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Characterization of a cubic interpolation scheme dependent on
two parameters and applications

Dana Simian, Oana-Adriana Ţicleanu, and Nicolae Constantinescu

Abstract. The aim of this paper is to provide a characterization diagram for a family of

Bézier flexible interpolation curves as well as to present an application of our results in cryp-
tography. In our interpolation scheme, two parameters, t1, t2 ∈ (0, 1) determine the position

of the interpolation points on the Bézier curve. Consequently we obtain a family of Bézier

interpolation curves depending on two parameters. Altering the values of the parameters we
modify the intermediary control points and implicitly the shape of the interpolation curve. In

order to control the shape of the interpolation curves from this family, we provide a partition
of the domain T = (0, 1) × (0, 1) where the parameters lie according to the geometric char-

acterization of these curves: with zero, one or two inflexion points; with loop; with cusp and

degenerated in quadratic curves. The characterization diagram can be used as a tool for the
choice of parameters, with possible applications in different fields. We present one of its appli-

cation in cryptography, for finding certain subspaces over which particular elliptic sub-curves

are defined. Computation, implementation and graphics are made using MATLAB.
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1. Introduction

Bézier techniques have a wide applicability in curves’ and surfaces’ generation in
CAGD (Computer Aided Geometric Design). We refer to ([4]) and the references
therein for a comprehensive presentation of topics on Bézier curves and surfaces.
From computational reasons, quadratic and cubic Bézier curves are usually used.
Bézier curves are parametric curves defined using combinations of control points and
basis functions. The classic Bézier curves uses Bernstein basis ([4]), but trigonometric
([2]), harmonic ([11]) and rational bases ([2]) have a wide applicability in geometric
modeling. The attempts of changing the shape of the curve without explicitly modi-
fying the control points lead to introduction of Bézier curves with shape parameters.
Different bases with one ore many parameters were defined, allowing the shape mod-
ification under fixed control points. Wang W. and Wang G. defined recursively, using
an integral approach, a Bézier basis with one shape parameter ([14]). This basis
has most properties of Bernstein basis and modifying the parameter are obtained
Bézier curves with different shape with the same control polygon. An extension to
the classical Bernstein basis functions of degree n using n − 1 local shape control
parameters is presented in ([10]). The new class of basis functions satisfies the con-
ditions required both for continuity and geometric continuity up to second order.The
joining of the extended Bézier curves is smoother than that of classical Bézier curves
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of degree n. Han introduced in ([6]) a class of cubic trigonometric polynomial curves
with one parameter and in ([7]) a class of cubic trigonometric polynomial curves with
two parameters. The presence of the parameters gives a easier control of the curve
shape and allows to positioning it near to the control polygon. A rational quadratic
trigonometric basis is defined in ([2]). The new curves provide best approximation of
the traditional rational quadratic Bézier curve and represent exactly some quadratic
trigonometric curves like ellipse and circle.

An important problem to be solved in the case of parametric curves dependent
on parameters consists in construction of the shape diagram. The shape diagram
represents the curve characterization on the space of parameters and provides a tool
for identifying the presence of loops, cusps, or inflection points, therefore allowing
the choice of suitable values of parameters in order to avoid these unwanted curves
configurations. Such kind of characterizations have been done before, for different
particular cases of parametric curves, using different methods. A geometric charac-
terization of parametric cubic curves using algebraic method is given by Koprowski
in ([9]); Wang, in ([15]), used algebraic methods for B-splines characterization; Su
and Liu, in ([13]), presented a geometric approach for Bézier curves’ characterization;
Forrest, in ([5]), has taken into account the rational cubic curves. A shape analysis
of cubic trigonometric Bézier curves with a shape parameter can be found in ([6]). In
([12]), Stone, Parc and Derose present the characterization diagram for Bézier curves
in canonical form, that is the coordinates of three of the control points are fixed and
the curve shape depends only on the position of the moving point about the plane.
The coordinates of the this variable point take the role of the parameters. In ([6]) the
influence of the shape parameters for cubic trigonometric Bézier curves with a shape
parameter is revealed using a shape diagram.

