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Existence results for a class of inequality problems with
p-Laplacian

Petru Jebelean

Abstract. We are concerned with existence results for a class of inequality problems having

the general form:

Find u ∈ K such that F 0(u; v − u) +

Z
Ω

|∇u|p−2∇u∇(v − u) ≥ 0, ∀v ∈ K,

where F 0 denotes the generalized directional derivative of a locally Lipschitz function F :
W 1,p(Ω) → IR, and K is some closed, convex subset of W 1,p(Ω).
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1. Introduction

Let Ω ⊂ IRN , N ≥ 1, be a bounded domain with smooth boundary Γ = ∂Ω and W

be a nonzero closed subspace of the Sobolev space W 1,p(Ω), with p ∈ (1,∞). Given
be a constant α ≥ 0 and denoting by W ∗ the dual space of W , we define the operator
Tα : W → W ∗ by

〈Tα(u), v〉 =

∫

Ω

|∇u|p−2∇u∇v + α

∫

Ω

|u|p−2uv, ∀u, v ∈ W. (1.1)

The first term in the right hand side of the equality (1.1) is the minus p-Laplacian
operator −∆pu = − div(|∇u|p−2∇u) when it is associated with some homogeneous

boundary conditions such as e.g., the classical Dirichlet (W = W
1,p
0 (Ω)) or Neumann

(W = W 1,p(Ω)).

We consider a measurable function g : Ω×IR → IR, satisfying the growth condition

|g(x, s)| ≤ c1|s|
q−1 + c2 for a.e. x ∈ Ω,∀s ∈ IR, (1.2)

where c1, c2 ≥ 0 are constants, 1 < q < p∗, and

p∗ =

{

Np
N−p

if p < N

∞ if p ≥ N.

Let G : Ω × IR → IR be the primitive of g, i.e.,

G(x, s) =

∫ s

0

g(x, t)dt for a.e. x ∈ Ω, ∀s ∈ IR. (1.3)

The functional G : Lq(Ω) → IR given by

G(u) = −

∫

Ω

G(x, u), ∀u ∈ Lq(Ω) (1.4)
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is Lipschitz continuous on the bounded subsets of Lq(Ω) (see e.g. Chang [2]) and, by
the continuity of the embedding W ⊂ Lq(Ω), we have that G

∣

∣

W
is locally Lipschitz

on W endowed with the induced norm from W 1,p(Ω).

For a measurable set ω ⊂ Ω we define

K = K(W,ω) := {u ∈ W : u(x) ≥ 0 for a.e. x ∈ ω} (1.5)

and we formulate the problem:
{

Find u ∈ K such that

(G
∣

∣

W
)0(u; v − u) + 〈Tα(u), v − u〉 ≥ 0, ∀v ∈ K,

(1.6)

where (G
∣

∣

W
)0(u;w) stands for the generalized directional derivative of G

∣

∣

W
(in the

sense of Clarke [3]) at u ∈ W in the direction w ∈ W . It is worth to point out that
each solution of problem (1.6) also solves the hemivariational inequality:











Find u ∈ K such that
∫

Ω

(−G)0(x, u; v − u) + 〈Tα(u), v − u〉 ≥ 0, ∀v ∈ K,
(1.7)

where (−G)0(x, u;w) denotes the generalized directional derivative of the locally Lip-
schitz function −G(x, ·) at u(x) in the direction w(x). At its turn, if g is Carathéodory,
(1.7) becomes the variational inequality:











Find u ∈ K such that
∫

Ω

(−g)(x, u)(v − u) + 〈Tα(u), v − u〉 ≥ 0, ∀v ∈ K,
(1.8)

The purpose of this paper is to obtain sufficient conditions ensuring the existence
of solutions for problem (1.6). Our approach is a variational one and it relies upon
abstract results from [7]. We obtain the existence of solutions in the coercive case as
well as the existence of nontrivial solutions when the corresponding Euler-Lagrange
functional has a mountain-pass geometry. So, we extend results from paper [7] stated
for some particular choices of W to the general case when W is an arbitrary closed
subspace of W 1,p(Ω). Existence of mountain-pass type solutions for problems of type
(1.8) and (1.7) were obtained in earlier papers by Szulkin (Theorem 5.1 in [14]),
respectively Motreanu and Panagiotopoulos (Section 3.5 in [11]) in the case p = 2,

W = W
1,2
0 (Ω) and ω = Ω. Our result (Theorem 3.2 in Section 3) is in this direction

and more specifically, we extend the celebrated condition (p5) of Ambrosetti and
Rabinowitz [1] (condition (p4) in [12]) to the general problem (1.6). In this respect
we generalize different theorems in the smooth and nonsmooth variational analysis
[1], [12], [2], [14], [5], [6], [7], [13].

