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Désiré Saba, Akram Ben Aissa, and Gilbert Bayili

Abstract. In this paper, we consider the microbeam system with distributed delay term on

the boundary or into the domain. In both cases, and thanks to a clever combination of spectral

decomposition theory of Sz-Nagy-Foias [18] and frequency domain approach and under some
additional and suitable assumptions, we prove the exponential stability of the total energy of

our considered system.
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1. Introduction

Evolution problems appear in many applications in sciences such as finance, biology,
fluid mechanics, quantum mechanics etc. In recent years, a very active research has
started on the stabilization of evolution problems with delay where the delay term is
known to be the cause of instability see [11] and that sometimes an arbitrarily small
delay in the feedback can destabilize or improve the system performance. The study
of the stability of problems with delay, even in an abstract framework, is therefore
of great importance. Motivated by the results obtained in [11, 10, 19, 2, 5] for wave
equations, the Rayleigh beam equation with dynamic control and more recently in
[12] for a coupled system between a transport equation and an ordinary differential
equation. In this paper, inspired by [13, 16], we are looking for the stability issue of
a microbeam system with a boundary or internal distributed delay.
Firstly, we consider the microbeam system with boundary feedback.

ρAutt(x, t) +M1uxxxx(x, t)−M2uxxxxxx(x, t) = 0, x ∈ (0, L), t > 0,
u(0, t) = ux(0, t) = uxx(0, t) = 0, t > 0,
M1uxxx(L, t)−M2uxxxxx(L, t)− β1ut(x, t)−

∫ τ2
τ1

β2(s)ut(L, t− s)ds = 0, t > 0,

M1uxx(L, t)−M2uxxxx(L, t) = 0, t > 0,
M2uxxx(L, t) = 0, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L),
ut(L,−t) = f(L,−t), x ∈ (0, L), t ∈ (0, τ2),

(1)
where β1, τ1 and τ2 are positive numbers with 0 ≤ τ1 < τ2, β : [τ1, τ2] → R is a
positive L∞ function and the initial data (u0, u1, f0) belong to a suitable space.
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Morever, u(x, t) denotes the lateral deflection of the beam, while ρ > 0 is the
density of the beam’s material, A > 0 is the cross section area and L is the length.
Furthermore, M1,M2 are positive constants determined by M1 = EI + GA(2l20 +
18

15
l21 + l22) and M2 = GA(2l20 +

5

4
l21) , where E > 0 is the Young’s modulus, I > 0 is

the area moment of inertia, and G > 0 is the shear modulus,while l0, l1, and l2 are,
respectively, the material length scale parameters associated with dilatation gradients,
deviatoric stretch gradients, and rotation gradients.

Throughout this paper, we first assume that

∫ τ2

τ1

β2(s)ds < β1. (2)

We also consider the microbeam system with internal boundary distributed delay
term, which takes the following form:



ρAutt(x, t) +M1uxxxx(x, t)−M2uxxxxxx(x, t)

+ β1ut(x, t) +

∫ τ2

τ1

a(x)β2(s)ut(x, t− s)ds = 0, x ∈ (0, L), t > 0

u(0, t) = ux(0, t) = uxx(0, t) = 0, t > 0

M1uxxx(L, t)−M2uxxxxx(L, t) = 0, t > 0

M1uxx(L, t)−M2uxxxx(L, t) = 0, t > 0

M2uxxx(L, t) = 0, t > 0

ut(x,−t) = f(x,−t), x ∈ (0, L), t ∈ (0, τ2)

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L)

(3)

where a ∈ L∞(0, 1) is a function such that

a(x) ≥ 0, a.e. x ∈ (0, L)

and

a(x) > a0 > 0, a.e. x ∈ (a, b),

where (a, b) ⊂ [0, L] is an open neighborhood of L.
Throughout this paper, we assume in (3) that β2 : [τ1, τ2] → R is a positive L∞

function verifying

∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds < β1. (4)

It is known that when β2 = 0 (that is no delay occurs in the systems (1) or (3)), it
has been proved in [13] that the corresponding problems are exponentially stable.
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In the presence of a delay concentred at τ , the following problems

ρAutt(x, t) +M1uxxxx(x, t)−M2uxxxxxx(x, t)