The aim of this paper is to introduce a family of cubic Bézier curves dependent
on two parameters and to make a geometric characterization of these curves. Using
parameters (t1, t2) ∈ (0, 1)2 we construct cubic Bézier curves satisfying Lagrange
type conditions in the two end points and in other two intermediate points. The
choice of parameters t1 and t2 based on the characterization diagram proposed in this
article can be also useful in other fields than computational geometry. In the end
of our article, we illustrated the applicability of our main results in cryptography.
The rest of the article is organized as follows. In Section 2 we introduce our flexible
interpolation scheme. In Section 3 we illustrate the influence of the parameters on
the Bézier curve’s shape using several numerical examples. Section 4 contains the
main theoretical results regarding the characterization of the proposed flexible cubic
interpolation Bézier curves. Section 5 is dedicated to the characterization diagram.
In Section 6 we illustrate the application of our flexible Bézier interpolation curves
and of the characterization diagram in cryptography. Section 7 contains conclusions
and further directions of study.

2. Our cubic flexible interpolation scheme

We start from the classic interpolation problem by cubic Bézier curves:

Problem 1. Given four points Pi(pxi, pyi), i = 0, . . . , 3, find a cubic Bézier curve
passing through them.
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No other details referring the shape of curve are given. There are many interpo-
lation cubic polynomials satisfying the interpolation conditions. In Computer Aided
Geometric Design it is of interest to analyze and compare these interpolation curves
in order to avoid some shapes (curves with loops or cusps), or in order to find the most
appropriate shape (in design of cars’ body). A cubic Bézier curve in plane is a para-
metric curve totally defined by its four control points, bi = (bxi, byi), i ∈ {0, . . . , 3}.
The parametric equations of a cubic planar Bézier curve can easily be written in the
matrix form:

f(t) = b ·B(t), (1)

where f(t) = (x(t), y(t))τ ∈ M2,1 represents the coordinates vector of a current
point on the Bézier curve; b ∈ M2,4 is the matrix of control points coordinates and
B(t) ∈M4,1 is the vector of Bernstein polynomials B3

i (t):

B3
i (t) =

(
3

i

)
(1− t)3−iti, i = 0, . . . , 3 (2)

We denoted by Mτ the transpose of matrix M . A common way to solve the in-
terpolation problem given in Problem 1 is to consider that the interpolation points
correspond to a uniform sequence of values for the curve parameter t, that is the
interpolation conditions are:

f(0) = P0; f(1/3) = P1; f(2/3) = P2; f(1) = P3. (3)

In our approach we renounce to the uniformity conditions and reformulate the
interpolation conditions using two parameters t1, t2 ∈ (0, 1), as follows:

f(0) = P0; f(t1) = P1; f(t2) = P2; f(1) = P3. (4)

We mentioned for the first time, in [18], the possibility of obtaining flexible interpo-
lation Bézier curves and surfaces by renouncing to the uniformity conditions for the
interpolation points on the domain of parameters.

In order to find the Bézier interpolation curve our purpose is to find the control
points using the conditions (4). These interpolation conditions led to the system
D · b = P , with D given in (4). By an easy algebraic calculus, using (1) and (4) we
obtain the expression of the control points coordinates:

bτ = inv(D) · P τ , (5)

with P = (pxi, pyi)
τ ∈M2,4 and

D =


1 0 0 0

(1− t1)3 3t1(1− t1)2 3t21(1− t1) t31
(1− t2)3 3t2(1− t2)2 3t22(1− t2) t32

0 0 0 1

 (6)

The system (5) has a unique solution because

det(D) = 9t1t2(1− t1)(1− t2)(t2 − t1) 6= 0,∀t1, t2 ∈ (0, 1). (7)

We observe that three limit cases could appear:

lim
ti→0

det(D(t1, t2)) = 0; lim
ti→1

det(D(t1, t2)) = 0; lim
t1→t2

det(D(t1, t2)) = 0. (8)

where i ∈ {1, 2}.
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Figure 1. Bézier curve obtained for t1 = 1/3 and t2 = 2/3.

