β 〈y, z〉 for any scalars α, β and any vectors x, y, z;

(iii) 〈y, x〉 = 〈x, y〉 for any x, y ∈ H.

Received September 27, 2022. March 21, 2023.

213



214 S. S. DRAGOMIR

It is well know that the function ‖x‖ :=
√
〈x, x〉 defines a norm on H and thus an

important example of normed spaces are the inner product spaces.
A fundamental inequality in metric spaces, which obviously follows by the triangle

inequality and mathematical induction, is the generalised triangle inequality, or the
polygonal inequality which states that: for any points x1, x2, ..., xn−1, xn (n ≥ 3) in a
metric space (X, d) , we have the inequality

d (x1, xn) ≤ d (x1, x2) + ...+ d (xn−1, xn) . (1)

The following result in the general setting of metric spaces holds [3].

Theorem 1.1. Let (X, d) be a metric space and xi ∈ X, pi ≥ 0, i ∈ {1, ..., n} with∑n
i=1 pi = 1. Then we have the inequality∑

1≤i<j≤n

pipjd (xi, xj) ≤ inf
x∈X

[
n∑

i=1

pid (xi, x)

]
. (2)

The inequality is sharp in the sense that the multiplicative constant c = 1 in front of
”inf ” cannot be replaced by a smaller quantity.

We have:

Corollary 1.2. Let (X, d) be a metric space and xi ∈ X, i ∈ {1, ..., n}. If there exists
a closed ball of radius r > 0 centered in a point x containing all the points xi, i.e.,
xi ∈ B (x, r) := {y ∈ X : d (x, y) ≤ r}, then for any pi ≥ 0, i ∈ {1, ..., n} with∑n

i=1 pi = 1 we have the inequality∑
1≤i<j≤n

pipjd (xi, xj) ≤ r. (3)

The inequality (2) and its consequences were extended to the case of b-metric spaces
in [4] and for natural powers of the distance in [1].

In the recent note [2] we provided some upper and lower bounds for the sum∑
1≤i<j≤n pipjd

s (xi, xj),

∑
1≤i<j≤n

pipjd
s (xi, xj) ≤

 2s−1 infx∈X [
∑n

i=1 pid
s (xi, x)] , if s ≥ 1,

infx∈X [
∑n

i=1 pid
s (xi, x)] , if 0 < s < 1

(4)

and (
2

1−
∑n

i=1 p
2
i

)s−1
 ∑

1≤i<j≤n

pipjd (xi, xj)

s

≤
∑

1≤i<j≤n

pipjd
s (xi, xj) , (5)

for s > 1, where (X, d) is a metric space, xi ∈ X, pi ≥ 0, i ∈ {1, ..., n} with
∑n

i=1 pi =
1.

In this paper we show among others that

2p−1

 n∑
k=1

pkd
2 (xk, x)−

(
n∑

k=1

pkd (xk, x)

)2
p

≤
∑

1≤i<j≤n

pipjd
2p (xi, xj) ≤ 22p−1

n∑
i=1

pid
2p (xi, x)
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for p ≥ 1 and x, xi ∈ X, pi ≥ 0, i ∈ {1, ..., n} with
∑n

i=1 pi = 1. Some examples for
normed and inner product spaces are also given.

2. Main results

We have the following results:

Theorem 2.1. Let (X, d) be a metric space and xi ∈ X, pi ≥ 0, i ∈ {1, ..., n} with∑n
i=1 pi = 1. Then we have the inequalities

0 ≤
n∑

k=1

pkd
2 (xk, x)−

(
n∑

k=1

pkd (xk, x)

)2

≤
∑

1≤i<j≤n

pipjd
2 (xi, xj) (6)

≤
n∑

k=1

pkd
2 (xk, x) +

(
n∑

k=1

pkd (xk, x)

)2

for all x ∈ X.