+ β1ut(x, t) + β2ut(x, t− τ) = 0, x ∈ (0, L), t > 0

u(0, t) = ux(0, t) = uxx(0, t) = 0, t > 0,

M1uxxx(L, t)−M2uxxxxx(L, t) = 0, t > 0,

M1uxx(L, t)−M2uxxxx(L, t) = 0, t > 0,

M2uxxx(L, t) = 0, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L)

ut(x,−t) = f(x,−t), x ∈ (0, L), t ∈ (0, τ2),

(5)

and

ρAutt(x, t) +M1uxxxx(x, t)−M2uxxxxxx(x, t) = 0, x ∈ (0, L), t > 0,
u(0, t) = ux(0, t) = uxx(0, t) = 0, t > 0,
M1uxxx(L, t)−M2uxxxxx(L, t) + β1ut(L, t) + β2ut(L, t− τ) = 0, t > 0,
M1uxx(L, t)−M2uxxxx(L, t) = 0, t > 0,
M2uxxx(L, t) = 0, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L),
ut(x,−t) = f(x,−t), x ∈ (0, L), t ∈ (0, τ2),

(6)
are also exponentially stable, see for instance [5].

They combine multiplier method and a suitable the choice of Lyapunov function
and integral inequalities.
As a reminder, both polynomial and exponential stability results with distributed
delay for the wave equation with dynamical control have been investigated respec-
tively by S. Nicaise and Christina P.[10] and Roland S. and Gilbert B. [17] under the
assumption ∫ τ2

τ1

µ2(s)ds < µ1. (7)

To our best knowledge, no paper has taken into account the presence of interior
and boundary distributed delay for the micro-beam system. This is indeed the main
motivation of the present article. Of course, needless to point out that it is practically
impossible to avoid the time delay in the sensors and actuators when the objective
is to stabilize the micro-beam system. In this paper, staying on the one dimensional
space, we look for the possible ways to stabilize the systems (1) and (3) based on
frequency domain approach for exponential stability (see Huang [8] and Prüss [14]).

The paper is organized as follows: section 2 is devoted to the well-posedness results
for problems (1) and (3). In section 3 we prove the strong stability of problems (1) and
(3). Finally in section 4, we establish the uniform stability of the above micro-beam
systems (1) and (3) .

2. Semigroup formulation

Our aim in this section is to prove the global existence and the uniqueness of the
solution of the micro-beam systems (1) and (3). We will first transform the systems
(1) and (3) by making the change of variables and then we use the semigroup approach
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to prove the existence of the corresponding micro-beam systems. In this section we will
give the well posedness for the problem (1) and (3) using the semigroup theory, and
establish strong stability result. We start by considering the problem with boundary
feedback.

2.1. Well-posedness of the microbeam system with boundary distributed
delay. In order to put the system in an abstract framework, we introduce the auxil-
iary variable

z(r, t, s) = ut(L, t− sr), r ∈ (0, 1), s ∈ (τ1, τ2), t > 0. (8)

Then the problem (1) admits the following equivalent formulation

ρAutt(x, t) +M1uxxxx(x, t)−M2uxxxxxx(x, t) = 0, x ∈ (0, L), t > 0,
szt(r, t, s) + zr(r, t, s) = 0, r ∈ (0, 1), t > 0,
u(0, t) = ux(0, t) = uxx(0, t) = 0, t > 0,
M1uxxx(L, t)−M2uxxxxx(L, t)− β1ut(L, t)−

∫ τ2
τ1

β2(s)z(1, t, s)ds = 0, t > 0,

M1uxx(L, t)−M2uxxxx(L, t) = 0, t > 0,
M2uxxx(L, t) = 0, t > 0,
u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L),
z(x, 0, t, s) = ut(x, t), x ∈ (0, L), t > 0,
z(r, 0, s) = fr(L,−rs), s ∈ (0, τ2).

(9)
Setting

U =
(
u, ut, z

)T
.

Then we have

Ut =
(
ut,−

1

ρA
M1uxxxx +

1

ρA
M2uxxxxxx,−s−1zρ

)T
.