The rest of the paper is organized as follows. Some notions and abstract results
from [7] and [11] are presented in Section 2. The existence results for problem (1.6)
are proved in Section 3. In Section 4 we give examples of applications to differential
inclusions with p-Laplacian.

2. Preliminaries

In this section we list some notions and results which will be used in establishing the
existence of solutions for problem (1.6). For the proofs we shall refer the reader to [7]
and [11].
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Let X be a real Banach space and X∗ its dual. Recall, the generalized directional

derivative of a locally Lipschitz function F : X → IR at u ∈ X in the direction v ∈ X

is defined by

F 0(u; v) = lim sup
w→u,tց0

F (w + tv) − F (w)

t
.

The generalized gradient (in the sense of Clarke [3]) of F at u ∈ X is the subset of
X∗ given by

∂F (u) = {η ∈ X∗ : F 0(u; v) ≥ 〈η, v〉, ∀v ∈ X},

where 〈·, ·〉 stands for the duality pairing between X∗ and X.

The following abstract functional framework is assumed.

(f1) (X, ‖·‖) is a real reflexive Banach space, compactly embedded in the real Banach
space (Z, ‖ · ‖Z)

(f2) C is a nonempty, closed and convex subset of X;

(f3) ϕ : X → IR is Gâteaux differentiable and convex;

(f4) F : Z → IR is locally Lipschitz.

Note that F
∣

∣

X
is locally Lipschitz on X by virtue of (f4) and (f1). We consider the

following inequality problem:
{

Find u ∈ C such that

(F
∣

∣

X
)0(u; v − u) + 〈dϕ(u), v − u〉 ≥ 0, ∀v ∈ C.

(2.1)

The approach for problem (2.1) is a variational one and it relies upon the use of the
energy functional Φ : X → (−∞,+∞], defined by

Φ = F
∣

∣

X
+ ϕ + IC , (2.2)

where IC stands for the indicator function of the set C. An element u ∈ C is called
critical point of the functional Φ if the inequality below holds

(F
∣

∣

X
)0(u; v − u) + ϕ(v) − ϕ(u) ≥ 0, ∀ v ∈ C.

Proposition 2.1. (Proposition 3.9 in [7]). If u ∈ X is a critical point of Φ then u

is a solution of problem (2.1).

Theorem 2.1. (Theorem 3.10 in [7]). If the functional Φ is coercive on X, i.e.,

Φ(v) → +∞, as ‖v‖ → ∞,

then it is bounded from below and attains its infimum at some u ∈ X and u is a
critical point of Φ.

The functional Φ is said to satisfy the Palais-Smale condition if every sequence
{un} ⊂ X for which {Φ(un)} is bounded and

(F
∣

∣

X
)0(un; v − un) + ϕ(v) − ϕ(un) ≥ −εn‖v − un‖, ∀v ∈ C,

for a sequence {εn} ⊂ IR+ with εn → 0, contains a strongly convergent subsequence in
X. For the proof of the following result we refer the reader to the nonsmooth version
of the Mountain Pass Theorem stated in Corollary 3.2 from [11] (also see Theorem
2.2 in [6] and Theorem 2.3 in [7]).
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Theorem 2.2. If Φ satisfies the Palais-Smale condition and there exist a number
ρ > 0 and a point e ∈ X with ‖e‖ > ρ such that

inf
‖v‖=ρ

Φ(v) > Φ(0) ≥ Φ(e), (2.3)

then Φ has a nontrivial critical point.

To check that Φ satisfies the Palais-Smale condition the lemma below provides an
useful tool. This is an easy consequence of Lemma 3.5 in [7] (also see Theorem 3.11
in [7]).