Proof. By the triangle inequality we have

|d (xi, x)− d (xj , x)| ≤ d (xi, xj) ≤ d (xi, x) + d (xj , x) (7)

for all x ∈ X and i, j ∈ {1, ..., n}.
By taking the square in (7), we get

(d (xi, x)− d (xj , x))
2 ≤ d2 (xi, xj) ≤ (d (xi, x) + d (xj , x))

2
,

namely

d2 (xi, x)− 2d (xi, x) d (xj , x) + d2 (xj , x) (8)

≤ d2 (xi, xj)

≤ d2 (xi, x) + 2d (xi, x) d (xj , x) + d2 (xj , x) ,

for all x ∈ X and i, j ∈ {1, ..., n}.
If we multiply (8) by pipj ≥ 0 and sum over i, j from 1 to n we get

n∑
i,j=1

pipj
[
d2 (xi, x)− 2d (xi, x) d (xj , x) + d2 (xj , x)

]
(9)

≤
n∑

i,j=1

pipjd
2 (xi, xj)

≤
n∑

i,j=1

pipj
[
d2 (xi, x) + 2d (xi, x) d (xj , x) + d2 (xj , x)

]
,

for all x ∈ X.
Since

n∑
i,j=1

pipjd
2 (xi, x) =

n∑
k=1

pkd
2 (xk, x) =

n∑
i,j=1

pipjd
2 (xj , x) ,

n∑
i,j=1

pipjd (xi, x) d (xj , x) =

(
n∑

k=1

pkd (xk, x)

)2
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and
n∑

i,j=1

pipjd
2 (xi, xj) = 2

∑
1≤i<j≤n

pipjd
2 (xi, xj) ,

hence by (9) we get

0 ≤ 2

n∑
k=1

pkd
2 (xk, x)− 2

(
n∑

k=1

pkd (xk, x)

)2

≤ 2
∑

1≤i<j≤n

pipjd
2 (xi, xj)

≤ 2

n∑
k=1

pkd
2 (xk, x) + 2

(
n∑

k=1

pkd (xk, x)

)2

for all x ∈ X, and the inequality (6) is proved. �

Remark 2.1. We observe that the second and third inequalities in (6) are equivalent
to ∣∣∣∣∣∣

∑
1≤i<j≤n

pipjd
2 (xi, xj)−

n∑
k=1

pkd
2 (xk, x)

∣∣∣∣∣∣ ≤
(

n∑
k=1

pkd (xk, x)

)2

(10)

for all x ∈ X.

The case pi = 1
n , i ∈ {1, ..., n} in (6) and (10) produces the inequalities

0 ≤ n
n∑

k=1

d2 (xk, x)−

(
n∑

k=1

d (xk, x)

)2

≤
∑

1≤i<j≤n

d2 (xi, xj) (11)

≤ n
n∑

k=1

d2 (xk, x) +

(
n∑

k=1

d (xk, x)

)2

and ∣∣∣∣∣∣
∑

1≤i<j≤n

d2 (xi, xj)− n
n∑

k=1

d2 (xk, x)

∣∣∣∣∣∣ ≤
(

n∑
k=1

d (xk, x)

)2

(12)

for xi, x ∈ X, i ∈ {1, ..., n}.

Corollary 2.2. Let (X, d) be a metric space and xi ∈ X, pi ≥ 0, i ∈ {1, ..., n} with∑n
i=1 pi = 1. Assume that S ⊂ X such that

sup
x∈S

[
n∑

k=1

pkd
2 (xk, x)

]
<∞,
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then we have the inequalities

0 ≤ sup
x∈S

[
n∑

k=1

pkd
2 (xk, x)

]
−

(
sup
x∈S

n∑
k=1

pkd (xk, x)

)2

(13)

≤
∑

1≤i<j≤n

pipjd
2 (xi, xj)

≤ sup
x∈S

[
n∑

k=1

pkd
2 (xk, x)

]
+

(
sup
x∈S

n∑
k=1

pkd (xk, x)

)2

≤ 2 sup
x∈S

[
n∑

k=1

pkd
2 (xk, x)

]
.

Proof. If we take the supremum over x ∈ S in (6), then we get

sup
x∈S

 n∑
k=1

pkd
2 (xk, x)−

(
n∑

k=1

pkd (xk, x)

)2


≤
∑

1≤i<j≤n

pipjd
2 (xi, xj)

≤ sup
x∈S

 n∑
k=1

pkd
2 (xk, x) +

(
n∑

k=1

pkd (xk, x)

)2
 . (14)

By the properties of supremum we have

sup
x∈S

 n∑
k=1

pkd
2 (xk, x) +

(
n∑

k=1

pkd (xk, x)

)2


≤ sup
x∈S

[
n∑

k=1

pkd
2 (xk, x)

]
+ sup

x∈S

(
n∑

k=1

pkd (xk, x)

)2

= sup
x∈S

[
n∑

k=1

pkd
2 (xk, x)

]
+

(
sup
x∈S

n∑
k=1

pkd (xk, x)