Therefore problem (9) can be rewritten in an abstract framework:
Ut = AU

U(0) = (u0, u1, f0(− · s))T ,

(10)

where the operator A is defined by

A (u, v, z)
T
=

(
v,− 1

ρA
M1uxxxx +

1

ρA
M2uxxxxxx,−s−1zρ

)T

,

with domain

D(A) =


(u, v, z)

T ∈
(
H6(0, L) ∩ V

)
× V × L2((τ1, τ2);H

1(0, 1)), z(0) = v(L)

M1uxx(L)−M2uxxxx(L) = 0,M2uxxx(L) = 0

M1uxxx(L)−M2uxxxxx(L)− β1v(L)−
∫ τ2
τ1

β2(s)z(1, s)ds = 0

 ,

where
V =

{
u ∈ H3(0, L), u(0) = ux(0) = uxx(0) = 0

}
.

Let us define he energy space H as follows

H = V × L2(0, L)× L2((τ1, τ2);L
2(0, 1))
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with the natural associated inner product given by〈 u
v
z

 ,

 u∗

v∗

z∗

〉
H

=

∫ L

0

(
ρAvv∗ +M1uxxu∗

xx +M2uxxxu∗
xxx

)
dx

+

∫ τ2

τ1

(
sβ2(s)

∫ 1

0

z(ρ, s)z∗(ρ, s) dρ

)
ds

for all U = (u, v, z)T, U∗ = (u∗, v∗, z∗)T ∈ H .

Proposition 2.1. Assume that (2) holds, then for any initial datum U0 ∈ H, there
exists a unique solution U ∈ C ([0,∞) ;D(A)) of the system (10). Furthermore, if
U0 ∈ D(A), then U ∈ C ([0,∞) ;D(A))) ∩ C1 ([0,∞) ;H) .

Proof. We start with the dissipativeness of A. Let U = (u, v, z)T ∈ D(A). Now using
the definition of the inner product and the definition of the operator, we obtain that〈

A

 u
v
z

 ,

 u
v
z

〉
H

=

〈 v
− 1

ρAM1uxxxx + 1
ρAM2uxxxxxx

−s−1zρ

 ,

 u
v
z

〉
H

= ρA

∫ L

0

(− 1

ρA
M1uxxxx +

1

ρA
M2uxxxxxx)v dx

+

∫ L

0

M1vxxuxx +M2vxxxuxxx dx−
∫ τ2

τ1

(
β2(s)

∫ 1

0

zρ(ρ, s)z(ρ, s) dρ

)
ds

=

∫ L

0

(−M1uxxxx +M2uxxxxxx)v dx+

∫ L

0

M1vxxuxx +M2vxxxuxxx dx

−
∫ τ2

τ1

(
β2(s)

∫ 1

0

zρ(ρ, s)z(ρ, s) dρ

)
ds.

Integrating by parts and using the boundary conditions, we get

ℜ

〈
A

 u
v
z

 ,

 u
v
z

〉
H

= −β1|v(L)|2 −ℜ
((∫ τ2

τ1

β2(s)v(L)z(1, s)ds

))

−1

2

∫ τ2

τ1

β2(s) |z(1, s)|2 ds+
1

2

∫ τ2

τ1

β2(s) |z(0, s)|2 ds

≤ −β1 |v(L)|2 +
1

2

∫ τ2

τ1

β2(s) |z(1, s)|2 ds+
1

2
|v(L)|2

∫ τ2

τ1

β2(s)ds

−1

2

∫ τ2

τ1

β2(s) |z(1, s)|2 ds+
1

2
|v(L)|2

∫ τ2

τ1

β2(s)ds

≤ −β1 |v(L)|2 +
1

2
|v(L)|2

∫ τ2

τ1

β2(s)ds+
1

2
|v(L)|2

∫ τ2

τ1

β2(s)ds

−1

2

∫ τ2

τ1

β2(s) |z(1, s)|2 ds+
1

2

∫ τ2

τ1

β2(s) |z(1, s)|2 ds

≤
(
−β1 +

∫ τ2

τ1

β2(s)ds

)
|v(L)|2 . (11)
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Now the relation (2) allows to conclude that A is dissipative.
In order to use the Lumer Philips theorem, we need to prove that the operator λI−A
is surjective for at least one λ > 0.