Using symbolic calculus in MATLAB we obtained

inv(D) =


1 0 0 0

−(t1+t2−2t1t2)
3t1t2

t2
3t1(t2−t1)(1−t1)

−t1
3t2(t2−t1)(1−t2)

t1t2
3(1−t1)(1−t2)

(1−t1)(1−t2)
3t1t2

−(1−t2)
3t1(t2−t1)(1−t1)

1−t1
3t2(t2−t1)(1−t2)

−(t1+t2−2t1t2)
3(1−t1)(1−t2)

0 0 0 1

 (9)

3. Numerical examples

Let P0 = (0, 0), P1 = (0.3, 0.7), P2 = (0.5, 0.3), P3 = (1, 0) be the interpolation
points. Figure 1 shows the Bézier interpolation curve obtained in the case of uniform
sequence of parameter values, that is for t1 = 1/3 and t2 = 2/3. The shape of the
curve is concave-convex. In order to underline the effect of the parameters t1 and t2
on the shape of the curve we make a sensitivity analyses on t1 and t2. In this regards,
first we keep t1 = 1/3 and modify the value of t2 and, second, we keep t2 = 2/3 and
modify the value of t1. For t1 = 1/3, we observe that for t2 = 0.001 the curve tends to
a straight line; for t2 = 0.1 and t2 = 0.2 the curve has a loop; for t2 = 0.33, the curve
is closed to a straight line; for t2 ∈ {0.5, 0.6, 0.7} the curve is again concave-convex;
for t2 = 0.8 and t2 = 0.9 the curve presents a cusp; for t2 = 0.9 the curve has a loop
and for t2 = 0.99 the curve is again closed to a straight line. Some of these cases are
presented in figures Fig.2-Fig.4. The limit cases given in (8) are depicted in figures
Fig.5 - Fig.7.

If we keep t2 = 2/3 and modify t1, we observe that for t1 close to 0 and 2/3 the curve
tends to a straight line. For t1 ∈ {0.1, 0.2, 0.3, 0.4, 0.5} the curve is concave-convex.

4. Characterization of the cubic flexible interpolation Bézier curves

4.1. Problem formulation. In Problem 1 formulated in section 2, the coordinates
of the interpolation points are input data. Therefore the control points b0 = P0
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Figure 2. Bézier curve with loop, obtained for t1 = 1/3 and t2 = 0.2
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Figure 3. Bézier curve concave-convex, obtained for t1 = 1/3 and
t2 = 0.6

and b3 = P3 are also fixed. When (t1, t2) move in (0, 1)2 the control points b1, b2
move in the real plane, causing the change of the curve shape. We want to provide a
characterization diagram in coordinates (t1, t2) which allows us to chose the shape of
the interpolation curve by choosing an appropriate pair of parameters.

The affine invariance of Bézier curves allows us to use an affine mapping φ : R2 →
R2, such that φ(P0) = (0, 0) and φ(P3) = (1, 0) and to work with the interpolation
points φ(Pi), instead of Pi, i ∈ {0, . . . , 3} in order to make the characterization
diagram. Obviously φ is a composition of affine geometric transformations. We will
refer to the points φ(Pi) as the canonical interpolation points. In the rest of the
paper we will work with canonical interpolation points and we will denote them like
the original ones, that is Pi. We make the assumption that the coordinates of the
canonical interpolation points P1, P2, satisfy the inequalities 0 < px1 < px2 < 1.
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Figure 4. Bézier curve with cusp, obtained for t1 = 1/3 and t2 = 0.8
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Figure 5. The limit case t2 → 0

This assumption can be made be cause reversing the control points of Bézier curve
reverses only the parametrization without affecting the shape of the curve.

