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ABSTRACT. This paper deals with the existence and uniqueness results for a class of impulsive
implicit fractional initial value problems of the convex combined Caputo fractional derivative.
The arguments are based on Banach’s contraction principle, Schauder’s and Ménch’s fixed
point theorems. We will also establish the Ulam stability and give some examples to illustrate
our results.

2010 Mathematics Subject Classification. Primary 26A33; Secondary 34A08, 34A37.

Key words and phrases. Combined Caputo fractional derivative; implicit problem; impulses;
fixed point; measure of noncompactness; Ulam stability.

1. Introduction

In recent years, fractional calculus has shown to be a very useful method for dealing
with the complexity structures encountered in a variety of fields. It is concerned with
the extension of integer order differentiation and integration of a function to non-
integer order. The reader is directed to the publications [1, 2, 3, 9, 10, 11, 20, 21],
for more details. Numerous books and papers have recently appeared in which the
authors discussed the existence, stability, and uniqueness of solutions for various
problems with fractional differential equations and inclusions using various fractional

derivatives and conditions. One may see the papers [25, 15, 19, 8], and the references
therein. Several papers in the literature discuss the Ulam stabilities of various types of
differential and integral equations, see [17, 22, 24, 16, 27, 30, 28, 29] and the references
therein.

The theory of impulsive differential equations is essential in describing many phe-
nomena, it has received too much attention in the literature. For more details, we
recommend [7, 23, 14].

In [23], the authors established existence and uniqueness results to the following
k-generalized 1-Hilfer problem with nonlinear implicit fractional differential equation
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IMPULSIVE FRACTIONAL PROBLEM WITH CONVEX CAPUTO DERIVATIVE 405

with impulses involving both retarded and advanced arguments:

(kHDZ;%) 0) = f (9,:179(~), (kHDjif%) (9)) S 0ed, i=0,...8

(5079550 0) = (381794 ) 67) 4 Lalat0; i = 1.5,

o i—1

g (j:ilig)’k;wx) (a®) + as (jgkj(lg)wk;wm) (b) = as,
e

z(0) =w(0), 0€la—ANa], A>0,

2(0) = 2(6), 6e [b,bm}, A0,

where fo’f i jfilig)’k;w are the k-generalized 1-Hilfer fractional derivative of or-
der ¥ € (0,k) and type r € [0,1], and k-generalized -fractional integral of order
k(1 — &) respectively, where { = +(r(k —9) +9), k > 0, w € C(la—A,a],R),
wel ([b, b+ 5\] ,R), f i ]a,b] x PCe .y ([—/\, ;\D xR — R is a given appropriate
function specified latter, oy, s, a3 € R such that a; + ag # 0, J; := (0;,60;41];7 =
0,....8,a="0) < b <...<05 <041 =b< o0, z(0)= liréler(@i—i—e) and
€E—
x(0;

)= Li%l, x(0; + ¢€) represent the right and left hand limits of z(6) at § = 6; and
L;:R %6R; i=1,...,[3, are given continuous functions. They based their arguments
on the Banach contraction principle and Schauder’s fixed point theorem.

In this article, we present the combined Caputo fractional derivative which is a
convex combination of the left Caputo fractional derivative of order x; and the right
Caputo fractional derivative of order k5. The main feature of the convex combined
Caputo fractional operator is that it is a two sided operator, this property plays a
decisive role in the fractional modeling. See [1], for more information.

In this paper, we study the existence and stability results for the following implicit

impulsive fractional problem:
6 D" (0) = f(8,9(0), §D"70(0)), 0€(0,,0,411,0=0,....8, (1)
Aglyg, = L(e(0))),  1=1,....5, (2)

©(0) = o, (3)
where OCD,’?””?'Y represents the convex combined Caputo fractional derivative of order
(k1,k2) € (0,1], v € [0,1], f : ©® x R x R — R is a given function, where © = [0, 5.
I'R—=R,and gg e R, 0=0p <0; <... <05 <0p41 =
Let Aplg, = ¢(0,7) =0(6)), with p(6,7) = lim (6, +h) and (0;7) = lim o(6,+h)
represent the right and left limits of ¢y at 6 = 6, respectively.

This article is organized as follows: Section 2 represents some definitions and pre-
vious results. In Section 3, we present the existence results for the problem (1)-(3)
that are based on Banach’s contraction principle and Schauder’s fixed point theorem.
In section 4, we study an existence result of a problem similar to problem (1)-(3) in
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a Banach space. Moreover, the Ulam stability of this problem is discussed. Finally,
we give some examples to show the applicability of our results.

2. Preliminaries

In this section, we introduce some notations, definitions and previous results which
are used throughout this paper.

Let = be a Banach space and consider C(0, Z), where © = [0, 5], the Banach space
of all continuous functions from © to = with the norm

[elloo = sup{l[¢(0)] - 6 € ©}.

