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Functions
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ABSTRACT. In this article, we studied the geometric properties of generalized Wright-Bessel
functions. For this purpose, we determined sufficient conditions for univalency, convexity,
starlikeness and close-to-convexity of the generalized Wright-Bessel functions in the open unit
disk.

2020 Mathematics Subject Classification. 33C10, 30C45, 30C55.
Key words and phrases. Generalized Wright-Bessel function; univalent; starlike; convex;
close-to-convex.

1. Introduction

In recent years, the geometric properties of well-known special functions such as
Bessel, Wright, Mittag-Leffler have been a subject that has been systematically dis-
cussed. The most researched geometric properties are starlikeness, convexity, and
close-to-convexity. Raducanu [12], Bansal and Prajabat [13] worked on some geomet-
ric properties of Mittag-Lefller functions. The starlikeness and convexity conditions
normalized Bessel functions were studied intensively by Ponnusamy and Baricz [16].
Prajabat [14] obtained some conditions for geometric properties of Wright functions.
Bansal et al. [15] examined some geometric properties of 7-confluent hypergeomet-
ric functions. Recently, Eker and Ece investigated geometric properties of Rabotnov
functions [18] and Miller-Ross functions [17]. Motivated by these works, we obtained
sufficient conditions for close-to-convexity, univalency, starlikeness and convexity of
the generalized Wright-Bessel functions.

In 1966, H.K. Pathak investigated the following special function, which is called
the Generalized Wright-Bessel (-Lommel) function:

Definition 1.1. [1] The Generalized Wright-Bessel (-Lommel) function is defined as
-3 UG
N = (2
Jua 2 2T B+ D(0+ A+ 1+ kp)

where p > 0, v, A € R.

In this function, with some special parameter choices, we can get some well known
special functions, like Lommel function, Struve function, Bessel function and Wright
function. For example, for ;= 1 it contains Lommel and Struve functions and if we
take A = 0 and pu = 1, we can get the familiar Bessel function. For more details we
refer to [2]. (See also [3],[4]).
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The main aim of the present article is to determine geometric properties of General-
ized Wright-Bessel function. For this, we need the following notation and definitions.

Let A denote the class of functions f which are analytic in the open unit disk
U={z€C : |z| <1} and normalized by the conditions f(0) = f'(0) — 1 = 0. Equiv-
alently; if f € A, then it has the following Taylor-Maclaurin series representation:

flz) =2+ az®, (z€U). (1)
k=2

Also, let S be the subclass of A consisting of univalent functions. A function f € A
is called starlike (with respect to the origin), denoted by f € S*, if f is univalent in
U and f(U) is a starlike with respect to the origin. It is well-known that f € S* if

and only if
Re (igi?) >0, (2 €U).

Furthermore, a function f € A that maps U onto a convex domain is called convex

function. We denote by C the class of all functions f € A that are convex. f € C if
and only if

21(2)
f'(2)
Next, a function f € A is called close-to-convex, if the range f(U) is close-to-

convex, i.e. the complement of f(U) can be written as the union of nonintersecting
half-lines. We denote by K all close-to-convex functions. f € K if and only if

Re<1+ )>0, (z €U).

Re(?%ji) >0, (€U, gel).

For these classes it is convenient to give the following chain of proper inclusions:
ccs*ckcs.

A univalent function f is in the class UCV of uniformly convex functions if for
every circular arc vy contained in U with center & € U the image arc f(7) is convex (see
[6]). On the other hand, Rgnning [7] defined the class of parabolic starlike functions
Sp as follows:

Sp={f: f(z) =2F'(2), FeUCV}.
Given two functions f,g € A, where f is given by (1.1) and g(z) is given by

g(z)=z+ Zbkzk7
k=2
the Hadamard product (or convolution) f * g is defined (as usual) by
(F9)(2) = 2+ > agbist = (g5 (=) , 2 €.
k=2

For more details about the univalent functions theory we refer to [5], [(].
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It is clear that the generalized Wright-Bessel function J | (z) is not in the family
A. Thus, let us take into consideration the following normalization:

Tz )—2”+2A1“(v+>\+1)1“(/\+ 127550 (V2)

TA+1D(v+A+1)
+Z 4k U T+ k)T (v—l—)\—i-l—i-(k?—l)ﬂ)Zk

To discuss the geometrlc propertles of normalized generalized Wright-Bessel func-
tions, here we define modiﬁed form:

TN = o 4 30 (2)

1 A+ DI (v+A+1) (2)
_Z+Z4k IT(A + k)T (’U-i—)\-l-l—l-(k‘—l),u)Zk

In order to present our results we need the following interesting results.

Lemma 1.1 ([8]). Let f define by (1) and suppose that
1>2a3 > >kap>--->0

or
1<2ay < - < kap < - <2.

Then f is regular and univalent in U.

Following the proof of Ozaki it can be proved that if a function f satisfies the
conditions given in Lemma 1.1, then f is close-to-convex with respect to the convex
function —log(1 — 2).

