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Permanent of Toeplitz Matrices with Narayana Entries

Özen Özer, Selcuk Koyuncu, and Wynn Kwiatkowski

Abstract. In this paper, we investigate the properties of Toeplitz matrices with entries de-

rived from the Narayana sequence. We demonstrate that when constructing Toeplitz matrices

using Narayana numbers in a specific manner, their permanents exhibit a unique relationship,
characterized as an exponential function. This novel finding offers new insights into the inter-

play between Toeplitz matrices and the Narayana sequence, expanding our understanding of

the mathematical properties and potential applications of both.
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1. Introduction

A finite Toeplitz matrix T = (bi−j)
n
i,j=1 is an n×n matrix with the following structure:

b0 b−1 b−2 · · · b−n+1

b1 b0 b−1 · · · b−n+2

b2 b1 b0 · · · b−n+3

...
...

...
...

bn−1 bn−2 bn−3 · · · b0


The entries depend on the difference i− j and hence they are constant down all the
diagonals.

The Narayana sequence (or Narayana’s cows sequence), {bn}n≥0, is defined by the
following third order recurrence relation:

bn = bn−1 + bn−3, b0 = 0, b1 = b2 = 1

for n ≥ 3.
The permanent of a square matrix is a number that is defined in a way similar to

the determinant. For an arbitrary matrix A ∈ MN×N (C), its permanent is defined
by

per(A) =
∑
π∈SN

N∏
i=1

Ai,π(i)

where SN denotes the permutation group of the set {1, . . . , N}. Despite the similar-
ity in definition, the permanent has fewer properties than the determinant. No nice
geometric or algebraic interpretation is known for permanent, and it is neither mul-
tiplicative nor invariant under linear combinations of rows or columns. It is mainly
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used in combinatorics and in dealing with boson Green’s functions in quantum field
theory. However, it has two graph-theoretic interpretations: as the sum of weights of
a cycle that covers a directed graph, and as the sum of weights of perfect matchings in
a bipartite graph. In matrix algebra, computations of determinants and permanents
have a great importance in many branches of mathematics. Also, determinants and
permanents have many applications in physics, chemistry, electrical engineering, and
so on. There are a lot of relationships between determinantal and permanental repre-
sentations of matrices and these sequences of integer (see, [3],[2],[4],[5],[6]). Toeplitz-
Hessenberg determinants with entries that are Fibonacci-Narayana (or Narayana’s
cows) numbers have been studied (see, [1]). In this paper, we study the permanent of
Toeplitz matrices with Narayana entries. We show that the permanent of a Toeplitz
matrix of size n×n can be defined as an exponential function. The paper is organized
as follows: In section 1, we give definitions and notations that we use throughout the
paper, in section 2, we present a recursive formula for permanent of Toeplitz matrices,
and in sections 3, 4 we present some results on the permanent of Toeplitz matrices.

Example 1.1. Let

A :=

 a d g
b e h
c f i

 .

The per(A) for a general 3× 3 matrix using all the permutations in S3 is

per(A) = aei + bfg + cdh + afh + bdi + ceg.

We consider the following n × n Toeplitz matrix with entries from the Narayana
sequence:

Tn (b0; b1, b2, . . . , bn) =



b1 b0 0 . . . 0 0
b2 b1 b0 . . . 0 0
b3 b2 b1 . . . 0 0

. . . . . . . . .
. . . . . . . . .

bn−1 bn−2 bn−3 . . . b1 b0
bn bn−1 bn−2 . . . b2 b1


,

where b0 = 1 and bk 6= 0 for at least one k > 0. So bij = 0 for j > i + 1.
In this section, we investigate the properties of Toeplitz matrices constructed using

Narayana numbers. Specifically, we are interested in determining a recursive formula
for the permanent of these matrices. Toeplitz matrices have a constant value on
each diagonal and are defined by their first row and column. In our case, we build a
Toeplitz matrix Tn (b0; b1, b2, . . . , bn) with entries from the Narayana sequences. The
main result of this section is the following theorem, which presents a recursive formula
for the permanent of these Toeplitz matrices.