After an algebraic calculus, substituting the coordinates of control points given by
(5) into equation (1), we obtain the equation of the family of Bézier curves:

ft1,t2(t) =

(
Cx3 · t3 + Cx2 · t2 + Cx1 · t
Cy3 · t3 + Cy2 · t2 + Cy1 · t

)
, (10)
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Figure 6. The limit case t2 → 1
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Figure 7. The limit case t1 → t2

with

Cx3 =
1

(1− t1)(1− t2)
+

px1

t1(t2 − t1)(1− t1)
− px2

t2(t2 − t1)(1− t2)
(11)

Cx2 =
−px1(1 + t2)

t1(t2 − t1)(1− t1)
+

px2(1 + t1)

t2(t2 − t1)(1− t2)
− t1 + t2

(1− t1)(1− t2)
(12)

Cx1 =
t1 · t2

(1− t1)(1− t2)
+

px1 · t2
t1(t2 − t1)(1− t1)

− px2 · t1
t2(t2 − t1)(1− t2)

(13)

Cy3 =
py1

t1(t2 − t1)(1− t1)
− py2

t2(t2 − t1)(1− t2)
(14)

Cy2 =
−py1(1 + t2)

t1(t2 − t1)(1− t1)
+

py2(1 + t1)

t2(t2 − t1)(1− t2)
(15)

Cy1 =
py1 · t2

t1(t2 − t1)(1− t1)
− py2 · t1
t2(t2 − t1)(1− t2)

(16)
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The control points are given by:

b0 = (0, 0) (17)

bx1 =
t1 · t2

3(t1 − 1)(t2 − 1)
+

px1 · t2
3t1(t1 − t2)(t1 − 1)

− px2 · t1
3t2(t1 − t2)(t2 − 1)

(18)

by1 =
py1 · t2

3t1(t1 − t2)(t1 − 1)
− py2 · t1

3t2(t1 − t2)(t2 − 1)
(19)

bx2 =
px1(t2 − 1)

3t1(t1 − t2)(t1 − 1)
− t1 + t2 − 2 · t1 · t2

3(t1 − 1)(t2 − 1)
− px2(t1 − 1)

3t2(t1 − t2)(t2 − 1)
(20)

by2 =
py1(t2 − 1)

3t1(t1 − t2)(t1 − 1)
− py2(t1 − 1)

3t2(t1 − t2)(t2 − 1)
(21)

b3 = (1, 0) (22)

If the interpolation points are collinear, the canonical interpolation points are sit-
uated on the Ox axis and using the expression of the control points we obtain that
all the control points are situated on Ox axis and therefore the Bézier interpolation
curve degenerate also in a segment from Ox axis. This prove the linear precision of
our interpolation scheme.

4.2. Main theoretical results.

Theorem 4.1. Let P be a set of four interpolation points. Let be φ : R2 → R2 a
change of coordinates such that P0 = (0, 0) and P3 = (1, 0). We also assume that,
after this change of coordinates the other 2 interpolation points Pj(pxj , pyj), j ∈ {1, 2}
satisfy the condition: 0 < px1 < px2 < 1. Let f be the interpolation cubic Bézier
curve given in (10). Then
Case 1. If the system Cx3 = 0; Cy3 = 0, with Cx3, Cy3 defined in (11) and (14),
has a solution (t̃1, t̃2), in (0, 1)2, t̃1 6= t̃2, then the cubic Bézier curve f , obtained for
these values of parameters (t1, t2), degenerates into a parabola.
Case 2. The case of the nondegenerated curve.
In this case we have the following subcases:

Case 2.1 If
A1 = d+ py1 · t2 − py2 · t1 = 0 (23)

the Bézier curve has exactly one inflexion point.
Case 2.2. If A1 6= 0 and ∆1 = 0, with

∆1 = 3(py1 · t22 − py2 · t21 + d)2 − 4(py1 · t32 − py2 · t31 + d) · (d− py2 · t1 + py1 · t2) (24)

the Bézier curve has a cusp point. We notice that d is defined in (31).
Case 2.3. If A1 6= 0 and ∆1 < 0 the Bézier curve has a loop point.
Case 2.4. If A1 6= 0 and ∆1 > 0 the Bézier curve has zero, one or two inflection
points. The number of inflexion points is equal to the number of the roots
of equation (25), situated in the interval [0,1].