Lemma 1.2 ([9]). If the function f € A, satisfy |(f(2)/z) — 1] < 1 for each z € U,
then f is univalent and starlike in Uy o = {2 : [2| < 1/2}.

Lemma 1.3 ([10]). If the function f € A, satisfy |f'(z) —1| < 1 for each z € U, then
[ is convex in Uy /5.

Lemma 1.4 ([11]). Assume that f € A. Then the following results hold true:

(i) If Zfég) - 1‘ < %, then f €S,
(ii) If |2 < L, then f e UCV.

2. Main results

Theorem 2.1. Let v, >0 and A > —1/2. If A+ v > 0,462, then Jqf)\(z) given in
(2) is close-to-convex with respect to convez function —log(1l — z) and hence univalent

in U.
Proof. Define

JffA =z+ Z Az
where

T\ + DT(v+A+1)

A = AT+ )P+ A+ 1+ (k—1)p)

k>2 and A =1. (3)
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We note that under the stated conditions A > 0 and 245 < 1 for all k > 1.
We will use Lemma 1.1 to prove that f is close-to-convex with respect to —log(1—z).

Therefore, we need to show that {kAg} is a decreasing sequence of positive real
numbers. Using (3), we obtain

TA+1DT(v+A+1
kA — (k+1)App1 = ( 4k—31-\§/\_|_ 3 )X(k)
where
X (k) = k k+1

T T 1+ (k—1)p) AA+ET(v+A+1+kp)
It is well known that the function T'(z) is increasing on (zg,00) where zo &~ 1.462.
Since under the hypotheses of our theorem

AEAN+E)T(w+A+1+kp) > (k+ 100+ A+ 1+ (E—1)p),

we conclude that kA — (k + 1)Ag11 > 0. This completes the proof of the Theorem
2.1. O

1
Example 2.1. The function J?

1
)

(z) is not univalent in U. (Figure 2)

(z) is univalent in U. (Figure 1). However, the

1
function J3
10

N|=

%
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FIGURE 1. Mapping of Jl%, (z) over U.

1
T2

Theorem 2.2. Let v, >0 and A\ > —1/2. If \+v > 0,462 and
2+2
4

where [|p|] denotes the greatest integer value of pi, then J \ () given in (2) is starlike
in U.

A+ D)+ A+ 10 >



GEOMETRIC PROPERTIES OF THE GENERALIZED WRIGHT-BESSEL FUNCTIONS 387

Proof. Let p(z) be the function defined by

NS
p(z)— ‘]57,\(2) ’

(z € U).

Since

J{i)\(z

z

)750, (z€),

the function p is analytic in U and p(0) = 1. To prove our theorem, we need to show
that Re(p(z)) > 0, z € U. It is easy to show that, if |p(z) — 1| < 1, z € U, then
Re(p(z)) > 0. For A > —1/2 we have

T(A+1) 1

< e (k € N). (4)

Furthermore, since
Tlo+A+1+(k—1Du)>Tw+A+1+ (k=g
where A + v > 0,462 and [|u|] denotes the greatest integer value of u, we have

Fv+A+1) < 1
Fv+A+1+(k—=1p) = (v+ A+ 1)lelt-1)"
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Under the hypotheses of the theorem, using (2), (4) and (5), we can write

z Zzﬂf 1F(A+k) (v+A+1+(k71)u)z

(Jia)'(2) =

o0

Z DA+ DT (v +A+1)
4k— 1F /\+k)I‘(v+>\+1+(k—1),u)

> 1 1
<kz_2 4k~ 1 A+ DF1 (0 + A+ D)IulG=1)

k-1
A+ 1) (v + A+ Dlullyk-1

_ 4(>\+1)(v+>\+1)[|u|]
T ADF D A+ D)IET—1)2

NP18

and

T(A+ )0 (6+ A+ 1) -
1
+Z4k T+ T AF 1+ (k- D)~

H ‘

> P+ DT (v +A+1)
>1-D & T+ k)L + A+ 1L+ (k- 1))

(oo}
o 1 1
= ;2 TN+ 1)F 1 (0 + A+ 1)E- D0l

oo

1
- kzz:Z A+ D) (v + A+ D)llellyk—1

A+ D (v A+ )l —2
AN+ (v 4+ A+ Dlel —17
for z € U. From (6) and (7), we get
z2(J},)'(2)
I ()

B o(z
() (z) — 22
J;;L,A(Z)

z

4N+ 1) (v + A+ 1))

lp(z) — 1] = -1

1

= AN+ D) (v + X+ DIl — DA+ 1) (v + X+ Dl —2)°

Hence we deduce that |p(z) — 1| < 1 if

A+ 1)+ A+ 1)l > 2“[

This completes the proof of the Theorem 2.2.

14
0

Example 2.2. The function J"% , (z) is starlike in U. (Figure 3)

2

Theorem 2.3. Let v, >0 and A\ > —=1/2. If \+v > 0,462 and
A+ w+ 1+ 1) > 2
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1
1,-4

F1GURE 3. Mapping of J (z) over U.

where [|u]] denotes the greatest integer value of yi, then J)) \(2) given in (2) is convex

in U.

