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Abstract. The aim of this work is to develop a numerical tool for computing the weak

periodic solution for a class of parabolic equations with nonlinear boundary conditions. We

formulate our problem as a minimization problem by introducing a least-squares cost function.
With the help of the Lagrangian method, we calculate the gradient of the cost function.

We build an iterative algorithm to simulate numerically the weak periodic solution to the

considered problem. To illustrate our approach, we present some numerical examples.
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1. Introduction

Partial differential equations appear naturally in the modeling of many problems in
physics, biology, economics or elsewhere, we refer the readers to see the reference [12].
In many ways, they seem to generalize ordinary differential equations to the multidi-
mensional context. In a large majority of cases, the partial differential equations are
nonlinear and one has to use the computer to solve them (numerical calculation soft-
ware). When possible (linear equations), it is interesting to solve the model equations
in an analytical way (by hand). In this case, the obtained solution allows to see the
influence of the different parameters. At the same time, periodic partial differential
equations appear frequently in various fields of applied science. Recently, enormous
attention has been devoted to the study of the periodic behavior of solutions, and var-
ious methods and techniques have been developed to answer the often asked questions
about the existence, uniqueness, regularity and asymptotic behavior; see for example
[5, 7, 14, 13, 10, 11, 15, 17].

In this paper, we focus on a class of periodic parabolic equations with nonlinear
boundary conditions modeled as follows

∂tu(t, x)−∆u(t, x) = f(t, x) in QT

u(0, .) = u(T, .) in Ω

−∂u
∂ν

(t, x) = β(t, x)u(t, x) + γ(t, x, u) on ΣT

(1)
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Assuming that Ω is a smooth, bounded, and regular open subset of RN with a
smooth boundary ∂Ω, and that ν represents the outward-facing unit normal vector
on ∂Ω, we define T > 0 to be the period and QT =]0, T [×Ω and ΣT =]0, T [×∂Ω.
We also assume that f is a measurable function that is periodic in time with period
T and belongs to a specific Lebesgue space. The function γ : ΣT × R → RN is
a Carathéodory function, periodic in time with period T and satisfies some growth
conditions and β is a nonnegative bounded function periodic in time with period T .

Our work is motivated by some recent papers on the relevant literature. To position
the problem well, we propose to recall some works which are related to the special
cases of (1). Related to the early literature, most of the concerned studies are devoted
to the existence and stability analysis of a time-periodic solution to (1) with linear
boundary conditions [14, 13, 10, 15]. Contrary, in [26] Pao studied a system of peri-
odic equations with nonlinear boundary conditions. The author proved the existence
and stability of the proposed problem by using the sub- and super-solutions method.
The paper of Zhang and Lin [31] was concerned with the existence of maximal and
minimal periodic solutions to quasilinear parabolic systems with nonlinear boundary
conditions. They combined the method of sub- and super-solutions with monotone
iterations to establish the existence of a classical periodic solution. Their work can
be viewed as an application to Lotka-Volterra systems.
In [7] Badii’s studied the equation (1) with specific growth assumptions on γ(t, x, u)
and bounded nonlinearity. The author combined the theory of maximal monotone
operator with Schauder fixed point Theorem to obtain the existence of a bounded
weak periodic solution. Recently, Alaa and al [17] investigated a class of quasilinear
periodic equations with nonlinear boundary conditions which included (1). They ex-
amined the existence of a weak periodic solution when the nonlinearity has critical
growth with respect to the gradient and involves a sign condition. Their approach
was based on the application of Schauder’s fixed point Theorem and involved the
truncation method.
All the mentioned above works are devoted to the theoretical studies of parabolic
periodic boundary problems. However, there are also quite a few papers that are
devoted to numerical simulations for periodic solutions to parabolic boundary prob-
lems, we refer the readers to see [1, 9, 19, 23, 27, 28, 30]. To detail the discussion,
let us start with the works of Hackbusch [19], who proposed a fast numerical ap-
proach to compute numerically the periodic solution to a class of linear and nonlinear
parabolic equations. The author formulated the considered periodic problem as an
integral equation. Thereafter, he used multigrid algorithm to construct an iterative
computational algorithm for the associated discrete equations. The paper of Carasso
[9] employed the least square method to compute numerically the periodic solutions
for a class of parabolic equations. Lust et al. [23] introduced an innovative approach
for generating periodic solutions to an ordinary differential system that allows for
flexibility in determining the time period. Their iterative construction scheme offers
a promising method for addressing the challenge of finding periodic solutions without
prior knowledge of the period. In [28], an alternative approach is presented for ad-
dressing problem (1). The authors formulated the problem as an evolution equation
in a Banach space that was deemed suitable for the purpose, and demonstrated the
existence of a periodic solution through the application of semigroup theory and fixed
point theorems. This approach provides a promising avenue for tackling the problem,
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and offers insights into the mathematical tools that can be leveraged to study similar
problems. As such, this work contributes to the broader body of research on problem
(1) and provides a valuable framework for future investigations. They used Newton’s
method to develop a numerical computation for a nonlinear heat-conduction problem.
Another approach to numerical computation of periodic solutions but is limited to
the case of linear parabolic equations.

