
Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 50(2), 2023, Pages 325–341, DOI: 10.52846/ami.v50i2.1697
ISSN: 1223-6934

Mathematical Analysis and Numerical Simulation of a
Strongly Nonlinear Singular Model

Maryem Hourri, Laila Taourirte, and Nour Eddine Alaa

Abstract. In this paper, we are interested in the one-dimensional singular optimization prob-

lem with constraints:

Min

{
J (v) =

1

p

∫ 1

−1
|vx|p +

1

γ − 1

∫ 1

−1
v1−γ , v(±1) = 0 and v(0) = d

}
,

where 1 < p <∞, 1 < γ < 2p−1
p−1

and d > 0.

In the first part of the paper, we show the existence of a critical value d∗ > 0 such that

if d ≤ d∗, J admits a minimum in a carefully chosen closed convex set of W 1,p
0 (−1, 1). The

second part of the paper is dedicated to numerical simulations. We elaborate a numerical
algorithm that transforms our constrained optimization problem into the solution of a system

of ordinary differential equations. Illustrative examples are given to verify the efficiency and

accuracy of the proposed numerical method to test the relevance of the proposed approach.
We point out that the numerical results obtained are in good agreement with the physical

phenomenon of pleated graphene in the particular case p = 4 and γ = 9/5 [12].

2020 Mathematics Subject Classification. Primary 39B82; Secondary 44B20, 46C05.

Key words and phrases. p-laplacian; optimization, constraints; graphene; singular; wrinkling;
Runge Kutta 4; Lagrange multiplier.

1. Introduction

The aim of this work is to study the following constrained optimization problem
minimize J (v) = 1

p

∫ 1

−1
|vx|p +

1

γ − 1

∫ 1

−1
v1−γ ,

subject to v(±1) = 0 and v(0) = d > 0,

(1)

where 1 < p <∞ and 1 < γ < 2p−1
p−1 .

This type of problem naturally arises in many physical phenomena among which we
cite, for appropriate values of p and γ, the folding of graphene. Since then, the latter
has attracted a lot of attention because of its exceptional mechanical and electrical
characteristics, which are exploited in many projects,[18] including nanomechanical
systems, nanoelectronics, [20, 13] and nano-composites, [14, 19, 8].
The mathematical analysis of this type of singular equations has attracted the atten-
tion of several authors in recent years. We cite in particular the following works [1],
[2], [3], [4], [10].
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In the present work, we pursue the natural question of whether there exists a mini-
mizer that satisfies the smoothness of the catenary form. In particular, we will focus
on a numerical algorithm for minimizing the elastic energy Eq. (1), with a view to
identifying a smooth approximate numerical solution that can be used to improve the
numerical results of the reference [12].

For this purpose, we propose a numerical algorithm to minimize the equation (1),
in order to identify a smooth (local) minimizer. This optimization problem may
lead to singular minimizers that do not satisfy the Euler-Lagrange equation [?] or
in other cases to the appearance of Lavrentiev phenomena [6, 5]. This could make
the numerical problem very difficult to handle. Concerning the above point, we seek
a simple analysis by imposing a different optimization space. Remind that the case
p = 4 and γ = 9/5 comes from the crumpled graphene problem [11]. The idea is

to determine a function φ ∈ W 1,p
0 (−1, 1) to be specified later, which satisfies the

requirement of smoothing the catenary profile, and such that the minimum sought
noted v∗ satisfies v∗ ≥ φ. We will then minimize the energy functional Eq. (1) over
the following convex admissible set

K =
{
v ∈W 1,p

0 (−1, 1), v ≥ φ and v(0) = d
}
. (2)

Therefore, the problem can be formulated as follows: find the range of parameters
d such that the energy function Eq. (1) has a minimum v∗ for a given φ > 0 in (−1, 1)
that satisfies φ(0) = 1.

As we will later see, one of the candidates for the function φ is v1 = d φ
p

γ+p−1

1 , in
which φ1 is the first eigenfunction associated to the p-laplacian given in Definition 1.1
below.