For (f, g, h)T ∈ H, we look for (u, v, z)T ∈ D(A) solution of
λu− v = f in (0, L)

λv +
1

ρA
M1uxxxx − 1

ρA
M2uxxxxxx = g in (0, L)

λz + s−1zr = k in (0, 1).

(12)

Suppose that we have found u with the appropriate regularity. Then v = λu− f and
we can determine immediately z by solving the system{

s−1zr + λz = k in (0, 1)
z(0) = v(L).

(13)

We obtain

z(r, s) = v(L)e−λsr + se−λsr

∫ r

0

k(σ, s)eλsσ dσ. (14)

z(1, s) = v(L)e−λs + se−λs

∫ 1

0

k(σ, s)eλsσ dσ. (15)

The function u verifies now

1

ρA
M1uxxxx − 1

ρA
M2uxxxxxx + λ2u = g + λf in (0, L)

u(0) = ux(0) = uxx(0) = 0

M1uxxx(L)−M2uxxxxx(L)− β1v(L)−
∫ τ2

τ1

β2(s)z(1, s)ds = 0 t ∈ (0,+∞)

M1uxx(L)−M2uxxxx(L) = 0

M2uxxx(L) = 0
(16)

By using Lax-Milgram’s Lemma, the problem (16) admits a unique weak solution.
Indeed multiplying the first equation by v ∈ V and by integrating formally by parts
we get

a(u, v) = F (v),∀ v ∈ V, (17)

where the bilinear and continuous form a is given by

a(u,w) =

∫ L

0

( 1

ρA
M1uxxwxx +

1

ρA
M2uxxxwxvx + λ2uw

)
dx+(

β1 +

∫ τ2

τ1

β2(s)e
−λsds

)
λu(L)w(L), ∀ (u,w) ∈ V × V

while the linear form F is

F (w) =

∫ L

0

(g + λf)w dx−
(∫ τ2

τ1

∫ 1

0

sβ2(s)k(σ, s)e
λs(σ−1)dσds

)
w(L), ∀ w ∈ V.

Since a is clearly strongly coercive on V and F is continuous on V , by Lax-Milgram’s
Lemma, problem (16) admits a unique solution u ∈ V . By taking test functions
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v ∈ D(0;L), we recover the first equation of (16). This guarantees that u belongs to
H6(0, L).

We conclude that the operator A is m-dissipative on H and it generates a C0
semigroup of contractions in H, under Lumer-Phillips theorem. So, we have found
(u, v, z)T ∈ D(A) which verifies (16). □

2.2. Well-posedness of the microbeam system with internal distributed
delay. Now, we consider the problem with internal feedback, namely the system (3).
Let us set

z(x, r, t, s) = ut(x, t− sr), x ∈ (0, L), r ∈ (0, 1), s ∈ (τ1, τ2), t > 0. (18)

The problem (3) is now equivalent to

ρAutt(x, t) +M1uxxxx(x, t)−M2uxxxxxx(x, t)

+ β1ut(x, t) +

∫ τ2

τ1

a(x)β2(s)z(x, 1, t, s)ds = 0, x ∈ (0, L), t > 0

szt(x, r, t, s) + zr(x, r, t, s) = 0, x ∈ (0, L), r ∈ (0, 1), t > 0,

u(0, t) = ux(0, t) = uxx(0, t) = 0, t > 0,

M1uxxx(L, t)−M2uxxxxx(L, t) = 0, t > 0,

M1uxx(L, t)−M2uxxxx(L, t) = 0, t > 0,

M2uxxx(L, t) = 0, t > 0,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ (0, L)

z(x, 0, t, s) = ut(x, t), x ∈ (0, L), t > 0, s ∈ (τ1, τ2),

z(x, r, 0, s) = f0(x,−rs), x ∈ (0, L), s ∈ (0, τ2), r ∈ (0, 1).

(19)
Setting

U =
(
u, ut, z

)T
.

Then we have

Ut =
(
ut,−

1

ρA
M1uxxxx(x, t) +

1

ρA
M2uxxxxxx(x, t)− β1ut(x, t)

−
∫ τ2

τ1

a(x)β2(s)z(x, 1, t, s)ds,−s−1zρ

)T
.