Consider the following sets of functions:
PC(O,R) ={p: [0, > R: ¢ € C((0,,0,11],R), = 0,..... 3,
and there exist ©(0,),¢(0)),7=1,..., 8, withe(0,) = @(9])}.
Let PC(]0, ], R) is a Banach space with the norm
lellpe = sup e(9)]

PC,(0,E) = {(p (0,5 5 E:p € C((0,,0,41],5),7=0,....5,
and there exist (6;),0(0)),7=1,...,8, with ¢(0,) = (,D(ej)}.
PC4([0, 5], E) is a Banach space with the norm

lellpe, = sup [lp(0)].
0cO

Definition 2.1 ([13]). Let x; > 0. The left and right Riemann-Liouville fractional
integrals of a function ¢ € C(0,Z) of order k; are given respectively by

0
oI0(0) = o [ 0= 0 ele)de
and
260 = ro [ (o= 0 elde
I(k1) Jo
Definition 2.2 ([4, 26]). Let k1, k2 > 0. The combined Riemann fractional integral

of a function ¢ € C(0,Z) of order (k1, k2) is defined by
o2 p(0) = o1y p(0) +o 122 (0),

where ¢I;" and ¢I%? are the left and right fractional integrals of Riemann-Liouville
of order k1 and ks respectively.

Definition 2.3 ([13]). Let k1 € (n,n+ 1], n € Ny. The left and right Caputo
fractional derivatives of a function ¢ € C"T1(0,Z) of order x; are given respectively
by

K 1 6 n—k n
C D o(6) = ) /0 (0 — )" 1™ (g)dp,

F(n—i—l—lﬂl
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and

FDEA0) = gt ) /:@— 6)"=1 04D (g) .

Pin+1—xr

Definition 2.4 ([4, 20]). Let x1,k2 € (n,n+ 1], n € Ny, v € [0,1]. The convex
combined Caputo fractional derivative of a function ¢ € C"*1(©, =) of order (k1, k2)
is given by

§ D2 6(6) = 7 D (6) + (~1)" (1= 1) D2 (o)
where §'Dj* is the left Caputo derivative and §'D%2 is the right one.

Lemma 2.1 ([13]). If¢ € C"1(O,E) and k1, k2 € (n,n+1], n € Ng, v € [0,1], then

we have
I CDEs) Zf
and .
oI § D) = (1) Z PP gy

7=
Consequently, we may have

oI §DLE0) = 7 oIf? §DFE0) + (1) (L= ) oI §DIE(0))
In particular, if 0 < k1, k2 < 1, then we obtain
oI5 § DEHFIE() = €(0) — 7E(0) — (1 = 7)E(50).

Remark 2.1. If we take v = % and k1 = kg, the convex combined Caputo fractional

derivative coincides with the Riesz-Caputo derivative.

2.1. Measure of Noncompactness.

Definition 2.5 ([6]). Let X be a Banach space and let Qx be the family of bounded
subsets of X. The Kuratowski measure of noncompactness is the map ¢ : Qx —
[0, 00) defined by
B
Cx)=infqe>0:xC U X, diam(x;) <€ p,
j=1
where x € Qx.

The map ( satisfies the following properties:

e ((x) =0« X is compact (x is relatively compact);
e ((x) =C(x):

* X1 C X2 = C(x1) < C(x2);

o C(x1+x2) < () +((Q2);

* ((ex) = lelC(x), c € R;

* ((convx) = C(x)-

Lemma 2.2 ([12]). Let Q C PC1(©,X) be a bounded and equicontinuous set. Then,
a) The function ¥ — ((Q(F)) is continuous on O, and

Ce() = gggé(ﬂ(ﬁ)),
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b><(/: (0)do - <p€ﬂ> /c ))do, where

QW) ={p®): ¢ € Q},¥€O.

2.2. Some Fixed Point Theorems.

Theorem 2.3 (Banach’s fixed point theorem [13]). Let X be a Banach space and
H: X — X a contraction, i.e. there exists j € [0,1) such that

H (&) — H(E)| < allé — &2 forall &,& € X.
Then H has a unique fized point.

Theorem 2.4 (Schauder’s fixed point Theorem [13]). Let X be a Banach space, D
a bounded, closed, convex subset of X, and T : D — D a compact and continuous
map. Then T has at least one fixed point in D.

Theorem 2.5 (Monch’s fixed point theorem [18]). Let D be a non-empty, closed,
bounded and convex subset of a Banach space X such that0 € D and let H : D — D
be a continuous mapping. If the implication

Q =convH(Q) or Q=H(Q)U{0} = ((Q) =
holds for every subset Q of D, then H has at least one fized point.

3. Existence Results

Consider the following fractional differential problem:

OCD';“’”W@(G) = (), foreach O e (0,0,11],7=0,...,5, (4)
A§0|0]:7—], -]:17"‘757 (5)
©(0) = o, (6)

where 1 : © — R is a continuous function and 7, are real constants.