Proof. We use the following lemmas formulated taking into account the results pre-
sented in ([9], [13], [15]) and also used in ([12]).

Lemma 4.2. ([9], [13], [15])A parametric cubic curve can not have at the same time
loop, cusps or inflexion point. Moreover, a nondegenerate parametric cubic curve can
not have more than one cusp, one loop or two inflexion points.
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Lemma 4.3. ([13],[15]) Let f(t) = (x(t), y(t)) be a parametric cubic curve and

F (t) = det

(
f ′(t)
f ′′(t)

)
= x′(t)y′′(t)− x′′(t)y′(t) (25)

Then F (t) is a quadratic form F (t) = At2 + Bt + C, which characterizes the
presence of loop, cusp or inflexion points. Let denote

∆ = B2 − 4AC, (26)

then
(1) If A = 0, then there is exact one inflexion point.
(2) If A 6= 0 and ∆ > 0 there are exact two inflexion points.
(3) If A 6= 0 and ∆ < 0 there is a loop.
(4) If A 6= 0 and ∆ = 0 there is a cusp.

We make the observation that F (t) is proportional with the signed curvature of the
curve at the point (x(t), y(t)). At the inflection points the first and second derivative
vectors are linearly dependent therefore at these points F (t) = 0.

Lemma (4.3) is formulated for the case of untrimmed cubic curves, without re-
stricted the domain of parameter t. In the case of cubic Bézier curves we restrict the
domain of t to [0, 1], therefore, if A 6= 0 and ∆ > 0 the curve can have zero, one
or two inflection points depending on the number of roots of F (t) which fall on the
interval [0, 1].

The computation made in the case of our Bézier interpolation curve gives:

A = 3a(d+ py1 · t2 − py2 · t1) (27)

B = −3a(py1 · t22 − py2 · t21 + d) (28)

C = a(py1 · t32 − py2 · t31 + d) (29)

a =
2

t1t2(t2 − t1)(1− t1)(1− t2)
(30)

d = px1 · py2 − px2 · py1 (31)

We remark that A1 =
A

3a
and ∆1 =

∆

3a2
with A and ∆ defined in Lemma (4.3).

Obviously sign(∆1) = sign(∆) and, for 0 < t1 6= t2 < 1, we have A1 = 0 iff A = 0. �

The linear equation A1(t1, t2) = 0, represents a line that we call, like in ([12]), ”the
one inflection point line”. We will name ”the cusp curve”, the curve given by the
equation ∆1(t1, t2) = 0.
We will discuss in detail the cases of degenerate cubic Bézier curve.

Case 1. Analyzing the relations (8) we can define 3 limit cases in which the cubic
Bézier curve degenerates to a straight line: ti = 0, ti = 1, i ∈ {0, 1} and t1 = t2.
The first 2 cases were excluded from the domain. The third one, was excluded by the
condition px1 < px2. Therefore the domain used in our characterization diagram will
be

T1 = (0, 1)2 \ {(t1, t2)|t1 = t2} (32)

Case 2. The case in which the cubic Bézier curve degenerates into a parabola,
presented in Theorem (4.1), appears when the parameters are on the form:

(t1, t2) =

(
−d · py2 ±

√
s

py2(py1 − py2)
,
−d · py1 ±

√
s

py1(py1 − py2)

)
, (33)
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with d given in (31) and s = d · py1 · py2(py1 − py2 + d). We will denote the points
(t1, t2) ∈ (0, 1)2 satisfying (33) with (tp1, tp2) and will name parabolic points.
Case 2.1: If s = 0 there is one parabolic point:

(tp1, tp2) =

(
−d

py1 − py2
,
−d

py1 − py2

)
(34)

Taking into account the expression of s, the following subcases could occur:
Case 2.1.1: d = 0.