Note that all the above-mentioned works are interested in numerical simulations for
periodic parabolic equations with linear boundary conditions. Contrary, in [27] Pao
established three monotone iterative schemes to compute numerically the periodic
solutions for a discrete version of a class of nonlinear reaction-diffusion-convection
equations with nonlinear boundary conditions. Their method was based on the exis-
tence of upper and lower solutions to the considered systems and involved monotone
iterative method. In this work, we develop an efficient method that is able to con-
struct numerically the periodic solution of (1).We adopt a strategy of transforming
the problem (1) into a minimization problem by utilizing a cost functional of the least-
squares type. It will be established that the optimization problem is well-defined when
considering a specific set of admissible functions.

To solve the optimization problem, we will utilize the Lagrangian method, which
allows us to explicitly calculate the derivative of the cost function using an interme-
diate state known as the adjoint equation. This derivative will enable us to develop
an iterative algorithm for numerically solving the optimization problem.

Overall, our research provides a novel approach to solving nonlinear periodic prob-
lems and contributes to the field’s theoretical and practical advancements.

The remainder of our paper is organized as follows: We begin in Section 2 by
presenting the assumptions related to our problem and defining the concept of a
weak periodic solution adapted to (1). In Section 3, we first transform the problem
of existence for (1) into an equivalent optimization problem utilizing a least-squares
cost function. Subsequently, we establish the existence of an optimal solution to
this optimization problem and utilize the Lagrangian method to explicitly compute
the derivative of the cost function with respect to the state variable. Section 4 is
dedicated to describing the numerical technique utilized to solve the optimization
problem. Finally, in Section 5, we present several numerical examples to demonstrate
the effectiveness of our approach.

2. Assumptions and main result

To begin this section, we will first outline the essential assumptions required to address
(1).

2.1. Assumptions. Throughout this paper, we assume that γ : ΣT × R→ RN is a
Carathéodory function, periodic in time with period T such that:

(H1) There exist constant α1 ≥ 0 and a function K ∈ L2(ΣT ) such that for all s ∈ R,
we have

|γ(t, x, s)| ≤ K(t, x) + α1|s| a.e. in ΣT .

(H2) γ(t, x, s) · s ≥ 0 for all s ∈ R, a.e. in (t, x)× ΣT .
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(H3) s 7−→ γ(t, x, s) is nondecreasing a.e. in ΣT .

(H4) s 7−→ γ(., ., s) is differentiable such that
∂γ(., ., s)

∂s
belongs to L∞(ΣT ).

(H5) β is a continuous, bounded function and periodic in time with period T , such
that

0 < β0 ≤ β(t, x) ≤ β1 a.e. in ΣT .

(H6) f is a measurable function periodic with period T and belonging to L2(QT ).

2.2. Framework and definition. We would like to present the functional frame-
work that pertains to our work.

We set
VT := L2(0, T ;H1(Ω))

and equip it the following norm

‖u‖VT :=

(∫
QT

|∇u|2 +

∫
ΣT

β(t, x)|u|2
) 1

2

which is equivalent to the standard norm of VT . Furthermore, we set

V∗T := L2(0, T ; (H1(Ω))∗).

Where V∗T the dual space of VT .
Using these spaces, we can define a functional space denoted

WT := {u ∈ VT , ∂tu ∈ V∗T .}
We will define a norm for it as follows

‖u‖WT
:= ‖u‖VT + ‖∂tu‖V∗

T
.