Lemma 3.1. Let k1,k2 € (0,1],7 € [0,1], and p : © — R be continuous. Then, the
problem (4)-(6) has a unique solution given by:

1 o Ko—1 L ’ —g)—l
1 1 "2=1(s)ds {
+m/9 is_i) ps)ds, if 00,01,
1 AR ! . Ko—1 s)ds
- 0 r( 2) lz/o 1(8 o (7)
7 491 — )" p(s)ds

I{lfl L Bora _ p\k2—1
ps)ds + s [ (=0 uo)is

+Zn, if 0€(6,,0,41].
=1
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Proof. Suppose that ¢ satisfies (4)-(6). Then, from Lemma 2.1, if § € [0, 6], then
@(0) = 7p(0) + (1 =707 ) + oly, "™ u(®)

)
=0+ (1= )00 + s [ 0= s
1 o Ko—1
+ T0na) /9 (s—10) wu(s)ds.

For # = 0, we have

01
(1 =7)e(0;) =1 —7)po — ﬁ/o 5271 (s)ds.

01 6
¢(0) = po — @/0 s™ 1 u(s)ds + ﬁ/o (0 — s)" " u(s)ds

1 o Ko—1
+ /9 (s—10) w(s)ds.

If 0 € (01, 6], then we have

1 0
P(0) = 10(67) + (1= 2)0(63) + s [ (0= ()
1 02 Hz*l
+ Tlra) /9 (s—0) w(s)ds.

For 6 = 6, we have

- + 1 ’ -1
(1= 2)0(03) = (1= 0(0) = g [~ 6= 00+ utepas.
and
p(67) = (67) + 1.
Then,

61 01
@(0) = po — ﬁ/o s u(s)ds + ﬁ/o (61 — )" p(s)ds
1

b2 —1 1 0 rk1—1
o / a0 () + s / (6 — sy p(s)ds

1 oo Kko—1
+ e /9 (s—0) w(s)ds + 1.

If 6 € (02, 05], then we have

0
£(0) = 70(07) + (1= )el05) + /9 (6 — ) p(s)ds

03
F(@)/@ (s —0)™" " u(s)ds.
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For 6 = 605, we have

03
! / (5 — 62)"2 L p(s)ds.

(1—=7)p(05) = (1 —)p(63) — ) s

Thus,

01 01
o0 = 0= g | s+ s [ 00— 9 s

92 92

— 1“(/142) /9 (s — 01)" 2 p(s)ds + F(lm) /0 (0 — 5)" 1 u(s)ds
03 0

ey, 0 s s [0ty
03

+ F(;) /9 (s — 0)2"u(s)ds + 71 + To.

By repeating the same procedure, for § € (6,,0,,1], we get
71

0l el
#(0) = 0~ s Z / O Z / 8= (s)ds
1—1
0

1 R1—1 1 P Rl
0o /0, (0 — )" u(s)ds + 02 /9 (s—0) ds—&—Zn

Conversely, assume that ¢ satisfies (7). Since the Caputo derivative of constant is
zero, if § € [0,0;], we obtain § DEVF27p(0) = u(f), and if 6 € (6,,0,11], 7=0,... 5,
we get §' D127 () = p(f). Also we can easily prove that Aply, = 7).

_|_

Definition 3.1. By a solution of the problem (1)-(3) we mean a function ¢ €
PC(O,R) that satisfies the equation (1) and the conditions (2)-(3).

Lemma 3.2. Let f: © x Rx R — R be a continuous function. Then the problem
(1)-(3) is equivalent to the following integral equation:

! o K2—1
T 610t

F(“l)/() (0 — )71 f(s,0(5),g(s))ds

01
/ (5 — 0= (s, 0(s).9(s))ds, 0 €[0,6],
10 i

0,
72/ (s = 01-1)" "1 f(s,0(s), g(s))ds

=1 Y 0i—1

(8- sy (s 0(5), g(s))ds

®o —

—1 7011

(9* 5)"1 7 f(s,0(5), g(s))ds

(s—0)™=" 1f(3 P(s d3+zll € (05, 6)+1];
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where g € C(O,R) satisfies the following functional equation
9(0) = £(0.0(0),9(9)).

We are now in a position to prove the existence result of the problem (1)-(3) based
on the Banach’s contraction principle.

Let us put the following conditions:
(B1) The function f: © x R x R — R is continuous.
(B2) There exist constants A > 0 and 0 < L < 1 such that

|f(07£a6) - f(eag,g)‘ < /\|€_5| +L|6_ g|a

for any £,£,6,0 € R and 6 € ©.
(B3) There exists constant C' > 0 such that

|1,(8) = L,(d)| < €6 — ],
for any 6,0 € R and y=1,..., 7.
Theorem 3.3. Assume that the assumptions (B1)-(B3) hold. If
Ax"2(8 + 2) Ax" (B +1)
(1-L)(ka+1) (1—L)T(k1+1)

then the problem (1)-(3) has a unique solution on ©.