In this case the parabolic point (td1, td2) = (0, 0) 6∈ T1. Actually in this case the
”cusp curve” degenerate into two lines and cubic Bézier degenerate into a line.

Case 2.1.2: py1 − py2 − d = 0, or equivalent
py1

py2
=

1− px1

1− px2
.

We obtain the parabolic point (td1, td2) = (1, 1) 6∈ T1. As in the previous case the
”cusp curve” degenerate into two lines and cubic Bézier degenerate into a line.

Case 2.1.3: py2 = 0 or py1 = 0. In this case the Bézier curve degenerate into a
line segment.

We can observe directly from (34) and (32) that (tp1, tp2) 6∈ T1.
Case 2.2: If s < 0 we do not have parabolic points and for any values of the

parameters the cubic curve does not degenerate into a parabola.
Case 2.3: If s > 0 it is possible to have zero, one or two parabolic points depending

on whether the pairs (tp1, tp2) fall on the domain (0, 1)2.

5. Characterization diagram

Separating the region T1 given in (32) by the inflexion line and the cusp curve and
labeling the subregions using the sign of ∆ we obtain a ”characterization diagram”
from which we can extract different pairs of parameters so we get the desired shape
of the interpolation curve. We underline again that our ”characterization diagram”
is conceptual different from other existent characterization diagrams. For each set
of interpolation points we obtain a different ”characterization diagram”. It is very
difficult if not almost impossible to make a theoretic discussion for all sets of interpo-
lation points.
The problem of representing the ”characterization diagram” for a given set of inter-
polation points was solved by implementing the theoretic results presented before in
this section, using Matlab Symbolic Toolbox and the following algorithm:

In figure (3), we illustrate the characterization diagram obtained for the particular
choice of canonical interpolation points used in section (3): P1 = (0.3, 0.7), P2 =
(0.5, 0.3). The diagram makes clear now the results presented in section (3). A
vertical line raised on t1 = 1/3 intersects all the regions of the diagram, showing us
that the shape of the curve changes significant for different values of t2.
Fig. 6 shows the characterization diagram obtained for the canonical interpolation
points: P1 = (0.1,−0.5), P2 = (0.6, 0.3). We observe that in this case the ”one
inflexion point line” does not intersect the domain [0, 1]2. In the diagram appear only
two ”cusp curves” and the degenerate case t1 − t2 = 0.
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Algorithm Characterization Diagram
Step I: Symbolic part of algorithm

• Compute the matrices D and inv(D): see (6) and (9).
• Compute the coordinates of the control points: see (5).
• Compute Cx3, Cy3 and find the expression of parabolic points, (tp1, tp2):

see (11), (14) and (33).
• Compute A, B, C and ∆: see (27) - (29) and (26).
• Find the ”symbolic” equation of the ”one inflexion point line”: A(t1, t2) =

0.
• Find the ”symbolic” equation of the ”cusp curve”: ∆(t1, t2) = 0.

Step II: Specific part of algorithm for each set of interpolation points
• Input: coordinates of interpolation points
• Obtain the the canonical form of the interpolation points. Pcanonical =
φ(P ) = a ∗ P + b, with a = (1/(px3 − px0), 1/(py3 − py0))τ and b =
(−px0/(px3− px0),−py0/p(y3− py0))τ .
• Represent in the same graphic the ”one inflexion point line”, ”cusp curve”

and limit case t1 = t2.
• Extract points from each region of T1 using the function getinput.
• Compute the sign of ∆ for these regions and label them.

Step III: Graphic representations
• Extract pairs of parameters (points) from the desired regions of charac-

terization diagram and make the representation of Bézier curve, using (1)
and (5).

Figure 8. Characterization diagram for P1 = (0.3, 0.7), P2 = (0.5, 0.3).