Lemma 2.1. Assume that:

(i) dϕ satisfies condition (S+) on C, i.e., if {un} is a sequence in C, provided un → u,
weakly in X, and

lim sup
n→∞

〈dϕ(un), un − u〉 ≤ 0

then un → u, strongly in X;

(ii) there are constants a0, a1 > 0, b ∈ IR and σ > 1 such that:

ϕ(u) − a1〈dϕ(u), u〉 ≥ a0‖u‖
σ, ∀u ∈ C, (2.4)

F(u) − a1(F
∣

∣

X
)0(u;u) ≥ b, ∀u ∈ C. (2.5)

Then Φ satisfies the Palais-Smale condition.

3. Existence results for problem (1.6)

The space W ⊂ W 1,p(Ω) is endowed with the norm

‖v‖η =

(
∫

Ω

|∇v|p + η

∫

Ω

|v|p
)

1
p

, ∀v ∈ W,

where η > 0 is a constant. The results from the previous section will be applied by
taking X = W , ‖ · ‖ = ‖ · ‖η, Z = Lq(Ω), ‖ · ‖Z = ‖ · ‖Lq := the usual norm on Lq(Ω),
C = K in (1.5), ϕ = ϕα : W → IR defined by

ϕα(v) =
1

p

(
∫

Ω

|∇v|p + α

∫

Ω

|v|p
)

, ∀v ∈ W (3.1)

and F = G given by (1.4). It is worth noticing that, as 1 < q < p∗, by virtue of
Rellich-Kondrachov theorem the embedding W ⊂ Lq(Ω) is compact. Also, standard
arguments show that the convex functional ϕα is continuously differentiable on W

and its differential is Tα in (1.1), i.e.,

〈dϕα(u), v〉 = 〈Tα(u), v〉, ∀u, v ∈ W. (3.2)

It is obvious that with the above choices problem (2.1) becomes (1.6). Moreover, by
(2.2) we have Φ = Φ1 with Φ1 given by

Φ1 = G
∣

∣

W
+ ϕα + IK . (3.3)

Now, using an idea from [10], we introduce the constant

λ1 = λ1(K,α) := α + inf

{

‖∇u‖p
Lp

‖u‖p
Lp

: u ∈ K \ {0}

}

, (3.4)

for α ≥ 0. It should be noticed that λ1 = +∞ iff K = {0} and in this case u = 0 is
the unique solution of problem (1.6). Also, λ1(K, 0) can be either equal to 0 (e.g., if

W = W 1,p(Ω)) or > 0 (e.g., if W = W
1,p
0 (Ω)). We shall need to invoke the hypothesis
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(Hλ1
) λ1 ∈ (0,+∞).

Proposition 3.1. If (Hλ1
) holds true then

2−
1
p ‖u‖λ1

≤ (‖∇u‖p
Lp + α‖u‖p

Lp)
1
p ≤ ‖u‖λ1

, ∀u ∈ K. (3.5)

Proof. It is straightforward from (3.4). �

Theorem 3.1. Assume (1.2) and λ1 ∈ [0,+∞) together with

(i) lim sup
s→−∞

pG(x, s)

|s|p
< λ1 uniformly for a.e. x ∈ Ω \ ω;

(ii) lim sup
s→+∞

pG(x, s)

sp
< λ1 uniformly for a.e. x ∈ Ω.

Then problem (1.6) has at least one solution.

Proof. By Theorem 2.1 and Proposition 2.1 it suffices to show that the functional
Φ1 in (3.3) is coercive on (W, ‖ · ‖η), with some η > 0. From (i) and (ii) there are
numbers σ > 0 and s0 > 0 such that

G(x, s) ≤
λ1 − σ

p
|s|p for a.e. x ∈ Ω \ ω, ∀s < −s0 (3.6)

and

G(x, s) ≤
λ1 − σ

p
sp for a.e. x ∈ Ω, ∀s > s0. (3.7)

If λ1 > 0 we shall assume that σ ∈ (0, λ1). From (1.2) the primitive G satisfies

|G(x, s)| ≤
c1

q
|s|q + c2|s| for a.e. x ∈ Ω, ∀s ∈ IR (3.8)

showing that there is a constant k = k(s0) such that

|G(x, s)| ≤ k for a.e. x ∈ Ω, ∀s ∈ [−s0, s0]. (3.9)

Then, using (3.6) and (3.9) we can estimate

G(x, s) ≤
λ1 − σ

p
|s|p + k̃ for a.e. x ∈ Ω \ ω, ∀s < 0, (3.10)

where

k̃ =
|λ1 − σ|

p
s

p
0 + k.