)2

and

sup
x∈S

 n∑
k=1

pkd
2 (xk, x)−

(
n∑

k=1

pkd (xk, x)

)2


≥ sup
x∈S

[
n∑

k=1

pkd
2 (xk, x)

]
− sup

x∈S

(
n∑

k=1

pkd (xk, x)

)2

≥ 0

since, by Cauchy-Buniakowski-Schwarz inequality we have

n∑
k=1

pkd
2 (xk, x) ≥

(
n∑

k=1

pkd (xk, x)

)2

for all x ∈ X. �
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Remark 2.2. Assume that S ⊂ X such that

sup
x∈S

[
n∑

k=1

d2 (xk, x)

]
<∞,

then we have the inequalities

0 ≤ n sup
x∈S

[
n∑

k=1

d2 (xk, x)

]
−

(
sup
x∈S

n∑
k=1

d (xk, x)

)2

(15)

≤
∑

1≤i<j≤n

d2 (xi, xj)

≤ n sup
x∈S

[
n∑

k=1

d2 (xk, x)

]
+

(
sup
x∈S

n∑
k=1

d (xk, x)

)2

≤ 2n sup
x∈S

[
n∑

k=1

d2 (xk, x)

]
.

We have the following generalization

Theorem 2.3. Let (X, d) be a metric space and xi ∈ X, pi ≥ 0, i ∈ {1, ..., n} with∑n
i=1 pi = 1. Then we have the inequalities

2p−1

 n∑
k=1

pkd
2 (xk, x)−

(
n∑

k=1

pkd (xk, x)

)2
p

(16)

≤
∑

1≤i<j≤n

pipjd
2p (xi, xj) ≤ 22p−1

n∑
i=1

pid
2p (xi, x)

for p ≥ 1 and x ∈ X. The second inequality also holds for p ≥ 1
2 .

Proof. From (7) we get

|d (xi, x)− d (xj , x)|2p ≤ d2p (xi, xj) ≤ [d (xi, x) + d (xj , x)]
2p
,

namely [
d2 (xi, x)− 2d (xi, x) d (xj , x) + d2 (xj , x)

]p ≤ d2p (xi, xj) (17)

≤ [d (xi, x) + d (xj , x)]
2p
,

for all x ∈ X and i, j ∈ {1, ..., n}.
If we multiply (17) by pipj ≥ 0 and sum over i, j from 1 to n we get

n∑
i,j=1

pipj
[
d2 (xi, x)− 2d (xi, x) d (xj , x) + d2 (xj , x)

]p
(18)

≤
n∑

i,j=1

pipjd
2p (xi, xj) = 2

∑
1≤i<j≤n

pipjd
2p (xi, xj)

≤
n∑

i,j=1

pipj [d (xi, x) + d (xj , x)]
2p
,

for all x ∈ X.
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By the convexity of power function, we have[
d (xi, x) + d (xj , x)

2

]2p
≤ 1

2

[
d2p (xi, x) + d2p (xj , x)

]
,

namely

[d (xi, x) + d (xj , x)]
2p ≤ 22p−1

[
d2p (xi, x) + d2p (xj , x)

]
, (19)

for all x ∈ X and i, j ∈ {1, ..., n}.
Therefore

n∑
i,j=1

pipj [d (xi, x) + d (xj , x)]
2p ≤ 22p−1

n∑
i,j=1

pipj
[
d2p (xi, x) + d2p (xj , x)

]
(20)

= 22p
n∑

i=1

pid
2p (xi, x) .

By Jensen’s discrete inequality for the power function we also have{∑n
i,j=1 pipj

[
d2 (xi, x)− 2d (xi, x) d (xj , x) + d2 (xj , x)

]∑n
i,j=1 pipj

}p

≤
∑n

i,j=1 pipj
[
d2 (xi, x)− 2d (xi, x) d (xj , x) + d2 (xj , x)

]p∑n
i,j=1 pipj

,

namely

2p

 n∑
k=1

pkd
2 (xk, x)−

(
n∑

k=1

pkd (xk, x)

)2
p

(21)

≤
n∑

i,j=1

pipj
[
d2 (xi, x)− 2d (xi, x) d (xj , x) + d2 (xj , x)

]p
for all x ∈ X.