Now you can state the theorem:
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2. Recursive formula for permanent of Toeplitz matrices with Narayana
Entries

Theorem 2.1. Let Tn (b0; b1, b2, . . . , bn) be a Toeplitz matrix built from Narayana
numbers. Given that per(T0) = per(T1) = 1, then the recursive formula for perma-
nent of Tn is given by

per(Tn) =

n∑
j=1

bj per(Tn-j)

Proof. Suppose

Tn = (b0; b1, b2, . . . , bn) =



b1 b0 0 . . . 0 0
b2 b1 b0 . . . 0 0
b3 b2 b1 . . . 0 0

. . . . . . . . .
. . . . . . . . .

bn−1 bn−2 bn−3 . . . b1 b0
bn bn−1 bn−2 . . . b2 b1


,

where b0 = 1.
To get the permanent of Tn, we will expand Tn along its first or last column as

follows.

per(Tn) = 1 · per



b1 1 0 . . . 0 0
b2 b1 1 . . . 0 0
b3 b2 b1 . . . 0 0

. . . . . . . . .
. . . . . . . . .

bn−2 bn−3 bn−4 . . . b1 1
bn bn−1 bn−2 . . . b3 b2



+ b1 · per



b1 1 0 . . . 0 0
b2 b1 1 . . . 0 0
b3 b2 b1 . . . 0 0

. . . . . . . . .
. . . . . . . . .

bn−2 bn−3 bn−4 . . . b1 1
bn−1 bn−2 bn−3 . . . b2 b1



= 1 · per



b1 1 0 . . . 0 0
b2 b1 1 . . . 0 0
b3 b2 b1 . . . 0 0

. . . . . . . . .
. . . . . . . . .

bn−2 bn−3 bn−4 . . . b1 1
bn bn−1 bn−2 . . . b3 b2


+ b1 · per(Tn-1)

= 1 · per



b1 1 0 . . . 0 0
b2 b1 1 . . . 0 0
b3 b2 b1 . . . 0 0

. . . . . . . . .
. . . . . . . . .

bn−2 bn−3 bn−4 . . . b1 1
bn bn−1 bn−2 . . . b4 b3


+ b2 · per(Tn-2)+b1 · per(Tn-1)
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= 1 · per



b1 1 0 . . . 0 0
b2 b1 1 . . . 0 0
b3 b2 b1 . . . 0 0

. . . . . . . . .
. . . . . . . . .

bn−2 bn−3 bn−4 . . . b1 1
bn bn−1 bn−2 . . . b5 b4


+ b3 · per(Tn-3)+b2 · per(Tn-2)+b1 · per(Tn-1)

If we continue this process, we will get

per(Tn) = b1 · per(Tn-1) +b2 · per(Tn-2) + · · ·+ bn · per(T0)

=

n∑
j=1

bj per(Tn-j)

�

3. Odd Toeplitz matrices with Narayana entries

We define odd Toeplitz matrix with Narayana entries as follows:

Tn (1; b1, b3, . . . , b2n−1) =



b1 1 0 . . . 0 0
b3 b1 1 . . . 0 0
b5 b3 b1 . . . 0 0

. . . . . . . . .
. . . . . . . . .

b2n−3 b2n−5 b2n−7 . . . b1 1
b2n−1 b2n−3 b2n−5 . . . b3 b1


,

Example 3.1. A 5× 5 odd Toeplitz matrix with Narayana entries.
1 1 0 0 0
1 1 1 0 0
3 1 1 1 0
6 3 1 1 1
13 6 3 1 1


In table below, we include permanent of Toeplitz matrices with different odd sizes.

Table 1. Permanent of Odd-Sized Toeplitz Matrices

Size (n) Permanent (Per(T n))
3 6
5 48
7 385
9 3,086
11 24,736
13 198,270
15 1,589,300
17 12,739,000
19 102,110,000
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Regression Equation: per
(
T̂n

)
= (0.2641473372) · (2.8311041625)n

Correlation: r = 0.9999999964
R-squared: r2 = 0.9999999928

In this section, we further explore the properties of Toeplitz matrices with entries
from the Narayana sequences, focusing on the behavior of their permanents. We con-
sider Toeplitz matrices Tn (1; b1, b3, . . . , b2n−1) with Narayana entries b1, b3, . . . , b2n−1,

and their modified counterparts T̂n. Our aim is to examine the differences in the per-
manents of these matrices when n is an odd integer greater than or equal to 3. The
main result of this section is the following theorem, which establishes an upper bound
on the absolute difference between the permanents of these matrices.

Now you can state the theorem:

Theorem 3.1. Let Tn (1; b1, b3, . . . , b2n−1) be a Toeplitz matrix with Narayana entries
b1, b3, . . . , b2n−1. Whenever n ≥ 3 is odd, we then have the following.

|per (Tn)− per(T̂n)| < ε

for any ε > 0.