Similarly, from (3.7) and (3.9) one obtains

G(x, s) ≤
λ1 − σ

p
sp + k̃ for a.e. x ∈ Ω, ∀s ≥ 0. (3.11)

For u ∈ K, denote

Ω−(u) := {x ∈ Ω : u(x) < 0}, Ω+(u) := Ω \ Ω−(u). (3.12)

Noticing that Ω−(u) ⊂ Ω \ ω, by (3.10) we have
∫

Ω−(u)

G(x, u) ≤
λ1 − σ

p

∫

Ω−(u)

|u|p + k̃|Ω|, (3.13)

where |Ω| stands for the measure of Ω. On the other hand by (3.11) we get
∫

Ω+(u)

G(x, u) ≤
λ1 − σ

p

∫

Ω+(u)

|u|p + k̃|Ω|. (3.14)
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From (3.13) and (3.14) one obtains the inequality
∫

Ω

G(x, u) ≤
λ1 − σ

p
‖u‖p

Lp + 2k̃|Ω|

which, taking into account (3.3), (1.4) and (3.1), yields

Φ1(u) ≥
1

p
(‖∇u‖p

Lp + (σ − λ1 + α)‖u‖p
Lp) − 2k̃|Ω|, ∀u ∈ K. (3.15)

If λ1 = 0, we infer

Φ1(u) ≥
1

p
‖u‖p

σ − 2k̃|Ω|, ∀u ∈ K, (3.16)

while in the case λ1 > 0, using (3.15), (3.4) and (3.5), we estimate Φ1 as follows

Φ1(u) ≥
1

p

(

‖∇u‖p
Lp + α‖u‖p

Lp + (σ − λ1)
‖∇u‖p

Lp + α‖u‖p
Lp

λ1

)

− 2k̃|Ω|

≥
σ

2pλ1
‖u‖p

λ1
− 2k̃|Ω|, ∀u ∈ K. (3.17)

By virtue of (3.16) and (3.17) in both cases there are positive constants η and k0 such
that

Φ1(u) ≥ k0‖u‖
p
η − 2k̃|Ω|, ∀u ∈ K,

showing that

Φ1(u) → +∞, as ‖u‖η → ∞.

�

In the sequel we are concerned with existence of nontrivial solutions for problem
(1.6). In order to apply Theorem 2.2 we have to ensure a mountain-pass geometry
for Φ1 in (3.3). The hypothesis (Hλ1

) will be assumed and W will be considered with
the norm ‖ · ‖λ1

.

Proposition 3.2. If (Hλ1
) holds true then dϕα satisfies condition (S+) on K, i.e.,

if {un} is a sequence in K, provided un → u, weakly in W , and

lim sup
n→∞

〈dϕα(un), un − u〉 ≤ 0 (3.18)

then un → u, strongly in W .

Proof. Let ϕλ1
be defined by (3.1) with λ1 instead of α, i.e.,

ϕλ1
(v) =

1

p
‖v‖p

λ1
, ∀v ∈ W.

Clearly, one has

ϕλ1
(v) = ϕα(v) +

λ1 − α

p
‖v‖p

Lp , ∀v ∈ W,

hence,

〈dϕλ1
(v), w〉 = 〈dϕα(v), w〉 + (λ1 − α)

∫

Ω

|v|p−2vw, ∀v, w ∈ W. (3.19)

Let {un} be a sequence in K such that un → u, weakly in W and (3.18) holds true.
Taking into account the compact embedding W ⊂ Lp(Ω), we have that un → u,
strongly in Lp(Ω), which implies

∣

∣

∣

∣

∫

Ω

|un|
p−2un(un − u)

∣

∣

∣

∣

≤ ‖un‖
p

p′

Lp‖un − u‖Lp → 0, as n → ∞. (3.20)
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From (3.18), (3.19) and (3.20) it follows

lim sup
n→∞

〈dϕλ1
(un), un − u〉 ≤ 0. (3.20)

As dϕλ1
is the duality mapping on (W, ‖ · ‖λ1

), corresponding to the gauge function
t 7→ tp−1 and because W with the norm ‖ · ‖λ1

is uniformly convex, dϕλ1
satisfies

condition (S+) on W (see [5]). This together with (3.20) show that un → u, strongly
in W . �

For a.e. x ∈ Ω and all s ∈ IR, we put

g(x, s) = lim
δ→0+

ess inf
|t−s|<δ

g(x, t),

g(x, s) = lim
δ→0+

ess sup
|t−s|<δ

g(x, t).