Proof. Consider the operator X : PC(©,R) — PC(0,R) defined by:

+Cp < 1,

0,
R0 =0 g X[ e
0<0,11<6 =1
1 0, m—1y () ds b ’ —s)"11g(s)ds
+ (k1) 0<0,<0 /9]1 o=t (k1) /GJ Ot
1 0]+1 ho—1 _
+ ) /9 (s—0) g(s)ds + Z L(p(0)))-

0<6,<6

Clearly the fixed points of the operator X are solutions of the problem (1)-(3).
Let ¢,z € PC(O,R) and § € ©. Then

9]
R(6) — R=(6)] < F(;) / (s — 8,1)"g(s) — h(s)|ds
0<6,41<0 7711
1 0.7
T (6, — 5)™~[g(s) — h(s)|ds
(1) 0<93<9/9_,_1 g
0
" ﬁ /9 (=9 gls) — hl)lds
0541
" % /9 (5 — 0)™]g(s) — h(s)|ds

+ D L(e8;) = L(=(6;)],

0<0,<0
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where g and h are two functions verifying the functional equations:

9(0) = f(0,¢(0),9(9)),
h(8) = f(0,2(6), h(0))-
Then, by (B2), we have
|9(0) — h(0)] = | £ (0, (6),9(0)) — £(6,2(0), h(6))|
< Alp(8) = 2(0)] + L|g(6) — h(0)],

which implies

9(8) — h(B)] < ——|p(6) — =(0)].

—1-L
Thus,
[Re(6) — N=(0)] < (ILA)F() Py /9 (s = 0,-0)" 7 |o(6) — 2(6) ds
+ ﬁ 629 /9 9 (6, — ) ip(0) — =(0)] ds
O e e /: (0 — )" |p(0) - 2(0)] ds
i (1_;)%) / " 6= 0 () — 2(0)] ds

5
+_ Cle(8) - =(9)]

VB 42) (B )

0Dl tD) A=D1 T P |le—=lre:

Consequently, by the Banach’s contraction principle, the operator X has a unique
fixed point which is solution of the fractional problem (1)-(3). O

Remark 3.1. Let us put
@ (0) = If(8,0,00, A=qz, L=4g5, C=pi, py = max [I,(0)]
Then, the hypothesis (B2) implies that

1£(0,8,0)] < a1(0) + a51€] + 3161,
for0 €0, (R, 0 €Rand ¢ € C(O,R,), such that

q; = sup qi1(6).
6co
And, from hypothesis (B3), we have

11,(6)] < pil€l + 3,
foreach d €R, y=1,...,p.
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Theorem 3.4. Assume that the hypotheses (B1)-(B3) hold. If
g3 (B +2) gGx" (B+1)
(1=g)T(r2+1) (1 -g3)l(k1+1)

then the impulsive implicit fractional problem (1)-(3) has at least one solution.

+ Bpi < 1,

Proof. In this proof, we will use Schauder’s fixed point theorem. The proof will be
given in several steps.

Step 1: The operator X : PC(©,R) — PC(O,R) is continuous.
Let {¢n}nen be a sequence such that ¢, — ¢ in PC(©,R). Then, for each § € ©,
we have

b,
|N<Pn(9) - N¢(9)| < ! Z (3 - ej—l)ﬁz_llgn(s) - g(s)|d8

[(k2) 0<8,11<6 7051
1 0, )
+ / 0, — )" " gn(s) — g(s)|ds
F("‘l)og;«; QH(J )" gn(s) — g(s)]
R .
g ), @9 lonls) gt
1

0541
—_— s— )=t s) — g(s)|ds
+ F(@)/G (5 =0)"" gn(s) — g(s)|d

+ > 1L(ea(0)) = Ll (6;)].

0<6,<6
By (B2), we have
|gn(9) - 9(9)‘ = ‘f(97 <p(9)7gn(9)) - f(ev 90(9)79(9)”
< Alen(0) — 9(0) + Lgn(0) — 9(0)].
Then,
19a0) ~ 9(0)] < 2 0(0) — £(6)].
Thus,

GJ
R (68) — R (0)] < / (5 = 0,1)" " ion(5) — o(s)|ds

b b / 9 (6, — 5 pn(s) — (s)lds
T - /90 (60— ) pu(s) — 9(s)lds
o | T o 0y (s) — pls)lds

5
+Y_ Clon(6) = 2(0)].
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By applying the Lebesgue dominated convergence theorem, we get
[N, (0) —Rp(0)] — 0 as n — .
Hence,
IRp, —Rpllpe — 0 as n — oo,

which implies that N is continuous.

Let R > 0 such that

12 (842) *%”1(ﬁ+1) %

|9”0|+ 1q1q3>r<m+1) <1qiq;:>r<m+1> + B3
P B Gl N i R VI W
B}

(1 qB)F(mz-&-l) (1—g3)I'(k1+1)
Define the ball
Dr={yp € PC(O,R) : |l¢lrc < R}.
Step 2: X(Dg) C Dg.
Let ¢ € D and 6 € ©. Then,

ROl <ol + iy [ e
0<0,41<60
0
(ggﬁ/ (09 lo@ds + gy [0 57l
1 0541 -
+r(,§2)/0 (s—0)= " g(s)lds +

0<6,<6
From hypothesis (B2), we have
9(0)] = 1f(6,(0),9(0))]
< a(0) + e llellpe + aslg(0)]
<qi + g R+ g3l9(0)].