Proof. We use induction on n. For the base case, let n = 3. Then per(T̂3) =
(0.2641473372) · (2.8311041625)3 = 5.9939591931. Now it is clear that

|per (T3)− per(T̂3)| < ε

for any ε > 0.
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Next suppose that

|per (Tn)− per(T̂n)| < ε

b2

for any ε > 0 is true for n = k. We will prove that the result also holds for n = k + 2.
Notice that

per(T̂k+2) = (0.2641473372) · (2.8311041625)k+2

= (0.2641473372) · (2.8311041625)k · (2.8311041625)2

= per(T̂k) · (2.8311041625)2

we let b = (2.8311041625)2, then per(T̂k+2) = b2 per(T̂k).
Similarly, we can show that

per (Tk+2) = b2 per (Tk) .

For n = k + 2, we have

|per (Tk+2)− per(T̂k+2)| = |b2 per (Tk)− b2 per(T̂k)|

= b2|per (Tk)− per(T̂k)|

< b2(
ε

b2
)

= ε.

�

4. Even Toeplitz matrices with Narayana entries

We define even Toeplitz matrix with Narayana entries as follows:

Tn (1; b2, b4, . . . , b2n−2) =



b2 1 0 . . . 0 0
b4 b2 1 . . . 0 0
b6 b4 b2 . . . 0 0

. . . . . . . . .
. . . . . . . . .

b2n−4 b2n−6 b2n−8 . . . b2 1
b2n b2n−4 b2n−6 . . . b4 b2


,

Example 4.1. A 4× 4 even Toeplitz matrix with Narayana entries.
1 1 0 0
2 1 1 0
4 2 1 1
9 4 2 1


In table below, we include permanent of Toeplitz matrices with different even sizes.
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Table 2. Permanent of Even-Sized Toeplitz Matrices

Size (n) Permanent (Per(T n))
4 5
6 32
8 203
10 1,281
12 8,080
14 50,967
16 321,490
18 2,027,900
20 12,792,000

Regression Equation: per
(
T̂n

)
= (0.1266043096) · (2.5136533511)n

Correlation: r = 0.9999994894
R-squared: r2 = 0.9999989787

In this section, we continue our investigation into the properties of Toeplitz matrices
with entries from the Narayana sequences by examining the behavior of their perma-
nents under different conditions. We now consider Toeplitz matrices Tn (1; b2, b4, . . . , b2n−2)

with Narayana entries b2, b4, . . . , b2n−2, and their modified counterparts T̂n. Our fo-
cus is on the differences in the permanents of these matrices when n is an even integer
greater than or equal to 4. The main result of this section is the following theorem,
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which establishes an upper bound on the absolute difference between the permanents
of these matrices.

Now you can state the theorem:

Theorem 4.1. Let Tn (1; b2, b4, . . . , b2n−2) be a Toeplitz matrix with Narayana entries
b2, b4, . . . , b2n−2. Whenever n ≥ 4 is even, we then have the following:

|per (Tn)− per(T̂n)| < ε

for any ε > 0.

Proof. We use induction on n. For the base case, let n = 4. Then per(T̂4) =
(0.1266043096) · (2.5136533511)4 = 5.2409607409. Now it is clear that

|per (T4)− per(T̂4)| < ε

for any ε > 0.
Next suppose that

|per (Tn)− per(T̂n)| < ε

b2

for any ε > 0 is true for n = k. We will prove that the result also holds for n = k + 2.
Notice that

per(T̂k+2) = (0.1266043096) · (2.5136533511))k+2

= (0.1266043096) · (2.5136533511)k · (2.5136533511)2

= per(T̂k) · (2.8311041625)2

we let b = (2.5136533511)2, then per(T̂k+2) = b2 per(T̂k). And similarly, we can show
that

per (Tk+2) = b2 per (Tk) .

For n = k + 2, we have

|per (Tk+2)− per(T̂k+2)| = |b2 per (Tk)− b2 per(T̂k)|

= b2|per (Tk)− per(T̂k)|

< b2(
ε

b2
)

= ε.

�

5. Conclusion

In this study, we have introduced and explored a new class of Toeplitz matrices
with entries derived from the Narayana sequences. We have rigorously established
that the permanent of Toeplitz matrices belonging to this class can be characterized
as an exponential function. To further substantiate our findings, we have provided
several numerical examples for both even and odd-sized Toeplitz matrices.

Our work sheds new light on the intricate relationship between Toeplitz matrices
and the Narayana sequences, thereby expanding the current understanding of their
mathematical properties and potential applications. As a future direction, we plan
to extend this research to encompass other well-known sequences, further broadening
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the scope and applicability of our results. Details of these extensions will be presented
in an upcoming paper.
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