From now on, the duality pairing between (H1(Ω))∗ and H1(Ω) will be denoted by
〈., .〉. We will now introduce the concept of a weak periodic solution, which will be
utilized to solve the problem (1).

Definition 2.1. A measurable function u : QT → R is said to be a weak periodic
solution to (1) if it satisfies:

u ∈ WT , u(0, x) = u(T, x) in L2(Ω),∫ T

0

〈∂tu, ϕ〉+

∫
QT

∇u∇ϕ+

∫
ΣT

β(t, x)uϕ+

∫
ΣT

γ(t, x, u)ϕ =

∫
QT

fϕ
(2)

for every test function ϕ ∈ VT .

Remark 2.1. Assumptions (H1), (H5) and (H6) ensure that all terms of (2) are well
defined. Therefore the periodic condition makes sense in Definition (2.1) by employing
the continuous embedding

WT ↪→ C([0, T ];L2(Ω)).

The existence of a weak periodic solution to problem (1) can be obtained by using
the theory of monotone operators [7, 17]. Here, we suggest using a cost function
minimization approach to develop a numerical algorithm for simulating our periodic
solution.
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3. Statement of the minimization problem

In this part we will give a new formulation of the problem of existence of a weak
periodic solution of (1) in a well-posed optimization problem. Consider the following
least squares cost function:

J (v) =
1

2

∫
Ω

(u(T, x)− v(x))2dx (3)

where u is the weak solution to the initial problem
∂tu(t, x)−∆u(t, x) = f(t, x) in QT

u(0, .) = v(.) in Ω

−∂u
∂ν

(t, x) = β(t, x)u(t, x) + γ(t, x, u) on ΣT

(4)

We remember that there exists a unique weak solution u for problem (4) that satisfies
the variational formulation below, for any v ∈ L2(Ω)

u ∈ WT , u(0, x) = v(x) in L2(Ω),∫ T

0

〈∂tu, ϕ〉+

∫
QT

∇u∇ϕ+

∫
ΣT

β(t, x)uϕ+

∫
ΣT

γ(t, x, u)ϕ =

∫
QT

fϕ
(5)

for all ϕ ∈ VT . For more details about the existence and uniqueness of the weak
solution to (4), we refer the readers to see [6]. Therefore, we can deduce that the cost
function J is well-defined. We introduce the minimization problem{

Find v∗ ∈ Uad
J (v∗) = min

v∈Uad

J (v) (6)

Later, we will provide more details about the set of admissible functions, denoted
by Uad. An example of this equivalence is the existence of v∗ ∈ Uad such that
J (v∗) = 0, which implies that problems (5) and (6) are equivalent. This equivalence
can be verified easily by observing that the cost function J converges to zero when
u is the weak periodic solution of (1). Therefore, the minimum value of J on Uad
corresponds to the weak periodic solution of (1). This establishes the equivalence
between the existence problem (1) and the minimization problem (6).

3.1. Existence of an optimal solution. We are interested in the existence of an
optimal solution to the minimization problem (6). The choice of the set Uad plays an
important role in the well-posedness of the problem (6). Moreover, in view of (3) and
(4), the right choice of the space of admissible functions is L2(Ω), hence, to obtain a
good compactness result, it is recommended to consider

Uad := {v ∈ H1(Ω), ‖v‖H1(Ω) ≤ C} (7)

where C is a strictly positive constant.

Theorem 3.1. Under the assumptions (H1)-(H6), the optimization problem (6) has
at least one solution in Uad .

Proof. From Rellich Kondrachov injection [8], we have

Uad
compact
↪→ L2(Ω).
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An example of this equivalence is the existence of v∗ ∈ Uad such that J (v∗) = 0,
which implies that problems (5) and (6) are equivalent. This equivalence can be
verified easily by observing that the cost function J converges to zero when u is the
weak periodic solution of (1). Therefore, the minimum value of J on Uad corresponds
to the weak periodic solution of (1). This establishes the equivalence between the
existence problem (1) and the minimization problem (6). Let us recall that