Therefore problem (19) can be rewritten in an abstract framework:{
Ut = ÂU
U(0) = (u0, u1, f0(− · s))T ,

(20)

where the operator Â is defined by

Â (u, v, η, z)
T
=

(
v,− 1

ρA
M1uxxxx +

1

ρA
M2uxxxxxx − β1

ρA
v

− 1

ρA

∫ τ2

τ1

a(x)β2(s)z(x, 1, s)ds,−s−1zρ

)T

,
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with domain

D(Â) =


(u, v, z)

T ∈
(
H6(0, L) ∩ V

)
× V × L2((τ1, τ2);H

1(0, 1)), z(0) = v,

M1uxx(L)−M2uxxxx(L) = 0,M2uxxx(L) = 0,

M1uxxx(L)−M2uxxxxx(L) = 0.

 ,

where

V =
{
u ∈ H3(0, L), u(0) = ux(0) = uxx(0) = 0

}
.

Let us now introduce the Hilbert space

Ĥ = V × L2(0, L)× L2((τ1, τ2);L
2(0, 1))

with the natural associated inner product〈 u
v
z

 ,

 u∗

v∗

z∗

〉
Ĥ

=

∫ L

0

(
ρAvv∗ +M1uxxu∗

xx +M2uxxxu∗
xxx

)
dx

+

∫ L

0

a(x)

∫ τ2

τ1

(
sβ2(s)

∫ 1

0

z(r, s)z∗(r, s) dr

)
dsdx.

Arguing analogously to the case of boundary feedback under the assumption (4), we

show that the operator Â defined above is m-dissipative on the energy space Ĥ and

therefore generates a C0 semigroup of contractions in Ĥ . In others words, for the
sake of brevity in this paper , we omit the proof of the following proposition because
the proof is very similar to the procedure for problem (10) .

Proposition 2.2. Assume that (4) holds, then for any initial datum U0 ∈ Ĥ, there

exists a unique solution U ∈ C
(
[0,∞) ;D(Â)

)
of the system (20). Furthermore, if

U0 ∈ D(Â), then U ∈ C
(
[0,∞) ;D(Â))

)
∩ C1 ([0,∞) ;H) .

3. Strong stability

In this section we establish strong stability results and the main results of this sub-
section are the following.

Theorem 3.1. The C0-semigroup
(
etA
)
t≥0

is strongly stable on the energy space H,

that is for any U0 ∈ H,

lim
t−→∞

∥∥etAU0

∥∥
H = 0.

Proof of Theorem 3.1. We use the spectral decomposition theory of Sz-Nagy-Foias
and Foguel [18, 5, 7]. Following this theory, since the resolvent of A is compact, it
suffices to establish that A has no eigenvalue on the imaginary axis. For our purpose,
it is easy to prove that the resolvent of the operator A defined in (10) is compact.
We are ready now to achieve the proof of Theorem 3.1 with the following lemma.

Lemma 3.2. There is no eigenvalue of A on the imaginary axis, that is

iR ⊂ ρ(A).
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Proof. By contradiction argument, we assume that there exists at least one iλ ∈
σ(A), λ ∈ R, λ ̸= 0 on the imaginary axis. Let U = (u, v, η, z)T ∈ D(A) be the
corresponding normalized eigenvector, that is verifying ∥U∥ = 1 and

A(u, v, z)T = iλ(u, v, z)T, (21)

In the case of the microbeam system with boundary distributed delay, the system
(21) is equivalent to

v − iλu = 0 in (0, L)

− 1

ρA
M1uxxxx +

1

ρA
M2uxxxxxx − iλv = 0 in (0, L)

− s−1zr − iλz = 0 in (0, 1).

(22)

Recalling the dissipativity of A and basing on the result (11), it follows from (21)
that

0 = ℜ
〈
A(u, v, z)T, (u, v, z)T

〉
H ≤ |v(L)|2

(
−β1 +

∫ τ2

τ1

β2(s)ds

)
≤ 0 (23)

and we conclude that v(L) = 0.
Owing to the expression of z given in (14), we deduce that z = 0.

Now (22) becomes
v − iλu = 0 in (0, L),

− 1

ρA
M1uxxxx +

1

ρA
M2uxxxxxx − iλv = 0 in (0, L).

(24)

From the first equation of (24) we deduce that

u(L) = 0.