The following condition will be invoked below:

g and g are N − measurable (3.21)

(recall, a function h : Ω × IR → IR is called N -measurable if h(·, u(·)) : Ω → IR is
measurable, whenever u : Ω → IR is measurable).

Proposition 3.3. Assume (Hλ1
), (1.2) and (3.21). If there are numbers θ > p,

s0 > 0 such that
θG(x, s) ≤ sg(x, s) (3.22)

for a.e. x ∈ Ω \ ω, ∀s ≤ −s0 and for a.e x ∈ Ω, ∀s ≥ s0, then Φ1 satisfies the
Palais-Smale condition.

Proof. Using (3.22) we derive

G(x, s) ≤
s

θ
g(x, s) for a.e. x ∈ Ω \ ω, ∀s < −s0, (3.23)

G(x, s) ≤
s

θ
g(x, s) for a.e. x ∈ Ω, ∀s > s0. (3.24)

Under the assumptions (1.2) and (3.21), for u ∈ Lq(Ω) it holds (see Theorem 2.1 in
[2]):

w ∈ ∂(−G)(u) =⇒ w(x) ∈
[

g(x, u(x), g(x, u(x))
]

for a.e. x ∈ Ω. (3.25)

From (3.9), (3.23), (3.24), (1.2) and (3.25), for arbitrary u ∈ K and w ∈ ∂(−G)(u),
we obtain

−G(u) =

∫

Ω

G(x, u) =

∫

[u<−s0]

G(x, u) +

∫

[u>s0]

G(x, u) +

∫

[|u|≤s0]

G(x, u)

≤
1

θ

[

∫

[u<−s0]

ug(x, u) +

∫

[u>s0]

ug(x, u)

]

+ k|Ω|

≤
1

θ

[

∫

[u<−s0]

uw +

∫

[u>s0]

uw

]

+ k|Ω|

=
1

θ

[

∫

Ω

uw −

∫

[|u|≤s0]

uw

]

+ k|Ω| ≤
1

θ

∫

Ω

uw + k̃,

with k̃ = k̃(s0) a constant. As ∂(−G)(u) = −∂G(u), it follows

G(u) ≥
1

θ

∫

Ω

uw − k̃, ∀w ∈ ∂G(u). (3.26)
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Then, using (3.26), taking into account that G0(u;u) ≥ (G|W )0(u;u) and by virtue of
the equality (see, e.g., Proposition 1.4 in [11]):

G0(u;u) = max

{
∫

Ω

uw : w ∈ ∂G(u)

}

we deduce

G(u) −
1

θ
(G|W )0(u;u) ≥ −k̃, ∀u ∈ K. (3.27)

Also, by (3.5) we get

ϕα(u) −
1

θ
〈dϕα(u), u〉 ≥

1

2

(

1

p
−

1

θ

)

‖u‖p
λ1

, ∀u ∈ K. (3.28)

Viewing Proposition 3.2 and the estimates (3.27), (3.28), Lemma 2.1 applies with

σ = p , a0 =
1

2

(

1

p
−

1

θ

)

, a1 =
1

θ
, b = −k̃

and the proof is complete. �

Theorem 3.2. Assume (Hλ1
), (1.2) and (3.21), together with

(i) lim sup
sր0

pG(x, s)

|s|p
< λ1 uniformly for a.e. x ∈ Ω \ ω,

(ii) lim sup
sց0

pG(x, s)

sp
< λ1 uniformly for a.e. x ∈ Ω.

If there are numbers θ > p, s0 > 0 such that

0 < θG(x, s) ≤ sg(x, s) (3.29)

for a.e. x ∈ Ω \ ω, ∀s ≤ −s0 and for a.e x ∈ Ω, ∀s ≥ s0, then problem (1.6) has a
nontrivial solution.