A particular form of the problem consists in finding a (minimizing) function v?

that solves the following problem (see below){
−(|v∗x|p−2 v∗x)x = v∗−γ + Λ∗ δ0 D′(−1, 1),

v∗ ∈ K, (3)

where Λ∗ is a nonnegative constant and δ0 is a Dirac mass at the origin. Let us
note that there are many works that investigate this kind of problems involving the
singular p−Laplacian operator [11, 9] but,to our knowledge, there is no publication
of such a double-constrained problem with a nonlinear singular source term.
In what follows, we aim to show the existence of a suitable weak solution to Eq. (3).
The first step is to precise in which sense we want to solve our problem. Let us first
recall the definition of the first eigenfunction of the p-Laplacian for 1 < p <∞.

Definition 1.1. For a < b, the first eigenfunction associated to the smallest eigen-
value λ1 > 0 is the unique solution φ1 ∈W 1,p

0 (a, b) such that ||φ1||Lp = 1, satisfying
−
(
|φ1x|

p−2
φ1x

)
x

= λ1 |φ1|p−2 φ1 in (a, b),

φ1 > 0 in (a, b),
φ1(a) = φ1(b) = 0.

(4)

Moreover, λ1 =
(
πp
b−a

)p
, where πp := 2π(p−1)

1
p

psin(πp )
.
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In what follows, we adopt φ = φ
p

γ+p−1

1 and we define the following non-empty closed

convex subset of W 1,p
0 (−1, 1)

K =
{
v ∈W 1,p

0 (−1, 1) / v ≥ dφ
p

γ+p−1

1 and v(0) = d
}
. (5)

Remark 1.1. It should be noted that if v ∈ K, then 0 ≤ J (v) < ∞. In fact,

v ≥ dφ
p

γ+p−1

1 , and then by a Lemma of Lazer and McKenna in Ref. [10], we conclude

that φ
p(1−γ)
γ+p−1

1 ∈ L1(−1, 1) if and only if γ < 2p−1
p−1 , i.e v1−γ ∈ L1(−1, 1) under the

constraint imposed on γ. Furthermore, v−γ ∈ L∞loc(−1, 1) and vx(±1) =∞.

Definition 1.2. A weak solution to Eq. (3) is a function v such that
v ∈ K,∫ 1

−1
|vx|p−2 vxϕx =

∫ 1

−1
v−γϕ+ Λ∗d, ∀ϕ ∈ C1

c (−1, 1).
(6)

This article is structured as shown below: Section 2 is dedicated to proving the
existence of a minimizer of the energy functional that satisfies the smoothness require-
ment of the catenary form, in a suitable convex optimization set and formulating the
Euler-Lagrange equation. In section 3, we propose a numerical algorithm using the
Lagrange multiplier approach of [21], which converts the constrained minimization
problem into the solution of a system of partial differential equations. We discuss the
implementation of the algorithm using a finite difference method for the approxima-
tion in space and a Runge-Kutta 4 method for the approximation in time. Finally,
in the section 4 we show the results obtained and we conclude with a discussion and
some remarks.

2. Existence result: sufficient condition for existence

The objective of this section is to study the existence of an optimal solution to the
minimization problem (1). In the following theorem, we state our main existence
result.

Theorem 2.1. Let 1 < p <∞ and 1 < γ < 2p−1
p−1 . There exists d∗ > 0 such that for

all 0 < d ≤ d∗,
inf
v∈K
J (v) = min

v∈K
J (v) = J (v∗). (7)

Moreover, v∗ satisfies{
−(|v∗x|p−2 v∗x)x = v∗−γ + Λ∗ δ0 D′(−1, 1),

v∗ ∈ K, (8)

where Λ∗ = 1
d

[∫ 1

−1
|v∗x|p − v∗1−γ

]
and δ0 is a Dirac mass at the origin.

Proof. Let β < 1 a constant to be determined and let v1 = dφ1
β .