Setting v = iλu, it remains to find u ∈ V which verifies
− 1

ρA
M1uxxxx +

1

ρA
M2uxxxxxx + λ2u = 0 in (0, L),

u(L) = 0, M2uxxx(L) = 0,

M1uxx(L) = M2uxxxx(L) ,M1uxxx(L)−M2uxxxxx(L) = 0,

u(0) = ux(0) = uxx(0) = 0.

(25)

Therefore, from the general theory of ordinary differential equations, we deduce
that

u = 0, on (0, L). (26)

Now it follows that (u, v, z)
T
= (0, 0, 0)

T
which contradicts the fact that ∥U∥H = 1.

We conclude that A has no eigenvalue on the imaginary axis. □

As the conditions of the spectral decomposition theory of Sz-Nagy-Foias and Foguel
are full satisfied, the proof of Theorem 3.1 is thus completed. □

Theorem 3.3. The C0-semigroup
(
etÂ
)
t≥0

is strongly stable on the energy space

Ĥ, that is for any U0 ∈ Ĥ,

lim
t−→∞

∥∥∥etÂU0

∥∥∥
Ĥ

= 0.
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Proof of Theorem 3.3. We omit the proof since it is analogous to the proof of Theorem
3.1. □

4. Exponential stability

In this section, under some assumptions we want to prove exponential stability re-
sult for the micro-beam systems (1) and (3). Our futur computations are based on
frequency domain approach for exponential stability (see Huang [8] and Prüss [14]),
more precisely on the below result.

Lemma 4.1. A C0-semigroup
(
etA
)
t≥0

of contractions on a Hilbert space H is

exponentially stable, namely satisfies∥∥etAU0

∥∥
H ≤ Ce−ωt∥U0∥H ∀ U0 ∈ H, ∀ t ≥ 0, (27)

for some positive constants C and ω if and only if

ρ(A) ⊃ {iβ, β ∈ R} ≡ iR (28)

and

sup
β∈R

∥∥∥(iβ −A)
−1
∥∥∥
L(H)

< ∞ (29)

where ρ(A) denotes the resolvent set of the operator A.

4.1. Exponential stability of the microbeam system with boundary dis-
tributed delay. The main result of current section is the following.

Theorem 4.2. Assume that (u0, u1, f0)
⊤ ∈ D(A). Then, the system (1) is exponen-

tially stable in the energy space H.

Proof. As the condition (28) is guaranteed by Lemma 3.2, it suffices now to check
the condition (29) in other words, the boundedness of the resolvent on the imaginary

axis. For that, we will establish that for any λ ∈ R and F = (f, g, h)
T ∈ H, the

solution U = (u, v, z)
T ∈ D(A) of

(iλI −A)U = F (30)

satisfies
∥U∥H ≤ C∥F∥H (31)

where C is a positive constant (independent of λ and F ).
Note that problem (1) without delay (corresponding to β2 = 0) is the following one

ρAutt(x, t) +M1uxxxx(x, t)−M2uxxxxxx(x, t) = 0 in (0, L)× (0,+∞)

u(0, t) = ux(0, t) = uxx(0, t) = 0 t ∈ (0,+∞)

M1uxxx(L, t)−M2uxxxxx(L, t)− β1ut(L, t) = 0 t ∈ (0,+∞)

M1uxx(L, t)−M2uxxxx(L, t) = 0 t ∈ (0,+∞)

M2uxxx(L, t) = 0 t ∈ (0,+∞)

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ (0, L).

(32)
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This problem (32) is well-posed throughout its equivalent abstract formulation

A0 (u, v)
T
=

(
v,− 1

ρA
M1uxxxx +

1

ρA
M2uxxxxxx

)T

(33)

in the following Hilbert space

H0 = V × L2(0, L) (34)

with domain

D(A0) =


(u, v)

T ∈
(
H6(0, L) ∩ V

)
× V,

M1uxx(L)−M2uxxxx(L) = 0,M2uxxx(L) = 0,

M1uxxx(L)−M2uxxxxx(L)− β1v(L) = 0.