By making use of (18), (20) and (21), we get (16).
Since the inequality (19) also holds for p ≥ 1

2 , hence the last part of the theorem
is also proved. �

Corollary 2.4. With the assumptions of Theorem 2.3 and if

sup
x∈S

[
n∑

k=1

pkd
2 (xk, x)

]
<∞,

for S ⊂ X, then we have

2p−1

sup
x∈S

(
n∑

k=1

pkd
2 (xk, x)

)
−

(
sup
x∈S

n∑
k=1

pkd (xk, x)

)2
p

(22)

≤
∑

1≤i<j≤n

pipjd
2p (xi, xj) ≤ 22p−1 sup

x∈S

[
n∑

i=1

pid
2p (xi, x)

]
.
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Proof. By taking the supremum in (16) we derive

2p−1 sup
x∈S

 n∑
k=1

pkd
2 (xk, x)−

(
n∑

k=1

pkd (xk, x)

)2
p

(23)

≤
∑

1≤i<j≤n

pipjd
2p (xi, xj) ≤ 22p−1 sup

x∈S

[
n∑

i=1

pid
2p (xi, x)

]
.

Since

sup
x∈S

 n∑
k=1

pkd
2 (xk, x)−

(
n∑

k=1

pkd (xk, x)

)2
p

=

sup
x∈S


n∑

k=1

pkd
2 (xk, x)−

(
n∑

k=1

pkd (xk, x)

)2

p

≥

sup
x∈S

(
n∑

k=1

pkd
2 (xk, x)

)
−

(
sup
x∈S

n∑
k=1

pkd (xk, x)

)2
p

,

hence by (23) we obtain (22). �

Remark 2.3. The case of uniform weights pi = 1
n , i ∈ {1, ..., n} in (16) and (22) is

as follows

(
2

n2

)p−1
n n∑

k=1

d2 (xk, x)−

(
n∑

k=1

d (xk, x)

)2
p

(24)

≤
∑

1≤i<j≤n

d2p (xi, xj) ≤ 22p−1n

n∑
i=1

pid
2p (xi, x)

and

(
2

n2

)p−1
n sup

x∈S

(
n∑

k=1

d2 (xk, x)

)
−

(
sup
x∈S

n∑
k=1

d (xk, x)

)2
p

(25)

≤
∑

1≤i<j≤n

d2p (xi, xj) ≤ 22p−1n sup
x∈S

(
n∑

i=1

d2p (xi, x)

)
.
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3. Applications

If (E, ‖·‖) is a normed linear space and xi ∈ E, i ∈ {1, ..., n}, pi ≥ 0 (i ∈ {1, ..., n})
with

∑n
i=1 pi = 1, then by (6) we have the inequalities

0 ≤
n∑

k=1

pk ‖xk − x‖2 −

(
n∑

k=1

pk ‖xk − x‖

)2

(26)

≤
∑

1≤i<j≤n

pipj ‖xi − xj‖2

≤
n∑

k=1

pk ‖xk − x‖2 +

(
n∑

k=1

pk ‖xk − x‖

)2

and

0 ≤ sup
x∈S

n∑
k=1

pk ‖xk − x‖2 −

(
sup
x∈S

n∑
k=1

pk ‖xk − x‖

)2

(27)

≤
∑

1≤i<j≤n

pipj ‖xi − xj‖2

≤ sup
x∈S

n∑
k=1

pk ‖xk − x‖2 +

(
sup
x∈S

n∑
k=1

pk ‖xk − x‖

)2

for x ∈ X.
If we consider the weighted centre of gravity xp :=

∑n
i=1 pixi, then by taking

x = xp in (26) we get

0 ≤
n∑

k=1

pk ‖xk − xp‖2 −

(
n∑

k=1

pk ‖xk − xp‖

)2

(28)

≤
∑

1≤i<j≤n

pipj ‖xi − xj‖2

≤
n∑

k=1

pk ‖xk − xp‖2 +

(
n∑

k=1

pk ‖xk − xp‖

)2

.

From (28) we get∣∣∣∣∣∣
∑

1≤i<j≤n

pipj ‖xi − xj‖2 −
n∑

k=1

pk ‖xk − xp‖2
∣∣∣∣∣∣ ≤

(
n∑

k=1

pk ‖xk − xp‖

)2

(29)

for xi ∈ E, i ∈ {1, ..., n}, pi ≥ 0 (i ∈ {1, ..., n}) with
∑n

i=1 pi = 1.
If we take pi = 1

n , i ∈ {1, ..., n}, then by (29) we get∣∣∣∣∣∣
∑

1≤i<j≤n

‖xi − xj‖2 − n
n∑

k=1

‖xk − x‖2
∣∣∣∣∣∣ ≤

(
n∑

k=1

‖xk − x‖

)2

, (30)

where x = 1
n

∑n
i=1 xi.
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We observe that if (E, 〈·, ·〉) is an inner product space, then