456 D.SIMIAN, O.A. ŢICLEANU, AND N. CONSTANTINESCU

Figure 9. Characterization diagram for P1 = (0.1,−0.5), P2 = (0.6, 0.3).

6. Application in cryptographic authentication

Within the parameter constructions that form the necessary values for a cryptographic
system, methods are used to extract spaces with applicability in the field of functions
for which it is computationally feasible (calculation times are determined by algo-
rithms of polynomial complexity) to calculate a value y, knowing the value of x and
the calculation function f , but it is difficult (it is not computationally feasible) to
calculate x, when the values of y and the function f are known. These functions are
called hardly invertible functions. They are used in cryptographic processes, to gener-
ate the parameters that enter into the composition of certain encryption processes, to
secure data or to authenticate entities that want to enter into the data communication
processes.

In this respect, the first methods used were those based on RSA-type systems,
methods developed starting from the algorithms created by Rivest, Shamir and Adle-
man ([17, 1]). These methods have as their main disadvantage, for the systems they
fit with certain values from the MIDP (Mobile Information Device Profile), the fact
that the computing power required to generate the intermediate parameters is greater
than the computing resources and memory of these devices.

For these systems, computational models based on spaces defined by certain ellip-
tic curves, with particular properties, have been proposed and are used. Several such
models are used, depending on their applicability directions, and the systems where
they want to be implemented. In practice, according to the studied mathematical
models as well as the implementations in functional systems, the authors proposed
solutions for several models of systems based on non-supersingular elliptic curves.
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The studies of the mathematical models involved, carried out on various cases, have
highlighted the advantages brought by the use of certain subspaces from the general
space over which an elliptic curve is defined. This construction model leads to in-
creasing the degree of attack resistance of the implemented cryptographic systems,
by using ([3]) space quanta. For such mathematical models, the primary study factor
is to define the way of choosing these quantiles and the way to do the operations with
elements from this subspace, in view of the possibility of implementing the proposed
model in cryptographic algorithms. For this we will construct a morphism from the
space defined over the particular Bézier curves, according to the study from section
(4.2) and the highlighted results. The morphism will be built from these spaces to
a space over which an elliptic curve is defined, in this way we will define the quanta
of spaces, which are actually subspaces of the general space, and these will become
the multitudes of values from which elements with cryptographic properties will be
selected.

6.1. Subspace construction. We start by defining the general elliptic curve, from
which the entire construction starts.

Definition 6.1 ([3]). Let be τ > 3 a prime integer. We define it as an elliptic degree
curve of τ order, according with equation

σ2 = ρ3 + η1ρ+ η2 (35)

which takes values from the space of Zτ , as being a set of solutions of the form
(ρ, σ) ∈ Zτ × Zτ , having satisfied the congruence

σ2 ≡ ρ3 + η1ρ+ η2 ( mod τ) (36)

with the values η1 and η2 from the space of Zτ , being constants that satisfy the
condition

4η3
1 + 27η2

2 6≡ 0( mod τ) (37)

To these, is added a special point O, called point at infinity.

For the studied case, we will establish subspaces over which we will define sets of
elliptic curves, in this way creating specific quantities over which sets of elliptic curves
are defined, from which points with cryptographic properties will be selected. For this
we will define the form of such a quantile and the associated elliptic curve, starting
from the general definition, presented in Definition 6.1.

Definition 6.2. Let ξ be a quantile in a Zτ space, which we denote by Zξτ . Let τξ > 3
be a prime integer value. An elliptic curve of order τξ, determined by the equation
σ2 = ρ3 + η1ρ+ η2, with values in Zξτ , is given by a set of solutions of the form (ρ, σ)
from Zξτ × Zξτ , satisfying the following congruence σ2 ≡ ρ3 + η1ρ+ η2 ( mod τσ). The
space Zξτ will be the quantile over which the values are defined. η1 and η2 will be
chosen from this subspace, with respect to the property{

η1 6≡ τ( mod τξ)
η2 6≡ τ( mod τξ)

(38)

4η3
1 +27η2

2 6≡ 0( mod τξ), as well as the existence of a point Oξ, called point at infinity
of the quantile ξ.
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In this regard, a restricted morphism (39) will be defined over the space from Case
2 of the Theorem 4.1, where the point of inflection will have as its correspondent the
point O.