J (vn) =
1

2

∫
Ω

(un(T, x)− vn(x))2dx (8)

where un is the unique weak solution to the problem
∂tun −∆un = f in QT

un(0, .) = vn in Ω

−∂un
∂ν

= β(t, x)un + γ(t, x, un) on ΣT

(9)

Multiplying the first equation of (9) by un and integrating over QT , one obtains

1

2

∫
Ω

|un(T )|2 +

∫
QT

|∇un|2 +

∫
ΣT

β(t, x)|un|2 +

∫
ΣT

γ(t, x, un)un

=

∫
QT

fun +
1

2

∫
Ω

|vn|2
(10)

Thanks to the sign condition (H2) and by applying Hölder’s inequality, the relation
(10) becomes

‖un‖2VT ≤ ‖f‖L2(QT )‖un‖L2(QT ) + ‖vn‖2L2(QT ). (11)

As (vn) strongly converges in L2(QT ), it follows that (vn) is also bounded in L2(QT ).
Additionally, we can utilize Young’s inequality on the right-hand side of (11) to deduce
that (un) is bounded in VT . Moreover, using the equation satisfied by (un) and the
growth conditions (H1), we can establish that (∂tun) is bounded in V∗T . By applying
the Aubin compactness theorem directly (for example, see [22]), we can deduce the
existence of a subsequence of (un), which we still denote by (un) for simplicity, such
that

un → u strongly in L2(QT ) and a.e. in QT .

Alternatively, according to Theorem 4.1.4 of the Trace Theorem (as described in [16]),
it can be inferred that

un → u strongly in L2(ΣT ) and a.e. in ΣT .

Hence, by applying the above convergences, we obtain

un ⇀ u weakly in VT ,
∂tun ⇀ u weakly in V∗T ,

γ(t, x, un)→ γ(t, x, u) a.e in ΣT ,

γ(t, x, un)→ γ(t, x, u) strongly in L2(ΣT ).

The last convergence is obtained by using lebesgue in the growth assumption (H1)
and the fact that γ(t, x, un) is bounded in L2(ΣT ). By passing to the limit in the
weak formulation of (9), one gets∫ T

0

〈∂tu, ϕ〉+

∫
QT

∇u∇ϕ+

∫
ΣT

β(t, x)uϕ+

∫
ΣT

γ(t, x, u)ϕ =

∫
QT

fϕ. (12)
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Demonstration of u as a weak solution to problem 5 is established by demonstrating
that u satisfies the conditions specified in (5). Conversely, assuming the unique nature
of the weak solution to (5) allows us to infer that The statement that J is continuous
on L2(Ω) is synonymous with the expression:

lim
n→∞

J (vn) = J (v),

Moreover, we can apply the theory of calculus of variations [18] to deduce the
presence of an optimal solution for (6). �

3.2. Computation of the derivative of the cost function. In this section, we
focus on computing the derivative of the cost function J , which is essential for our
numerical approach. To accomplish this, we will employ the Lagrangian method,
which provides a quick and efficient way to compute the derivative of J . This method
involves constructing a functional L, referred to as the Lagrangian. The Lagrangian
is designed to separate the direct state variables (u) from the variable to be optimized
(v) by introducing an additional equation, known as the adjoint state equation. For
any (u, p, v, σ) ∈ WT ×WT × L2(Ω)× L2(Ω), we define the Lagrangian L as follows

L(u, p, v, σ) :=
1

2

∫
Ω

(u(T )− v)2 +

∫ T

0

〈∂tu, p〉+

∫
QT

∇u∇p+

∫
ΣT

β(t, x)up

+

∫
ΣT

γ(t, x, u)p−
∫
QT

fp+

∫
Ω

σ(u(0)− v).

It is important to mention that the function σ will be determined subsequently to
acquire the initial boundary condition for the adjoint equation. To derive the adjoint
equation, we take the derivative of the Lagrangian L with respect to u in all directions
ϕ ∈ WT .〈

∂L
∂u

, ϕ

〉
=

∫
Ω

ϕ(T )(u(T )− v) +

∫ T

0

〈∂tϕ, p〉+

∫
QT

∇ϕ∇p+

∫
ΣT

β(t, x)ϕp

+

∫
ΣT

∂γ(t, x, u)

∂s
ϕp+

∫
Ω

σϕ(0).