∑
1≤i<j≤n

pipj ‖xi − xj‖2 =
1

2

n∑
i,j=1

pipj ‖xi − xj‖2

=
1

2

n∑
i,j=1

pipj

[
‖xi‖2 − 2Re 〈xi, xj〉+ ‖xj‖2

]

=
1

2

 n∑
i=1

pi ‖xi‖2 − 2Re

〈
n∑

i=1

pixi,

n∑
j=1

pjxj

〉
+

n∑
j=1

pj ‖xj‖2


=

n∑
i=1

pi ‖xi‖2 −

∥∥∥∥∥
n∑

i=1

pixi

∥∥∥∥∥
2

and

n∑
k=1

pk ‖xk − xp‖2 =

n∑
k=1

pk

[
‖xk‖2 − 2Re 〈xk, xp〉+ ‖xp‖2

]
=

n∑
k=1

pk ‖xk‖2 − 2Re

〈
n∑

k=1

pkxk, xp

〉
+ ‖xp‖2

=

n∑
k=1

pk ‖xk‖2 −

∥∥∥∥∥
n∑

k=1

pkxk

∥∥∥∥∥
2

,

which shows that, in the case of inner product spaces

∑
1≤i<j≤n

pipj ‖xi − xj‖2 =

n∑
k=1

pk ‖xk − xp‖2 , (31)

for xi ∈ E, i ∈ {1, ..., n}, pi ≥ 0 (i ∈ {1, ..., n}) with
∑n

i=1 pi = 1.
However, in the general case of normed linear spaces the identity (31) does not hold

for all sequences of vectors and probability densities as above. Therefore the inequality
(29) can be seen as an error bound in approximating

∑
1≤i<j≤n pipj ‖xi − xj‖

2
by∑n

k=1 pk ‖xk − xp‖
2

in the general case of normed linear spaces.
From the inequality (16) we also obtain

2p−1

 n∑
k=1

pk ‖xk − x‖2 −

(
n∑

k=1

pk ‖xk − x‖

)2
p

(32)

≤
∑

1≤i<j≤n

pipj ‖xi − xj‖2p ≤ 22p−1
n∑

i=1

pi ‖xi − x‖2p

for x, xi ∈ E, i ∈ {1, ..., n}, pi ≥ 0 (i ∈ {1, ..., n}) with
∑n

i=1 pi = 1. The second
inequality in (32) also holds for p ≥ 1

2 .
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In particular, we derive

2p−1

 n∑
k=1

pk ‖xk − xp‖2 −

(
n∑

k=1

pk ‖xk − xp‖

)2
p

(33)

≤
∑

1≤i<j≤n

pipj ‖xi − xj‖2p ≤ 22p−1
n∑

i=1

pi ‖xi − xp‖2p

for xi ∈ E, i ∈ {1, ..., n}, pi ≥ 0 (i ∈ {1, ..., n}) with
∑n

i=1 pi = 1.
Finally, in the case of inner product spaces, we may point out an upper bound as

follows.

Proposition 3.1. Let (E, 〈·, ·〉) be an inner product space, xi ∈ E, (i ∈ {1, ..., n}) and
assume that there exists the vectors a, A ∈ E so that either

Re 〈A− xi, xi − a〉 ≥ 0, for i ∈ {1, ..., n},
or, equivalently, ∥∥∥∥xi − a+A

2

∥∥∥∥ ≤ 1

2
‖A− a‖ , for i ∈ {1, ..., n}.

Then for any pi ≥ 0 (i ∈ {1, ..., n}) with
∑n

i=1 pi = 1 one has the inequality∑
1≤i<j≤n

pipj ‖xi − xj‖2p ≤
1

2
‖A− a‖2p (34)

for p ≥ 1
2 .

Indeed, we have by the last inequality in (32) that∑
1≤i<j≤n

pipj ‖xi − xj‖2p ≤ 22p−1
n∑

i=1

pi

∥∥∥∥xi − a+A

2

∥∥∥∥2p ≤ 1

2
‖A− a‖2p ,

which proves the statement.
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[3] S. S. Dragomir, A. C. Goşa, An inequality in metric spaces. J. Indones. Math. Soc. 11 (2005),

no. 1, 33–38.
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