Then,
@t
0 < =222~
lg(0)] < —q
Thus,
»2 (g + g R)(B+2)  #» (¢ +R)(B+1 . X
Rp(0)] < || + o T BRE D) | G EBRBED) | gepy ey

(1 =g5)T (k2 +1) (1 —g3)l'(r1+1)
<R.

Hence, X(Dg) C Dg.
Step 3: X(Dg) is equicontinuous.
Let 61,602 € O, where 6, < 6> and ¢ € Dg. Then,
041

1 92 Kk1—1 1 B -
F(m)/e (62 =) g(s)d”mfg (s — 02)"2 "1 g(s)ds

2

Np(62) — Rep(01)] =
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1 01 1 B 1 0,41 - ot
r(m)/ej (01 — )" g(s)ds F(@)/gl (s —01)""'g(s)ds

+ D fa(w(%‘))'

01 <Qj <62

01
< F(lm) /9 (B2 — s)™ 1 — (61 — 8)™ ~]|g(s)|ds
02 b2
- F(lm) /e (62 — )" g(s)|ds + ﬁ/g (s — 01)" " g(s)|ds
05+1
T / [(s — 02)"" — (s — 61)"""[g(s)|ds

['(k2) 02
+ Y L(#6;)]

01<0,<62
(QT + q; ) o k1—1 Kk1—1
S(l—q?,)r(n)/(, (62— )71 = (61 — 5) ~V]ds
(@i + B R)(O2 —61)" | (¢f + 5 R)(02 — 01)"
(1—¢3)T'(k1+1) (1-¢3)T'(r2+1)
* * 0541

+ Z PR+ p5.
01<0,<62

As 0, — 05, the right-hand side of the preceding inequality tend to zero, then
R(Dg) is equicontinuous. According to the three steps and Arzela-Ascoli theorem, we
deduce that the operator N has at least a fixed point which is solution of the problem
(1)-(3). O

4. An Example

Consider the following impulsive problem:

[l VI

1.1
1304 0) =

- 1 11 )
5yeth (1+10(0)] + [§DF ¥ 0(0)])

1 1~
Agog_;gln<2+e+g0<2 )), (9)

¢(0) =1, (10)

§D

7+ le®) + [§ D p(0)
T 0 cOyUB, (8)

7+ 1€+ 19]
By/mel s (L+[¢] + 1))

f(8,€,0) = €10,1], £ €Rand § € R.
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Obviously f is a continuous function, the the hypothesis (B1) is satisfied. And, for
each £,£,0,6 € R and 6 € [0, 1], we have

_ 1 _ _
|f(6,€,0) — f(0,€,0)] < 5\F?[If — & +10 =4[]

Then, the hypothesis (B2) is satisfied with A =y = —1 Let

T.
e 3

11(5):$1n(2+e+5), §eRT.
Then, for 6,8 € Rt, we have
IL(5) - 1,(5)| = éln(2+e+5) - %Oln(2+e+5)
< o154l

Thus, (B3) is met with C' = §. Also, we have

Ax"2(5 + 2) n Ax" (B4 1) LB 3

(1=L)l(k2+1)  (1—L)L(k1+1) (5y/mes — DI(E)
2 1
T ByRet ) 9
<1

9

for =1, =1and C = 5. It follows from Theorem 3.3 that the problem (8)-(10)
has a unique solution on [0, 1].

5. Impulsive Implicite Problem in Banach Spaces

This section is devoted to the study of existence and stability of a problem similar to
problem (1)-(3) in a Banach space. Consider the following problem:

ngtl’”"‘;”(p(H) = f(0,¢(0), ngj"”WLp(H)), for each 0 € (0,,0,41],7=0,...,5,(11)
Aplo, = L(p(0))), 1=1,...,5, (12)

(0) = o, (13)
where §' D172 is the convex combined Caputo fractional derivative of order (k1, ko) €
(0,1], v € [0,1], f : © x EXx E — Z is a given function, where © = ©. I, : £ — &,
and g € 2,0 =06y < 61 < .. <0 <1 = Let Aplo, = 0(0)) — ¢(6,),
with ¢(67) = lim (6, + h) and ¢(6;) = lim @(f,+h) represent the right and left

h—0+ h—0

limits of g at § = 6, respectively.