Recalling that φ1 is the first eigenfunction of the p-Laplacian, direct computations



328 M. HOURRI, L. TAOURIRTE, AND N. ALAA

shows that

−
(
|v1x|

p−2
v1x

)
x

= −dp−1βp−1
(
|φ1x|

p−2
φ1x φ1

(p−1)(β−1)
)
x

= dp−1βp−1[−
(
|φ1x|

p−2
φ1x

)
x
φ1

(p−1)(β−1)

+ (p− 1)(1− β)φ1
(p−1)(β−1)−1 |φ1x|

p
]

= dp−1βp−1
[
λ1φ

β(p−1)
1 + (p− 1)(1− β)φ1

(p−1)(β−1)−1 |φ1x|
p
]

= v1
−γdγ+p−1βp−1[λ1φ

β(γ+p−1)
1

+ (p− 1)(1− β)φ1
β(γ+p−1)−p |φ1x|

p
].

Thus, for β = p
γ+p−1 , we get

−
(
|v1x|

p−2
v1x

)
x

= g(x, d) v1
−γ , (9)

where

g(x, d) = dγ+p−1
[
βp−1(1− β)(p− 1) |φ1x|

p
+ λ1β

p−1φ1
p)
]
. (10)

Note that the strong maximum and boundary point principles from Vasquez [16]
guarantee φ1 > 0 in (−1, 1) and |φ1x| 6= 0 on the boundary. Hence

Γ1 := max
[
βp−1(1− β)(p− 1) |φ1x|

p
+ λ1β

p−1φ1
p)
]
> 0, (11)

which means that g(x, d) ≤ 1 if and only if d ≤
(

1

Γ1

) 1
γ+p−1

:= d∗.

Finally, we deduce that for d ≤ d∗, the function v1 satisfies{
−(|v1x|

p−2
v1x)x ≤ v1−γ D′(−1, 1),

v1 ∈ K.
(12)

Λ∗ > 0 and δ0 is a nonnegative measure, hence, v1 is clearly a sub-solution of (3) that
verifies {

−(|v1x|
p−2

v1x)x ≤ v1−γ + Λ∗δ0, D′(−1, 1),
v1 ∈ K.

(13)

We insert v1 as a test function in the weak formulation of (13) and we obtain∫ 1

−1
|v1x|

p ≤
∫ 1

−1
v1

1−γ + Λ∗d. (14)

Consequently

J (v1) =
1

p

∫ 1

−1
|v1x|

p
+

1

γ − 1

∫ 1

−1
v1

1−γ (15)

≤
(

1

p
+

1

γ − 1

)∫ 1

−1
v1

1−γ + Λ∗d (16)

≤
(

1

p
+

1

γ − 1

)∫ 1

−1
d1−γφ

p(1−γ)
γ+p−1

1 + Λ∗d. (17)

v1 ∈ K, thus K is a non-empty closed convex of Lp(−1, 1). Therefore one can take a
minimizing sequence (vn)n in K i.e a sequence such that J (vn)→ inf

v∈K
J (v) := L.
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Hence, for all ε > 0, there exists η0 > 0, such that for all η > η0, we have

L

2
≤ J (vn) ≤ 3L

2
, (18)

thus

∫ 1

−1
|vnx|

p
dx ≤ p

(
3L

2
− 1

γ − 1

∫ 1

−1
v1−γn

)
dx. (19)

Again, since 1 < γ < 2p−1
p−1 , then vn

1−γ ≤ d1−γφ1
p(1−γ)
γ+p−1 which belongs to L1(−1, 1).

This ensures the uniform boundedness of vn in W 1,p
0 (−1, 1).

We pick a subsequence, still denoted vn that converges to v∗ weakly in W 1,p
0 (−1, 1),

strongly in Lp(−1, 1) and vn(x) −→ v∗(x) a.e in (−1, 1).

Since W 1,p
0 is injected in the space of Holder continuous functions Cα, it follows that

vn converges uniformly to v∗ in K, and v1−γn converges to v∗1−γ in L1(−1, 1).
Finally, we deduce that L ≤ J (v∗) ≤ lim inf

n→+∞
J(vn) = L, i.e. J (v∗) = inf

v∈K
J (v).

Next, we prove the second result of the theorem.
Let φ ∈ C∞c (−1, 1). We can easily check that there exists δ > 0 sufficiently small, and

α ≥ d such that v∗+tφ
1+tφ(0) ≥ α φ

β
1 , ∀t ∈ (−δ, δ).