After integration by part, one obtains〈
∂L
∂u

, ϕ

〉
=

∫
Ω

ϕ(T )(u(T )− v)−
∫ T

0

〈∂tp, ϕ〉+

∫
Ω

(
p(T )ϕ(T )− p(0)ϕ(0)

)
−
∫
QT

∆pϕ+

∫
ΣT

∂p

∂ν
ϕ+

∫
ΣT

β(t, x)ϕp+

∫
ΣT

∂γ(t, x, u)

∂s
ϕp

+

∫
Ω

σϕ(0).

(13)

By taking ϕ with compact support in (13), we get the equation

∂tp+ ∆p = 0 in QT . (14)

Then, varying the trace of the function ϕ yields the following nonlinear boundary
condition:

− ∂p

∂ν
= β(t, x)p+

∂γ(t, x, u)

∂s
p in ΣT (15)
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We still need to determine the initial condition for the adjoint state.To accomplish
this, we set σ = p(0) in (13), which yields:

p(T ) = v − u(T ) in Ω. (16)

In accordance with (14)-(16), we conclude that the adjoint equation is given by the
following nonlinear problem:

∂tp+ ∆p = 0 in QT

p(T ) = v − u(T ) in Ω

−∂p
∂ν

= β(t, x)p+
∂γ(t, x, u)

∂s
p in ΣT

(17)

Let us derive the Lagrangian L with respect to v, for any direction η ∈ L2(Ω):〈
∂L
∂v

, η

〉
= −

∫
Ω

(u(T )− v)η −
∫

Ω

p(0)η =

∫
Ω

(
v − u(T )− p(0)

)
η.

Furthermore, to compute the derivative of the cost function J , we use u as the solution
of the state equation (5), which gives:

L(u, p, v, σ) = J (v).

Thus, we obtain:

J ′(v) · η =

∫
Ω

(
v − u(T )− p(0)

)
η (18)

Here, p(0) is the solution of the adjoint equation (17) at the time instant t = 0, and
u(T ) is the solution of the state equation (4) at the final time T .

4. Discretisation by finite element

In this section, we assume that Ω is a bounded convex d-polyhedron. Specifically, if
d = 1, it’s a bounded interval, if d = 2, it’s a convex polygon, and if d = 3, it’s a
convex polyhedron. We also consider a regular triangulation Th of Ω with mesh size
h > 0, such that every point in Ω is covered by at least one element in Th. We will
use the P1 finite element space in our analysis.

Vh =
{
vh ∈ C0(Ω̄), vh is affine on every d-simplex of Th

}
.

The space Vh is a finite dimensional subspace of V = H1(Ω).
The finite element approximation of problem (6) is given by:{

Find v∗h ∈ Uh
ad

Jh(v∗h) = min
vh∈Uh

ad

Jh(vh) (19)

where Uh
ad := {vh ∈ Vh, ‖vv‖H1(Ω) ≤ C} is the set of admissible functions and

Jh(vh) =
1

2

∫
Ω

(uh(T, x)− vh(x))2dx (20)
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with uh being the solution to the direct initial problem:

∀t ∈]0, T [,∀φh ∈ Vh
d

dt

∫
Th
uh(t, x)φh(x) +

∫
Th
∇uh(t, x)∇φh(x)dx+∫

∂Th
βuh(t)φh(s)ds+

∫
∂Th

γ(t, x, uh)φh(x)dx

=
∫
Th f(t, x)φh(x)dx

uh(0, x) = vh(x) a.e. in Ω

(21)

Consequently, we obtain the expression of the differential of Jh given by

DJh(vh)(x) = vh(x)− ph(0, x)− uh(T, x) (22)

where ph is a solution of the adjoint model:

∀t ∈]0, T [,∀φh ∈ Vh
d

dt

∫
Th
ph(t, x)φh(x)−

∫
Th
∇ph(t, x)∇φh(x)dx+∫

∂Th
βph(t)φh(s)ds+

∫
∂Th

∂γ(t, x, uh)

∂s
ph(t, x)φh(x)dx = 0

ph(T, x) = vh(x)− uh(T, x) a.e. in Ω

(23)

5. Numerical simulations

We performed numerical simulations with the software FreeFem ++ ([20]) in two
spatial dimensions. Our algorithm 1 considers a bounded domain Ω of R2 with smooth
boundary and a fixed µ > 0 as a step of descent.