υ =


φ
(
R2

(t1,t2)

)
→ φ

(
Z2
τ

)
(px, py)→ (ρτ , στ ) , when the condition (23) is not fulfilled
(px, py)→ O, when the condition A1 = d+ py1t2 − p2t1 = 0,

from Theorem 4.1, is fulfilled.
(39)

In this way, for each pair of parameters (t1, t2) a quantile ξ can be computed. The
Bézier curves restricted to these subspaces, corresponding to the chosen parameters,
will define the quantiles needed in the computation of the subspaces over which the
series of elliptic curves are defined.

6.2. Algorithm description. In accordance with the above study, we will conclude
those obtained by describing the algorithm that generates subspaces over which are
defined series of elliptic curves from which points with cryptographic properties can be
extracted. The algorithm describes the method by which are chosen those subspaces
that fulfill the conditions to be used in cryptographic processes.

Elliptic Curves of order τξ generation
Step 1: Domain values reset: Are initialised the sets of parameters, according with

conditions from Theorem 4.1
Step 2: (t1, t2) are chosen with corresponding quantile ξ

Step 3: will be computed the corresponding values of φ
(
Z2
τ

)
Step 4: using trace of Frobenius ([19]) the number of points on the corresponding

elliptic curve is computed
Step 5: using the (33) and (34) formulas, the degrees of correlation of the corre-

sponding points on the elliptic curve are computed, using conditions from (38).
If we are in the situations in which has reduced number of points, according with
([20, 8]), the curve is declared without cryptographic properties and we return
to step 1

Step 6: will be verified conditions from (37) formulas. If these are fulfilled, the
corresponding quantile is extended, according with formula (36).

Step 7: return corresponding parameters for elliptic curve defined over
(
Zξτ
)(t1,t2)

This algorithm will be called for a defined number of times, according with the
number of quantiles that will form the series of spaces over which the elliptic curves
are defined. At each of its calls, the parameters (t1, t2) will be recorded along with the
corresponding sets of values or ∅, if the computation of a quantile with cryptographic
properties failed.

7. Conclusion and further directions of the study

The interpolation scheme introduced in this article provides a family of interpolation
cubic Bézier curves dependent on two parameters. Different choices of parameters give
different shapes of interpolation curves. The shape is characterized in term of presence



CUBIC INTERPOLATION AND APPLICATIONS 459

or absence of specific type of points: inflexion points, loop and cusp. Theoretical
results valid for any set of interpolation points are formulated. The characterization
diagram refers to the parameters’ domain T1 ⊂ (0, 1)2 and is obtained labeling the
domain regions situated between the ”cusp curve” and ”one inflection point line”. For
any set of interpolation points results a particular characterization diagram. In order
to obtain this diagram and to allow the parameters’ choice and graphic representation
of Bézier interpolation curve, we implemented in Matlab the algorithm presented in
Section 5. If ∆ > 0 we know only that the curve could have zero, one, or two inflection
points. The real situation is given by the third part of the algorithm, that is by the
graphic of interpolation curve. The further direction of study consists in adding new
components to the characterization diagram in order to separate the sub regions with
zero, one and two inflection points, which will lead to an increase in the size of the
quantiles τξ generated by the previously created morphism, so to a greater complexity
of the calculation according to the associated cryptographic analysis, to increase the
degree of resistance to the attack of the generated subspaces.

Our scheme is very useful to construct flexible interpolation problems and offer an
easy to use tool for the choice of parameters, which is highlighted by its applicability
in the determination of certain subspaces over which particular elliptic sub-curves
are defined, by modeling the quantiles of subspaces that contain points with crypto-
graphic properties, by illustrating within the described mathematical model and its
implementation in the Section 6.
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