Thus

∀t ∈ (−δ, δ) v∗ + tφ

1 + tφ(0)
∈ K. (20)

We have

∂

∂t

(
J
(
v∗ + tφ

1 + tφ(0)

))
t=0

=

∫ 1

−1
|v∗x|

p−2
v∗x

∂

∂t

(
v∗x + tφx
1 + tφ(0)

)
− v∗−γ ∂

∂t

(
v∗ + tφ

1 + tφ(0)

)
=

∫ 1

−1
|v∗x|p−2 v∗x φx −

∫ 1

−1
v∗−γ φ

− 1

d

(∫ 1

−1
|v∗x|p − v∗1−γ

)
φ(0)

Since v∗ is a minimum, we obtain for all φ ∈ C∞c (−1, 1)∫ 1

−1

(
|v∗x|p−2 v∗x φx − v∗−γ φ

)
=

1

d

(∫ 1

−1
|v∗x|p − v∗1−γ

)
<δ0, φ>, (21)

which means that equation (8) is satisfied in the sense of distributions. �

3. Numerical algorithm and results

3.1. Determination of the first eigenfunction of the p-Laplacian. In order to
numerically determine the first eigenfunction φ1 associated to the smallest eigenvalue
that verifies Eq. (4), we use the Lagrange multiplier approach, which is based on
solving the system of equations which constitute the necessary conditions of optimality
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for the equality constrained problem given by

Minimize
1

p

∫ 1

−1
|φx|p

subject to

∫ 1

−1
|φ|p − 1 = 0.

(22)

The Lagrange function associated to Eq. (22) is defined by

L(φ, λ) =
1

p

∫ 1

−1
|φx|p + λ

(∫ 1

−1
|φ|p − 1

)
, (23)

where λ ∈ R is referred to as the Lagrange multiplier.
The first-order necessary condition of optimality can be obtained as a stationary point
(φ∗, λ∗) of L(φ, λ) over φ and λ described by

∂φ

∂t

∣∣∣∣
(φ∗,λ∗)

= 0,

dλ

dt

∣∣∣∣
(φ∗,λ∗)

= 0.
(24)

That is a stationary point of the system
∂φ

∂t
(t, x) = −∂L

∂φ
(φ, λ),

dλ

dt
(t) =

∂L
∂λ

(φ, λ).
(25)

In our case, we have
∂φ

∂t
(t, x) =

(
|φx|p−2 φx

)
x
− λp|φ|p−2φ,

φ(t,−1) = φ(t, 1) = 0,

dλ

dt
(t) =

∫ 1

−1
|φ|p − 1,

(26)

with φ(0, x) = (1− x2) and λ(0) = λ0 > 0.
Concerning the numerical simulation of the system (26), we use a finite difference
method for the approximation in space and a method of Runge-Kutta 4 for the ap-
proximation in time. Numerical results are given in Fig. 1, Fig. 2, Fig. 3 and Fig.
4.

3.2. Determination of the solution v∗. The aim of this part is to numerically
determine a minimizer v∗ of the energy functional Eq. (1) given by

J (v) = 1
p

∫ 1

−1
|vx|p +

1

γ − 1

∫ 1

−1
v1−γ ,

v ∈ K.

This optimization problem involves both equality and inequality constraints. We
first transform it into an equivalent problem that includes only equalities so that the
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Figure 1. First
eigenfunction of the
p-Laplacian for p = 2.

Figure 2. First
eigenfunction of the
p-Laplacian for p = 3.

Figure 3. First
eigenfunction of the
p-Laplacian for p = 4.

Figure 4. First
eigenfunction of the
p-Laplacian for p = 5.

theory of [21] can be applied in a practical way. First, we observe that K can be
rewritten as

K =
{
v ∈W 1,p

0 (−1, 1) / v ≥ dφ
p

γ+p−1

1 and v(0) ≤ d
}
.

The problem can then be expressed as

Minimize J (v) = 1
p

∫ 1

−1
|vx|p +

1

γ − 1

∫ 1

−1
v1−γ ,

subject to dφ
p

γ+p−1

1 − v ≤ 0 and v(0)− d ≤ 0.