 (35)

and where H0 is endowed with the norm∥∥∥(u, v)T∥∥∥2
H0

= M1∥uxx∥2L2(0,L) + ρA∥v∥2L2(0,L) +M2∥uxxx∥2L2(0,L). (36)

The system (32) has been studied in [16] by Vatankhah et al. where they proved
that the operator A0 of the problem without delay generates an exponentially stable
semigroup. So, according to this study we have iR ⊂ ρ(A0) and there exist a constant
C0 > 0 such that ∥∥∥(iξ −A0)

−1
∥∥∥
L(H0)

≤ C0, ∀ ξ ∈ R. (37)

The relation (37) implies that the solution U∗ = (u∗, v∗)
T ∈ D (A0) of

(iλI −A0)

(
u∗

v∗

)
=

(
u
v

)
(38)

verifies ∥∥∥(u∗, v∗)
T
∥∥∥
H0

≤ C0

∥∥∥(u, v)T∥∥∥
H0

. (39)

Also, the system (38) can be rewritten as{
iλu∗ − v∗ = u
iλv∗ + 1

ρAM1u
∗
xxxx − 1

ρAM2u
∗
xxxxxx = v

. (40)

However, we have〈
(iλI −A)

u
v
z

 ,

u∗

v∗

αz

〉
H

=

∫ L

0

M1 (iλu− v)xx u
∗
xxdx+

∫ L

0

M2 (iλu− v)xxx u
∗
xxxdx

+

∫ L

0

ρA

(
iλv +

1

ρA
M1uxxxx − 1

ρA
M2uxxxxxx

)
v∗dx

+ α

∫ τ2

τ1

(
sβ2(s)

∫ 1

0

(
iλz + s−1zr

)
zdr

)
ds.

Integrating by parts, we get∫ L

0

M1 (iλu− v)xx u
∗
xxdx =

∫ L

0

M1uxx(−iλu∗)xxdx−
∫ L

0

M1vu∗
xxxxdx

−M1vx(L)u∗
xx(L) +M1v(L)u∗

xxx(L),
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0

M2 (iλu− v)xxx u
∗
xxxdx =

∫ L

0

M2uxxx(−iλu∗)xxxdx+

∫ L

0

M2vu∗
xxxxxxdx

−M2vxx(L)u∗
xxx(L) +M2vx(L)u∗

xxxx(L)−M2v(L)u∗
xxxxx(L),∫ L

0

ρA

(
iλv +

1

ρA
M1uxxxx − 1

ρA
M2uxxxxxx

)
v∗dx =

∫ L

0

ρAiλvv∗dx+M1uxxx(L)v∗(L)

−M1uxx(L)v∗x(L) +

∫ L

0

M1uxxv∗xxdx−M2uxxxxx(L)v∗(L)

+M2uxxxx(L)v∗x(L)−M2uxxx(L)v∗xx(L) +

∫ L

0

M1uxxv∗xxdx

and

α

∫ τ2

τ1

(
sβ2(s)

∫ 1

0

(
iλz + s−1zr

)
zdr

)
ds =iλα

∫ τ2

τ1

(
sβ2(s)

∫ 1

0

|z|2dr
)
ds

+ α

∫ τ2

τ1

(
β2(s)

∫ 1

0

zrzdr

)
ds.

Adding the last integrals and using the relations (40) and (36) , we obtain that〈
(iλI −A)

u
v
z

 ,

u∗

v∗

αz

〉
H

=−
∥∥∥(u, v)T∥∥∥2

H0

+ 2β1v(L)v∗(L) +

∫ τ2

τ1

β2(s)z(·, 1, s)v∗(L)ds

+ iλα

∫ τ2

τ1

(
sβ2(s)

∫ 1

0

|z|2dr
)
dsdΓ

+ α

∫ τ2

τ1

(
β2(s)

∫ 1

0

zrzdr

)
ds. (41)

In the sequel we set α = −1

ε
. Then recalling (30) and taking the real part in (41),

we obtain

∥∥∥(u, v)T∥∥∥2
H0

=−ℜ

〈
F,

 u∗

v∗

−1

ε
z

〉
H

+ ℜ
(
2β1v(L)v∗(L)

)
+ ℜ

(∫ τ2

τ1

β2(s)z(·, 1, s)v∗(L)ds
)

−ℜ
(
1

ε

∫ τ2

τ1

(
β2(s)

∫ 1

0

zrzdr

)
ds

)
. (42)