Definition 5.1. By a solution of the problem (11)-(13) we mean a function ¢ €
PC1(0, =) that satisfies the equation (11) and the conditions (12)-(13).
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Lemma 5.1. Let f : © x Z x Z — = be a continuous function. Then the problem

(11)-(13) is equivalent to the following integral equation:

61
o — ﬁ / 521 f(s5,0(5), g(5))ds

0

1 — 5 K1—1 S s s s
+r<fl> /oef‘) )L (s, 0(5), 9(5))d
+r(H2)/ (5= 0)™ " f(s,9(s),9(s))ds,  6€10,61],
7+l g,
p(0) = H:g Z/el . = 01-1)" 7 f(s,0(5), g(s))ds

91

) f (s, 0(s), g(s))ds

! — 5)" L f (s, 0(5), 9(s))ds
+F(m)/03 (09" F(5.0(5).9()d

1 0,11 - ) I
+1—1(/€2)/0 (8_ ) f(SSO S+Zl

Let us set the following assumptions:
(B4) The function f: © x E x E — E is continuous.
(B5) There exist constants A > 0 and 0 < L < 1 such that

for any £, € 2, 0,6 € Zand 0 € ©.
(B6) There exists constant C' > 0 such that

1,(8) = L,(9) | < Cllo — o]l

for any 6,0 € Zand y=1,...5.
(B7) For each 6 € © and bounded sets By, Bo C 2, we have

(B8) For each § € © and bounded set Bo C =, 3= 1,..., 3, we have
C(L)(B2)) < C¢(Ba).

, 0 € (9379]-1-1]

Remark 5.1 ([5]). It is worth noting that the hypotheses (B5) and (B7) are equiv-

alent as well as the hypothesis (B6) and (B8).
Remark 5.2. Let us put

q1(0) = [|£(6,0,0)]|, A\=1¢5, L=gq3, C =pi, ps =FHll?XﬁHIJ(0)H-

[RRRE)

Then the assumption (B5) implies that
1700, €,0)]l < 1(0) + az[I€]] + 31|51l
for0 €O, €=, 0€Eand ¢ € C(O,Ry), such that

q; = supqi(0).
6cO
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And from hypothesis (B6), we have

11,01 < piligl + p3,
foreach 6 €=, )=1,...,0.
Theorem 5.2. Assume (B4)-(B6) are verified. If

4" (8 +2) g™ (B+1)
(1 —¢3)l(re+1)  (1—g3)l(m +1)

then the problem (11)-(13) has at least one solution.

+ Bpy < 1,

To prove the existence of solution of the problem (11)-(13), we will use the concept
of measure of noncompactness and Monch’s fixed point theorem.

Proof. Transform problem (11)-(13) into a fixed point problem.
The proof will be given in several steps.

Step 1: The operator 8 : PC,(0,E) — PC4(0, E) is continuous.
Let {¢n }nen be a sequence such that ¢, — ¢ in PC1(0,Z). Then for each § € ©,

we have
6 (6) — Rp(®) S [ e ) - sl
0<9]+1<9
(05 =)™ llgn(s) — g(s)lds
Z/ "

1 0 k1—1 _
s /9 (6 — )" Y| gu(s) — g(s)l|ds

1 J93+1 ra—1
s /9 (s — ) "Ylgn(s) — g(s)|lds

+ > I (eal8;) = L@

0<0,<0
By (B5), we have
19n(0) = g(O)l = [1£(0,%(0),9n(0)) — f(0,(0),9(0))]l
< Alen(0) = 0 (0)]| + Llgn(0) — g(O)]-
Then,
I90(6) = 9@ < 12 0a(6) ~ SO
Thus,
A % Kko—1 o
[N (0) — Rep(0)]] < (1_L)F(H2)0<9]+1<9/91 (s —6,-1) [on(s) — @(s)llds
A ” r1-1 — (s)||ds
=R [ @ ents) —pts)la
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A ¢ K1—1 _
AT, 0 o)~ e(o)lds

0541
+<—Imwy/ (5 — 0) " on(s) — o(s)]ds

ZCII% ) = 2(0)].

By applying the Lebesgue dominated convergence theorem, we get
INp,(0) —Rp(0)]| — 0 as n — oo.
Hence,
IRen, — Rpllpc — 0 as n — oo,

which implies that N is continuous.

Let R > 0 such that

qy %="2 (B+2) qy >"1(B+1)

||800|| + (1 a5)T(k2+1) + (1 g;)I(k1+1) +ﬂp2
= 1_ x"2(f+2) Kl(ﬁJrl) _ 6 *
(1 2T (Rt D) (1fq§)F(m+1) 1

Define the ball

Dr ={p € PC(6,E) : [l¢llpc, < R}
Step 2: X(Dg) C Dg.
Let ¢ € D and 6 € ©. Then

Mo < honl+ s S /’ 0,0 g(s) s
0<9
0
Og;y/ (0, = 9" la(s) s + )/ (6~ 5" lg(s)|ds
1 0541 - )
+f@gyé (=0l 3 1t

From (B5), we have
lg(@)F = 1110, ¢(6), 9(O))]

< a(0) + allellpe, +allg@)]l
<q + R+ qlg@d)]
Then,
i+ @GR
gl < ———.
lo@)] < I

Thus,

72 (qf + GGR)(B+2) 2" (¢f + GR)(B+1)
(1-g3)l'(k2+1) (1-¢3)T'(k1+1)

R (D) < lleoll +
<R.