(27)

Besides the nonlinear nature of the energy, the constraints are not standard, which
adds some complexity. To avoid this, we introduce additional variables y1 and y2, and
consider the following nonlinear programming problem in which the two inequality
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constraints are transformed into two equalities.

Minimize J (v) = 1
p

∫ 1

−1
|vx|p +

1

γ − 1

∫ 1

−1
v1−γ ,

subject to dφ
p

γ+p−1

1 − v + y21 = 0 and v(0)− d+ y22 = 0.

(28)

The terms y2i , i = 1, 2 can be replaced by any differentiable positive functions of yi
with suitable dynamic range [21]. But for simplicity, y2i are adopted in what follows.
Based on the new constraints ( with equalities instead of inequalities), we define the
associated Lagrangian function L(v, y1, µ, y2, σ) as follows

L(v, y1, µ, y2, σ) =
1

p

∫ 1

−1
|vx|p +

1

γ − 1

∫ 1

−1
v1−γ +

∫ 1

−1
µ
(
dφ

p
γ+p−1

1 − v + y21

)
+

∫ 1

−1
σ
(
v(0)− d+ y22

)
.

We point out that the Lagrangian function L(v, y1, µ, y2, σ) is a function ofW 1,p
0 (−1, 1)×

W 1,p
0 (−1, 1)× Lp′(−1, 1)× R× R with values in R.

The stationary point (v∗, y1
∗, µ∗, y2

∗, σ∗) of L(v, y1, µ, y2, σ) is described by the sta-
tionary point of the following dynamic equations that can be briefly written as

∂v

∂t
= −∂L

∂v
(v, y1, µ, y2, σ),

∂y1
∂t

= − ∂L
∂y1

(v, y1, µ, y2, σ),

∂µ

∂t
=
∂L
∂µ

(v, y1, µ, y2, σ),

∂y2
∂t

= − ∂L
∂y2

(v, y1, µ, y2, σ),

∂σ

∂t
=
∂L
∂σ

(v, y1, µ, y2, σ).

(29)

That is 

∂v

∂t
= (|vx|p−2 vx)x + v−γ + µ− σδ0,

∂y1
∂t

= −2µy1,

∂µ

∂t
= dφ

p
γ+p−1

1 − v + y21 ,

∂y2
∂t

= −2σy2,

∂σ

∂t
= v(0)− d+ y22 .

(30)

3.3. Numerical results. As previously, for the numerical simulation of the system
(30), we employ a finite difference method for the spatial approximation and a Runge-
Kutta 4 method for the temporal approximation. We introduce τ to be the time step
size tn = n × τ, n = 0, 1, 2, ...., and we denote by h a step of space. We define the
nodes of a regular meshing of [−1, 1] by xi = (i−N − 1)×h, i = 0, 1, 2, ...., 2N + 1.
Let’s denote by (vni ) the approximation of v(tn, xi). Then the discrete approximation
of the p-laplacien operator is as follows:
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• if p ≥ 2

(|vx|p−2 vx)x(tn, xi) ' 1

hp

(∣∣vni+1 − vni
∣∣p−2 (vni+1 − vni )

)
− 1

hp

(∣∣vni − vni−1∣∣p−2 (vni − vni−1)
)

• if 1 < p < 2

(|vx|p−2 vx)x(tn, xi) ' 1

hp

 1√∣∣vni+1 − vni
∣∣ p−2

2 + ε

(vni+1 − vni )


− 1

hp

 1√∣∣vni − vni−1∣∣ p−2
2 + ε

(vni − vni−1)


The other terms of the system are approximated in the following way:
• The singular term v−γ is approached by the C1 regularization fε given for each
ε ∈ (0, 1] by

fε(s) =

{
s−γ if s > ε,
(1 + γ)ε−γ − γε−γ−1s if s ≤ ε.

We note that fε is decreasing and positive on R.
• The Dirac mass δ0 is approached as usual by

δε(x) =
1

π
· ε

ε2 + x2
. (31)

It is known that lim
ε→0

δε = δ0 in the sense of distributions [7].