Remark 3.1. Before passing to the proof let us note that by virtue of (3.29) the
exponent q entering in (1.2) necessarily lies in the interval (p, p∗). Indeed, since

θ

s
≤

g(x, s)

G(x, s)
for a.e. x ∈ Ω, ∀s ≥ s0,

integrating from s0 to t > s0, one obtains

G(x, t) ≥ γ1(x)tθ for a.e. x ∈ Ω, ∀t > s0, (3.30)

with γ1(x) := G(x, s0)s
−θ
0 > 0 for a.e. x ∈ Ω, which together with (3.29) show that q

in (1.2) is forced to be > p.

Proof of Theorem 3.2. By Proposition 3.3 it is clear that Φ1 satisfies the Palais-Smale
condition. We claim that under the assumptions of the theorem there exist a number
ρ > 0 and an element e ∈ K \ {0} such that

inf
‖v‖λ1

=ρ
Φ1(v) > Φ1(0) = 0 (3.31)

and

lim
t→+∞

Φ1(te) = −∞. (3.32)

Then, obviously (2.3) is accomplished with e = te, t sufficiently large, and Theorem
2.2 applies, yielding the conclusion.
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By (i) and (ii) one can find numbers σ ∈ (0, λ1) and δ0 > 0 such that

G(x, s) ≤
λ1 − σ

p
|s|p for a.e. x ∈ Ω \ ω, ∀s ∈ [−δ0, 0) (3.33)

and

G(x, s) ≤
λ1 − σ

p
sp for a.e. x ∈ Ω, ∀s ∈ (0, δ0]. (3.34)

From (3.8) there is a constant k = k(δ0) with

G(x, s) ≤ k|s|q for a.e. x ∈ Ω, ∀|s| > δ0. (3.35)

For an arbitrary u ∈ K the sets Ω−(u) and Ω+(u) are defined by (3.12) and recall
that Ω−(u) ⊂ Ω \ ω. By (3.33) and (3.35) we have

∫

Ω−(u)

G(x, u) =

∫

Ω−(u)∩[−δ0≤u]

G(x, u) +

∫

[u<−δ0]

G(x, u)

≤
λ1 − σ

p

∫

Ω−(u)

|u|p + k

∫

Ω−(u)

|u|q. (3.36)

Similarly, (3.34) and (3.35) imply
∫

Ω+(u)

G(x, u) =

∫

Ω+(u)∩[u≤δ0]

G(x, u) +

∫

[u>δ0]

G(x, u)

≤
λ1 − σ

p

∫

Ω+(u)

up + k

∫

Ω+(u)

uq. (3.37)

From (3.36) and (3.37) we infer
∫

Ω

G(x, u) ≤
λ1 − σ

p
‖u‖p

Lp + k‖u‖q
Lq . (3.38)

Taking into account the continuity of the embedding W ⊂ Lq(Ω), from (3.38), (3.4)
and (3.5) we estimate Φ1 as follows

Φ1(u) = G(u) + ϕα(u) = −

∫

Ω

G(x, u) +
1

p
(‖∇u‖p

Lp + α‖u‖p
Lp)

≥
1

p
(‖∇u‖p

Lp + α‖u‖p
Lp + (σ − λ1)‖u‖

p
Lp) − k̃‖u‖q

λ1

≥
1

p

(

‖∇u‖p
Lp + α‖u‖p

Lp + (σ − λ1)
‖∇u‖p

Lp + α‖u‖p
Lp

λ1

)

− k̃‖u‖q
λ1

≥
σ

2pλ1
‖u‖p

λ1
− k̃‖u‖q

λ1

showing that (3.31) holds true with some ρ > 0 sufficiently small (because q > p, cf.
Remark 3.1).