+ B(PIR + p3)
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Hence, X(Dg) C Dg.

Step 3: X(Dpg) is equicontinuous.
Let 01,02 € ©, where 0; < 65 and ¢ € Dg. Then,

1 o K1—1 Kk1—1
I (02) =N (01)]| < / (02— )™ — (61 — 5) 1) [lg(s)]|ds

J

1 o2 k1—1
+ 50 / (6 — 5)™ 1 |g(s) | ds

1
+ s —01)2"1|g(s)|ds
g 5= 00 lgto)
1 05+1

[(s = 02)"27" — (s — 01)""]||g(s) | ds

+ZIII I

01<0,<0;
* * 01
(g1 + (ER)(Qz —6)"™
(1—¢3)l(k1+1)
(g1 + 3 R)(02 — 61)"
(1-¢3)T'(r2+1)
* * 0,41
+ Z PR+ p3.

01<6,<02

+

+

+

As 6, — 65, the right-hand side of the inequality above tend to zero, then RX(Dg) is
equicontinuous.

Step 4: The implication of Monch’s theorem.
Let B be a subset of Dg such that B C ®(B) U {0}. Therefore, the function § —
b(0) = ¢((B(h)) is continuous on ©. Then, for § € O, we have

b(0) = C(B(9))
= ¢{Rp(0), v € B}

1 % .
ZC{@O—F( > /9’7 (8 =0,-1)"""g(s)ds

HQ) 0<0,41<6

”1_1 s)ds o ' —s)171g(s)ds
Z/ o(s)d +F(m)/93<9 Y =tg(s)d

0<0 <0

1 0541 1
Ko — — B
+r(nz)/g (5=6) Mar 2 Lol o< }

0<6,<0
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1 %
P(FLQ

< (s = 0,-1)"""{C(g(s))ds, ¢ € B}

0<0,41<0 7051

S [ @ s, o€ )

0<0,<0 0y-1

T TG

1

0 -1
+ T /9 (6 — ) 1{C(g(s))ds, € B}

0541
1) /9 (s— 0= C(g(s)ds, weBY+ 3 {CTe07), e BY.

+ -
(ko 0<6,<6
From (B7), we have
(9(0)) = C(f(9> 30(9),9(9))

Thus,
C(9(0)) < ~2C((0)).
Also, we have for each 6 € © and y=1,..., B,
> <, ) < BCL(#(0)).
0<9 <6
Then,
b(0) = C(B(0))
ABHL) (P .
S G DR, ¢ 0T s, e B)
A3 ” -
G 0T et e e B)
)‘ 0 k1—1
AT, T G p e B)
)‘ 9J+1 ko—1
+m/ (s—0) {C(p(s))ds, ¢ € B}
+ BC{¢(p(s))ds, ¢ € B}
Ax"2 (B + 2) Ax"1 (B +1)
S| T DG+ T 0 — DG +1) ¢
Therefore,
Ax"2 (8 + 2) A (B +1)
Ce(B) < (1-L)T(k2+1) (1 —L)0(ky+1) +BC Ce(B).
And, by Remark 5.2, we have
g %" (B +2) gGx" (B +1) .
e [ e VAR (Erp ey ] Rl
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which implies that (.(B) = 0. Then we deduce that the operator N has a fixed
point that is the solution of the problem (11)-(13), according to Monch’s fixed point
theorem. g

6. Ulam-Hyers Stability

In this section, we will establish the Ulam stability for the problem (11)-(13).

Definition 6.1 ([1, 21]). Problem (11)-(13) is Ulam-Hyers stable if there exists a real
number C¢ > 0 such that for each ¢ > 0 and for each solution ¢ € PC1(0,E) of the
inequality

||ngtl7K2W<p(9) - f (97 90(9)7 OCDZI)K%’YQD(Q)) H <e, 0O€ ((9]’9]+1]7] =0,...,8,

(14)

|Aplg, — L) <e,  g=1,...,8,

there exists a solution @ € PC1(0, Z) of the problem (11)-(13) with
lp(0) = 2(O)ll < Cre, 6 €O,

Definition 6.2 ([1, 21]). Problem (11)-(13) is generalized Ulam-Hyers stable if there

exists ¢y € C(R4,Ry), ¢¢(0) = 0 such that for each solution ¢ € PC;(©,Z) of the

inequality (14) there exists a solution ¢ € PC1(0,Z) of the problem (11)-(13) with
l(0) — 2(O)]| < ¢y, O€O.