In all the numerical simulations, we choose ε = 3e− 4 and h = 0.005.
In Fig. 5 to Fig. 12, we present some numerical results obtained for different values
of 1 < p <∞ and 1 < γ < 2p−1

p−1 . For a useful comparison, three different values of d

are considered, namely d = d∗, d =
d∗

2
and d =

d∗

3
. Recall that d∗ is the parameter

obtained analytically as follows: d∗ =

(
1

Γ1

) 1
γ+p−1

, where

Γ1 := max
[
βp−1(1− β)(p− 1) |φ1x|

p
+ λ1β

p−1φ1
p) .

In Fig. 13 to Fig. 15, for each value of p, we choose a value of γ associated to p, and
we plot the three-dimensional representation of the solution v∗ for d = d∗.
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Figure 5. Numerical solution for v∗, for p = 2, γ = 1.2, d∗ = 0.6633
and given d: d = d∗ (blue curve), d = d∗/2 (red curve) and d = d∗/3
(green curve).

Figure 6. Numerical solution for v∗ for p = 2, γ = 1.45, d∗ = 0.6917
and given d: d = d∗ (blue curve), d = d∗/2 (red curve) and d = d∗/3
(green curve)
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Figure 7. Numerical solution for v∗ for p = 3, γ = 2, d∗ = 0.5318
and given d: d = d∗ (blue curve), d = d∗/2 (red curve) and d = d∗/3
(green curve)

Figure 8. Numerical solution for v∗ for p = 3, γ = 2.45, d∗ = 0.5669
and given d: d = d∗ (blue curve), d = d∗/2 (red curve) and d = d∗/3
(green curve)

4. Discussion and conclusion

The major objective of this paper is to study analytically and numerically the one-
dimensional constrained singular optimization problem Eq. (1). The goal of our study
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Figure 9. Numerical solution for v∗ for p = 4, γ = 9/5, d∗ = 0.3171
and given d: d = d∗ (blue curve), d = d∗/2 (red curve) and d = d∗/3
(green curve)

Figure 10. Numerical solution for v∗ for p = 4, γ = 2.2, d∗ = 0.4164
and given d: d = d∗ (blue curve), d = d∗/2 (red curve) and d = d∗/3
(green curve)

is twofold: on the one hand, we show the existence of a minimum of J under the
condition d ≤ d∗, and on the other hand, we provide an algorithm that transforms
the constrained optimization problem into the solution of the system of equations
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Figure 11. Numerical solution for v∗ for d, p = 5, γ = 1.5, d∗ =
0.2863 and given d: d = d∗ (blue curve), d = d∗/2 (red curve) and
d = d∗/3 (green curve)

Figure 12. Numerical solution for v∗ for p = 5, γ = 2.2, d∗ = 0.3297
and given d: d = d∗ (blue curve), d = d∗/2 (red curve) and d = d∗/3
(green curve)

that constitute the necessary conditions for optimality, using the Lagrange multiplier
approach.
In figures 5 to 12, we have summarized our numerical results for different values
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Figure 13. The 3d-representation of v∗ for p = 2, γ = 1.2, d∗ =
0.6633 and d = d∗

Figure 14. The 3d-representation of v∗ for p = 3, γ = 2, d∗ =
0.5318 and d = d∗

of the parameters p, gamma and d. For any fixed p and gamma, the numerical
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Figure 15. The 3d-representation of v∗ for p = 4, γ = 9/5, d∗ =
0.3171 and d = d∗

Figure 16. The 3d-representation of v∗ for p = 5, γ = 1.5, d∗ =
0.2863 and d = d∗

solutions obtained for d ≤ d? are not singular at the origin. More importantly, it
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appears from the numerical simulations that as d increases, the numerical solution
seems to approach the desired solution v?, which describes the catenary profile. This
confirms the relevance of the K optimization space. In particular, our analytical and
numerical results provide an accurate analytical estimate, for the parameter d and
provide reasonably convincing evidence that for d = d? the numerical solution can be
used as a good approximation to a catenary-like profile that satisfies our expectation.
We point out that the equations Eq. (30) involve the p-Laplacian with a singular
term and the Dirac mass at the origin, which is a very interesting prospect. In
fact, a detailed analysis will be carried out by the authors in the near future for the
mathematical analysis as well as the asymptotic behavior of the system Eq. (30).
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