We used an implicit method in time to solve the equation (21) and treated the
nonlinear part by employing the Newton’s algorithm. In the same way, we used an
implicit method in time for the resolution of the linear adjoint equation (23).
Example 1: In order to illustrate our method, we computed the numerical solution
obtained on the ring

Ω =
{

(x, y) ∈ R2 : x2 + y2 < 4
}

with

T = 1, f(t, x, y) = (x2 + y2 + 1)× cos(πt)2, β(t, x, y) = 0.1, and γ(t, x, u) = 0.

Nb vertices 162 587 1325

hmin 0.285711 0.143948 0.0883949

hmax 0.48218 0.250919 0.19726

Jh 1.80748e−8 1.79025e−8 1.78627e−8

Table 1. Mesh characteristics.
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Algorithm 1

Input: a mesh Th which gives a triangulation of Ωh (a polygonal approximation
of Ω) and an initial estimate u0

0 ∈ Vh (for example a constant C0) .
For each 1 = 0, ..., kmax − 1, solve the state equation;

∀t ∈]0, T [,∀φh ∈ Vh :
d

dt

∫
Th
uh(t, x)φh(x) +

∫
Th
∇uh(t, x)∇φh(x)dx+∫

∂Th
βuh(t)φh(s)ds+

∫
∂Th

γ(t, x, uh)φh(x)dx

=
∫
Th f(t, x)φh(x)dx.

uh(0, x) = vh(x) a.e. in Ω

Compute the value of ukh(T, x) by solving the adjoint equation
Solve the adjoint equation

∀t ∈]0, T [,∀φh ∈ Vh :
d

dt

∫
Th
ph(t, x)φh(x)−

∫
Th
∇ph(t, x)∇φh(x)dx+∫

∂Th
βph(t)φh(s)ds+

∫
∂Th

∂γ(t, x, uh)

∂s
ph(t, x)φh(x)dx = 0

ph(T, x) = vh(x)− uh(T, x) a.e. in Ω

Determinate the new initial function uk+1
0 by computing

uk+1
0 (x) = uk0(x)− µ(pkh(T, x)− pkh(0, x))

Compute the new value of the cost function:

Jk+1
h = Jh(uk+1

0 )

Output: ukmax

h , Jkmax

h

Figure 1. Output initial 2D Solution.
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The mesh Th obtained is shown in Figure 1. It has 1325 vertices. In Table 1, we
present the value of Jh = Jkmax

h obtained for different value of the mesh size h and
for kmax = 50. The initial guess is u0

h = 1. In addition to providing the solution
depicted in Figure 1, Table 1 also presents information on the number of vertices
contained in the mesh Th, along with the minimum and maximum boundary lengths
of the triangulation.

Figure 2. Evolution of J as a function of iterations.

Figure 2 shows that the value of the objective function Jh decreases along with
the increase of iteration numbers.
Example 2: we computed the numerical solution obtained on the ring

Ω =
{

(x, y) ∈ R2 : x2 + y2 < 4
}

with

T = 1, f(t, x, y) = (x2 + y2 + 1)× cos(πt)2, β(t, x, y) = 0.1,

and γ(t, x, u) = arctan (u).

Nb vertices 162 587 1325

hmin 0.285711 0.143948 0.0883949

hmax 0.48218 0.250919 0.19726

Jh 2.09323e−8 2.07294e−8 2.06839−8

Table 2. Mesh characteristics.
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Figure 3. Output initial 2D Solution.

The mesh Th obtained is shown in Figure 3. It has 1325 vertices. In Table 2, we
present the value of Jh = Jkmax

h obtained for different value of the mesh size h and for
kmax = 50. The initial guess is u0

h = 1. In addition to depicting the solution shown in
Figure 3, Table 2 also provides information on the number of vertices within the mesh
Th, as well as the minimum and maximum boundary lengths of this triangulation.

Figure 4. Evolution of J as a function of iterations.

Figure 4, shows that the value of the objective function Jh value decreases along
with the increase of iteration numbers.