Proof. Let p(z) be the function defined by

Then p(z) is analytic in U and p(0) = 1. To prove J!', (z) is convex in U, we need

B}

to show that |p(z) — 1| < 1, z € U. For z € U, using (2), (4), (5) and the fact that
k(k—1) <2F for all k > 1, we get

VN k(k—1T(A+1)l(v+A+1) _
’Z(‘]M) (Z)‘ - ‘kz_z ST+ kT + A+ 1+ (k— 1)u)zk 1

N k(k— DDA+ DT (0+ A+ 1)
< 1;2 AT+ BT (v + A+ 1+ (k—1)p)

> k(k—1) 3
= ;4’9—1()\4-1)k—1(v+)\+1)(k—1)[\u\] ®)

1

2+ 1) (v + A+ 1)lull)k-1
2

T+ DA F DIl -1

<2
k=2
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Furthermore, using (2), (4), (5) and the fact that k < 28~! for all k > 1, we get

= EDOA+ DT (v + A+ 1) b1
I+ ];2 FITA+T(W+ A+ 1+ (k— L))

>1_§’: ECA+ D (v+A+1)
L BFIT(A+ R0+ A+ 1+ (k= 1)p)

() ()] =

S k
212 0
> _ _ _

S 4R\ 1R (0 4 A+ 1) (= Dllsl]

- 1
>1-
- k2=2 2+ 1)(v+ A+ 1)lelyk=1
2+ D(w A+ el —2
20+ D) (A F Dl — 17
under the given hypotheses. From (8) and (9), we obtain

2(Jy,)" (2) _ 1
(Jqlf,x)/(z) A+ 1D (v+ A+ 1)l -1’
and the last expression is less than 1 by our assumption. This completes the proof of
the Theorem 2.3. -

Example 2.3. The function J} (z) is convex in U. (Figure 4)

FIGURE 4. Mapping of J}(z) over U.

Theorem 2.4. Let v, >0 and A > —1/2. If A+ v > 0,462, then Jf,/\(z) given in
(2) is univalent and starlike in Uy /5.

Proof. Under the hypotheses of the theorem, the straightforward calculation would
yield
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= A+ 1w+ A+1) k-1
2 BTN+ B0+ A+ 1+ (k— D)~

M_1|:
z

k=2

> 1
< ; 4RF=T(\ + 1)E=D) (y 4 X + 1) E=Dllul]

]

3 1
22 (400 + 1)(v + A + Dyl *=Y
1

TA0F DA I =T

k

In view of Lemma 1.2, J/' | () is starlike in Uy /2, if the last expression less than 1, or

equivalently, if (A +1)(v 4+ A + 1)+ > 1. But, this is already a consequence of the
hypotheses of the theorem. This completes the proof of the Theorem 2.4. (|

Example 2.4. The function J21 1 (2) is starlike in Uy /5. (Figure 5)
'3

FIGURE 5. Mapping of J21 1 (2) over Uy s.
'3

Theorem 2.5. Let v, >0 and A\ > —1/2. If A\ +v > 0,462 and

2442

A+ D+ 1+ 1Dlel > 1

where [|u]] denotes the greatest integer value of pi, then Ji/ ,(2) given in (2) is conver
m Ul/Q.

Proof. Under the hypotheses of the theorem, the straightforward calculation would
yield
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. B KOO+ D00 + A+ 1) )
(750 (2) = 1] = I;4k—1r(A+k)r(v+A+1+(k— 0w

<> G
k— k— -
S AR (A 1R (v 4 A+ 1) = DlkD)

= k
- kZ:Q (4 + 1) (v + A+ D)lel)E=1)

8+ (v A+l —1
A+ 1) (v 4+ A+ Dllel —1)2°
In view of Lemma 1.3, Jﬁ)\(z) is convex in Uy /o, if
S+ D)+ A+ DI — 1 < 4N+ 1) (v 4+ X+ 1)[IH—1)2,
The last inequality holds if

1
A+ 1D+ A+ DT > 12+ V2).
This completes the proof of the Theorem 2.5. O

Example 2.5. The function J; ;(2) is convex in Uy ,. (Figure 6)

FIGURE 6. Mapping of J3 ;(z) over Uy /o.

The following results can be proved in a manner that is analogous to the proofs of
the earlier results in this section. Therefore, we omit the details.

Theorem 2.6. Let v, >0 and A > —1/2. If A\ +v > 0,462 and
1
A+ 1D+ A+ 1)l > g6+ V17)

where [|pu|] denotes the greatest integer value of i, then the function J) () given in
(2) is belongs to the class of Sp.
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Example 2.6. The function Ji | (z) is in the class S,.
3.

Theorem 2.7. Let v,u >0 and A\ > —=1/2. If \+v > 0,462 and

A+ D+ r+ 1) >3

where [|p|] denotes the greatest integer value of p, then the function J!'\(z) given in
(2) is belongs to the class of UCV .

Example 2.7. The function J3,(z) is in the class UCV.
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