Next, we deal with (3.32). Since λ1 < +∞, it is easy to see that there are u0 ∈ K \
{0} and σ0 > 0 with either |{x ∈ Ω : u0(x) < −σ0}| > 0 or |{x ∈ Ω : u0(x) > σ0}| > 0.
Then, the cone property of K enables us to find some e ∈ K \ {0} such that at least
one of the sets

Ω< := {x ∈ Ω : e(x) < −s0},

Ω> := {x ∈ Ω : e(x) > s0}

has a positive measure. Also, similarly to (3.30) is obtained

G(x, t) ≥ γ2(x)|t|θ for a.e. x ∈ Ω \ ω, ∀t < −s0, (3.39)
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with some γ2 ∈ L∞(Ω), γ2(x) > 0 for a.e. x ∈ Ω \ ω. For t ≥ 1, taking into account
the inclusions

Ω< ⊂ [te < −s0] ⊂ Ω \ ω,

Ω> ⊂ [te > s0]

and using (3.9), (3.30) and (3.39) we estimate −G(te) as follows:

−G(te) =

∫

[te<−s0]

G(x, te) +

∫

[te>s0]

G(x, te) +

∫

[|te|≤s0]

G(x, te)

≥ tθ

(

∫

[te<−s0]

γ2|e|
θ +

∫

[te>s0]

γ1e
θ

)

− k|Ω|

≥ tθ
(
∫

Ω<

γ2|e|
θ +

∫

Ω>

γ1e
θ

)

− k|Ω|

= k0t
θ + k1

where k0 = k0(e) > 0, k1 ∈ IR are constants. Therefore, as θ > p, we get

Φ1(te) = G(te) + ϕα(te)

≤ −k0t
θ − k1 +

tp

p
(‖∇e‖Lp + α‖e‖Lp) → −∞ , as t → +∞ ,

i.e. (3.32), and the proof is complete. 2

Example 3.1. For the sake of simplicity let us consider the one dimensional frame,
i.e., N = 1. We take Ω = (−1, 1), ω = (0, 1) and let S := [Ω × (1,∞)]∪[(Ω \ ω) × (−∞,−1)].
Defining g : Ω × IR → IR by

g(x, s) =







q|s|q−2s, if (x, s) ∈ S,

0 otherwise,

we have

G(x, s) =







|s|q − 1, if (x, s) ∈ S,

0 otherwise,

and it is a simple matter to check that the requirements of Theorem 3.2 are satisfied
with θ = q > p.

Remark 3.2. Theorem 3.1 and Theorem 3.2 respectively are generalizations of The-
orem 4.1 and Theorem 4.2 from [7].

4. Applications and further remarks

As already pointed out in Section 1, solving problem (1.6) we implicitly solve the
hemivariational inequality (1.7). This is immediate by a basic result of Clarke (see p.
84 in [3]) yielding:

∫

Ω

(−G)0(x, u; v) ≥ G0(u; v) ≥ (G
∣

∣

W
)0(u; v), ∀u, v ∈ W. (4.1)

In this respect Theorem 3.1 and Theorem 3.2 also appear as being existence results for
problem (1.7). In the smooth case, meaning g Carathéodory, condition (3.21) is au-
tomatically satisfied and clearly these theorems provide sufficient conditions ensuring
the existence of solutions for problem (1.8).
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Remark 4.1. In the case when ω = ∅ we have K = W and problem (1.6) becomes
{

Find u ∈ W such that

Tα(u) ∈ ∂(−G|W )(u).
(4.2)

Since by the chain rule (see Clarke [3], p. 45) one has ∂(−G|W )(u) ⊂ ∂(−G)(u) it

follows that if u solves (4.2) then there is some w ∈ ∂(−G)(u) ⊂ Lq′

(Ω), such that

〈Tα(u), v〉 =

∫

Ω

wv, ∀v ∈ W.

Next, we give applications to existence of weak solutions for some differential in-
clusions problems with p-Laplacian. Let Γ0 be a closed subset of Γ having positive
surface measure, ε > 0, and let us denote

∂u

∂νp

:= |∇u|p−2 ∂u

∂ν

where ν stands for the unit outward normal on Γ. We discuss the following discon-
tinuous boundary value problems

(D)







−∆pu ∈
[

g(x, u), g(x, u)
]

in Ω,

u = 0 on Γ

(N)















−∆pu + ε|u|p−2u ∈
[

g(x, u), g(x, u)
]

in Ω,

∂u

∂νp

= 0 on Γ

(M)















−∆pu ∈
[

g(x, u), g(x, u)
]

in Ω,

u = 0 on Γ0,
∂u

∂νp

= 0 on Γ \ Γ0

(P )















−∆pu + ε|u|p−2u ∈
[

g(x, u), g(x, u)
]

in Ω,

u = constant on Γ,

∫

Γ

∂u

∂νp

dΓ = 0

Associated with the above problems will be the constant

a =

{

0 for (D) and (M)
ε for (N) and (P ).