Remark 6.1. A function ¢ € PC1(0,E) is a solution of the inequality (14) if and

only if there exist a function o € PC1(©,E) and a sequence 0,;7 = 1,..., (which
depend on ¢), such that
(1) [lo@) <e, 0€(0),0,41],)=0,...,8and ||lo)|| <eh,p=1,...,5,

(2) §D"=70(0) = f(0,0(9), (?D“l’””cp(ﬂ)) +o(0), 0€(0,,0,41],5=0,....5,
(3) A80|9] = I](QO(QJ_)) + Jj7] = 17 . 'aB'

Lemma 6.1. The solution of the following perturbed problem
§ D2 0(0) = f(0,0(0), § DL 270(0)) +£(60),  0€ (0,,0,41],7=0,....,5,
Ag0|9:93 :I](QD(H_]_))—FO-J’ J= 17"')67

SO(O) = Yo,
is given by
1 b L
w() =pg— —— / (s —6,_1)"""g(s)ds
( ) ’ F(HQ) 0<6,41<6 05-1 ! )
1 9
Z 5)"Lg(s)ds + - / (0 — s)"11g(s)ds
0<9 <6 (1) %
]_ /J+1 1
+— (s —0)"""g(s)ds +
e 2,
1 % .
-t /0 (5= 0, s

O<9_7+1 <0
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1 0] rk1—1 1 o —s rk1—1 s)ds
+ ) o /9]_1 0, —s) £(s)ds + ) /0] (0 —s) L(s)d
1 05+1 P
+ T0na) /0 (s —0)=7(s)ds + Z o,

0<6,<6

Moreover, the solution satisfies the following inequality

1 %
0) - - —0,_1)"2"g(s)d
@ [soO o, J =0 s
+ Z / s)™ " tg(s)ds
O<6 <6
1 _ k1—1
+ ) /9, (0 —s)"* " g(s)ds
1 5+1
__ — f)r2— 1 d
o), oo 3 )|
#2(B+2) M (B+1)
[ F(,‘@Q —|— 1) + F(,‘il —|— 1) + 6@[) c
Theorem 6.2. Assume that (B4)-(B6) hold. If
Ao (51 2) Ao (1 1) +C0B <1,

(1-L)T(k2+1) (1—L)T(k1+1)
then the problem (11)-(13) is Ulam-Hyers stable.

Proof. Let ¢ € PC1(0, Z) be a solution of the inequality (14) and ¢ € PC1(©,E) the
solution of the problem (11)-(13), then

l(0) - <>||_[ e B+2) | (B])

Tt D) T Tx1) T PY°

1 0, ) o
+m0<9 9/ (5= B, gls) — h(s)d
=5 g(s) = h(s)|ds
0,35 7
L r1—1 s s
) /e (6 —5)" " lg(s) — h(s)lld
1 0.7+1 P B
* ) /9 (5= 0= llg(s) — h(s)l|ds
+ 20 I5eE) ~ LeE))I-
0<6,<0

By hypothesis (B5), we have
19(0) = h(O)[| < Al — @llpe, + Lilg(0) — h(D)]].
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Then,
l9(6) = ROl < 7= llp = #llpcr-
Thus,
_ ©2(B+2) X (B+1)

Ax"2 (B + 2) A" (B +1)
1—L)l(re+1) " (1—L)T(r +1)

+ +CB ¢ — @llpc, = Cre.

Consequently, the problem (11)-(13) is Ulam-Hyers stable.
If we take ¢(e) = Cye and ¢;(0) = 0 then we get the generalized Ulam-Hyers
stability of the problem (11)-(13). O

7. An Example
Set
oo
E:ll = {(p: (8017802""780”"")’2“0”‘ <OO}
n=1
oo
E is a Banach space with the norm ||¢| = Z lon]-

Consider the following impulsive problem:

en®] + | (§ D 0u())|

[\J\»—‘
w\»-t

ngé @n(e) T 1.1 for 0 € ©yU O, (15)
o i s o)
1=
73
AW|9:§ = 1_7, (16)
— 1
90(3 >+ 7
¢n(0) =1, (17)

where 69 = [0, 1],01 = (3, 1].
Set
€] + [I8]] 4 cos(6)

f(0,€,0) = ,
(060 = 5T+ el + o)
Clearly f is a continuous function, the condition (B4) is verified. For any § € € B,
9,0 € Z and 0 € [0, 1], we have

1£(6,€,6) = £(0,& )] < 5[ ~ &l + 15 - 3]

Then, the assumption (B5) is satisfied with A = y = 5. Also we have

150.6.8)1 < S04 el + o

0€0,1], £€Zand § € =.
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cos() .
So q1(0) = gopr1 &= 0= % Let
)
LL(6) = 0 €E
0 =577 0€
Then, for 6,8 € Z, we have
1
I (0 = —|é]] + 1.
112 (8)l 1ol =+
Thus, pi = 1—17, p5 =1, And as
BB L G 3
(1=g5)T(k2+1) (1 —q35)(k1 +1) ' (3e = 1I(3)
2
(3e — 1)F(%) 17
< 1
Thus, by Theorem 5.2, the problem has at least one solution. Moreover
L ) B Gl VISP B
(1-L)T(ke+1) (1 —L)T(ky +1) - (Be—1I(3)
2
(3e — 1)F(%) 17

1.

Then, Theorem 6.2 assures that the problem (15)-(17) is Ulam-Hyers stable.
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