Conclusion and perspectives

Partial differential equations constitute a fascinating and ancient field of study, known
for its precision, elegance, and depth of understanding. In this paper We have investi-
gated a periodic parabolic equation with nonlinear boundary conditions and proposed
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a novel method to analyze and numerically simulate its weak periodic solution. Our
approach utilizes a least-squares criterion to reformulate the periodic problem as an
optimization problem. We have established the existence of at least one optimal so-
lution in a suitable set of admissible functions and derived the derivative of the cost
function with respect to the state variable using the Lagrangian method. We have
also presented an iterative algorithm and a numerical technique to solve the opti-
mization problem. We demonstrate the effectiveness of our approach through several
numerical examples in Section 5. Our numerical results suggest that our method offers
more feasibility for numerical simulations of periodic solutions to periodic parabolic
equations with nonlinear boundary conditions. Additionally, our numerical findings
validate the theoretical analysis presented in this work. In conclusion, our proposed
method shows great potential as a numerical tool for simulating the periodic solution
of partial differential equations with discontinuous coefficients.
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Gauthier-Villars, Paris, 1969.

[23] K. Lust, D. Roose, A. Spence, A.R. Champneys, An adaptive Newton-Picard algorithm with
subspace iteration for computing periodic solutions, SIAM Journal on Scientific Computing 19

(1998), no. 4, 1188–1209.

[24] C.B. JR. Morrey, Multiple integrals in the calculus of variation, Springer Science & Business
Media, 2009.

[25] M.R. Osborne, The numerical solution of a periodic parabolic problem subject to a nonlinear

boundary condition, Numerische Mathematik 10 (1968), 76–79.
[26] C.V. Pao, Periodic solutions of parabolic systems with nonlinear boundary conditions, Journal

of Mathematical Analysis and Applications 234 (1999), no. 2, 695–716.

[27] C.V. Pao, Numerical methods for time-periodic solutions of nonlinear parabolic boundary value
problems, SIAM Journal on Numerical Analysis 39 (2001), no. 2, 647–667.

[28] M. Steuerwalt, The existence, computation, and number of solutions of periodic parabolic prob-
lems, SIAM Journal on Numerical Analysis 16 (1979), no. 3, 402–420.

[29] F.D. Thelin, Local regularity properties for the solutions of a nonlinear partial differential equa-

tion, Nonlinear Analysis: Theory, Methods & Applications 6 (1982), no. 8, 839–844.
[30] S. Vandewalle, R. Piessens, On dynamic iteration methods for solving time-periodic differential

equations, SIAM Journal on Numerical Analysis 30 (1993), no. 1, 286–303.

[31] Q.Y. Zhang, Z.G. Lin, Periodic solutions of quasilinear parabolic systems with nonlinear bound-
ary conditions, Nonlinear Analysis: Theory, Methods & Applications 72 (2010), no. 7–8, 3429–

3435.

(Abdelwahab Elaassri) Laboratory MASI, Multidisiplinary Faculty of Nador, University

Mohammed first, Selouane, Nador, 62702, Morocco
E-mail address: elaassri.abdelwahab@ump.ac.ma

(Kaoutar Lamrini Uahabi) Laboratory MASI, Multidisiplinary Faculty of Nador,
University Mohammed first, Selouane, Nador, 62702, Morocco
E-mail address: lamrinika@yahoo.fr

(Malika El Ghabi) Cadi Ayyad University, LAMAI Laboratory, B.P 549, Av.Abdelkarim
Elkhattabi, Guéliz, Marrakech

E-mail address: malika.elghabi@ced.uca.ma

(Abderrahim Charkaoui) Higher School of Education and Training Berrechid (ESEFB),

Hassan First University, BP 539, Berrechid, Morocco
E-mail address: abderrahim.charkaoui@uhp.ac.ma

(Nour Eddine Alaa) Cadi Ayyad University, LAMAI Laboratory, B.P 549, Av.Abdelkarim

Elkhattabi, Guéliz, Marrakech
E-mail address: n.alaa@uca.ac.ma


	1. Introduction
	2. Assumptions and main result
	2.1. Assumptions
	2.2. Framework and definition

	3. Statement of the minimization problem
	3.1. Existence of an optimal solution
	3.2. Computation of the derivative of the cost function.

	4. Discretisation by finite element 
	5. Numerical simulations
	Conclusion and perspectives
	Acknowledgments

	References