We denote

WΓ0
=
{

u ∈ W 1,p(Ω) : u|Γ0
= 0
}

,

W1 =
{

u ∈ W 1,p(Ω) : u = constant on Γ
}

;

λ1,D = inf

{

‖∇u‖Lp

‖u‖Lp

: u ∈ W
1,p
0 (Ω)

}

,

λ1,M = inf

{

‖∇u‖Lp

‖u‖Lp

: u ∈ W
1,p
Γ0

(Ω)

}

,

λ1,N = λ1,P = ε.
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Note that, by virtue of Poincaré inequality, both of the λ1,D and λ1,M are > 0. Also,

noticing that the subspaces WΓ0
and W1 contain W

1,p
0 (Ω), Green’s formula makes

natural the following

Definition 4.1. An element u ∈ W
1,p
0 (Ω) (resp. W 1,p(Ω), WΓ0

, W1) is said to be
a weak solution (in short, solution) of problem (D) (resp. (N), (M), (P )) if there
exists a measurable function w : Ω → IR such that

w(x) ∈
[

g(x, u(x), g(x, u(x))
]

for a.e. x ∈ Ω

and
∫

Ω

|∇u|p−2∇u∇v + a

∫

Ω

|u|p−2uv =

∫

Ω

wv, (4.3)

for all v ∈ W
1,p
0 (Ω) (resp. W 1,p(Ω), WΓ0

, W1).

Theorem 4.1. Assume (1.2) and

lim sup
|s|→∞

pG(x, s)

|s|p
< λ1,D (resp. λ1,N , λ1,M , λ1,P ) uniformly for a.e. x ∈ Ω .

Then problem (D) (resp. (N), (M), (P )) has at least one solution.

Proof. Clearly, (4.3) rewrites

〈Ta(u), v〉 =

∫

Ω

wv.

Taking into account Remark 4.1 and (3.25) we apply Theorem 3.1 with W = W
1,p
0 (Ω)

(resp. W 1,p(Ω), WΓ0
, W1), α = a and ω = ∅. �

Theorem 4.2. Assume (1.2) and (3.21), together with

lim sup
|s|→0

pG(x, s)

|s|p
< λ1,D (resp. λ1,N , λ1,M , λ1,P ) uniformly for a.e. x ∈ Ω .

If there are numbers θ > p, s0 > 0 such that

0 < θG(x, s) ≤ sg(x, s) for a.e. x ∈ Ω, ∀ |s| ≥ s0,

then problem (D) (resp. (N), (M), (P )) has a nontrivial solution.

Proof. This follows by the argument in the proof of Theorem 4.1 but with Theorem
3.2 instead of Theorem 3.1. �

Remark 4.2. Since Theorem 3.1 does not ask hypothesis (Hλ1
), Theorem 4.1 clearly

remains true for ε = 0 in the case of problems (N) and (P ). Theorem 4.1 generalizes
Theorem 5.1 in [6] which concerns with problem (D). An existence result for problem
(N) was obtained by Hu, Matzakos and Papageorgiou in [9]. This is of a different type
and it is based on the nonsmooth variant of the Saddle Point Theorem due to Chang
[2]. We also mention the recent result obtained by Filippakis and Papageorgiou [8] in
a resonant case for problem (D).

Remark 4.3. Theorem 4.2 extends to the case of problems (N), (M) and (P ) e.g.
the following results concerning problem (D): Corollary 3.11 in Ambrosetti and Ra-
binowitz [1] and Theorem 2.15 in Rabinowitz [12] (p = 2, g continuous), Theorem 3.6
(resp. Theorem 18) in Dincă, Jebelean and Mawhin [4] (resp. [5]) (g Carathéodory),
Theorem 5.3 in Chang [2] (p = 2) and Theorem 5.2 in Dincă, Jebelean and Motreanu
[6].

Other possible choices for W can be found in [7].
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