Using (39) and the Cauchy-Schwarz inequality we have

−ℜ

〈
F,

 u∗

v∗

−1

ε
z

〉
H

≤ ∥F∥H
∥∥∥(u∗, v∗)

T
∥∥∥
H0

+
1

ε
∥F∥H

∥∥∥(0, 0, z)T∥∥∥
H

≤ ∥F∥H
∥∥∥(u∗, v∗)

T
∥∥∥
H0

+
1

ε
∥F∥H

∥∥∥(u, v, z)T∥∥∥
H

≤ C0 ∥F∥H
∥∥∥(u, v)T∥∥∥

H0

+
1

ε
∥F∥H ∥U∥H . (43)
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Applying the Young’s inequality one obtains

ℜ
(
2β1v(L)v∗(L)

)
≤ 2β2

1

ε
|v(L)|2 + ε|v∗(L)|2, with ε > 0. (44)

From the dissipativeness of A, we deduce using (30) and the Cauchy-Schwarz inequal-
ity that(

β1 −
∫ τ2

τ1

β2(s)ds

)
|v(L)|2 ≤ ℜ⟨(iλI −A)U,U⟩H ≤ ∥F∥H ∥U∥H . (45)

Note further that (39) and the dissipativeness of A0 directly yield

β1 |v∗(L)|2 ≤ ℜ⟨(iλI −A0)U
∗, U∗⟩H0

≤
∥∥(u, v)⊤∥∥H0

∥U∗∥H0
≤ C0

∥∥(u, v)⊤∥∥2H0
.

(46)
Consequently using (45) and (46) in (44), we get

ℜ
(
2β1v(L)v∗(L)

)
≤ 2β2

1

ε

(
β1 −

∫ τ2

τ1

β2(s)ds

) ∥F∥H ∥U∥H +
εC0

β1

∥∥(u, v)⊤∥∥2H0
. (47)

Thanks to the Young’s inequality, we get

ℜ
(∫ τ2

τ1

β2(s)v∗(L)z(·, 1, s)ds
)

≤ 1

2ε

∫ τ2

τ1

β2(s) |z(·, 1, s)|2 ds+ε

∫ τ2

τ1

β2(s) |v∗(L)|2 ds.

That is using (46)

ℜ
(∫ τ2

τ1

β2(s)v∗z(·, 1, s)ds
)

≤ 1

2ε

∫ τ2

τ1

β2(s) |z(·, 1, s)|2 ds

+

εC0

∫ τ2

τ1

β2(s)ds

β1

∥∥(u, v)⊤∥∥2H0
. (48)

Furthermore, we have

−1

ε

∫ τ2

τ1

(
β2(s)

∫ 1

0

zρzdρ

)
ds = − 1

2ε

∫ τ2

τ1

β2(s) |z(·, 1, s)|2 ds

+
1

2ε

∫ τ2

τ1

β2(s) |v∗(L)|2 ds.

Using (45), one can write

−ℜ
(
1

ε

∫ τ2

τ1

(
β2(s)

∫ 1

0

zrzdr

)
ds

)
≤ − 1

2ε

∫ τ2

τ1

β2(s) |z(·, 1, s)|2 ds

+

∫ τ2

τ1

β2(s)ds

2ε

(
β1 −

∫ τ2

τ1

β2(s)ds

) ∥F∥H ∥U∥H .(49)
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Now adding (43), (47), (49) and (48) one gets∥∥∥(u, v)T∥∥∥2
H0

≤ C0 ∥F∥H
∥∥∥(u, v)T∥∥∥

H0

+
1

ε
∥F∥H ∥U∥H +

2β2
1

ε

(
β1 −

∫ τ2

τ1

β2(s)ds

) ∥F∥H ∥U∥H

+
εC0

β1

(
1 +

∫ τ2

τ1

β2(s)ds

)∥∥(u, v)⊤∥∥2H0
+

∫ τ2

τ1

β2(s)ds

2ε

(
β1 −

∫ τ2

τ1

β2(s)ds

) ∥F∥H ∥U∥H .

At this level we chose ε sufficiently small such that ε ≪ β1

C0

(
1 +

∫ τ2

τ1

β2(s)ds

) to

obtain

∥∥∥(u, v)T∥∥∥2
H0

≤

C0 +
1

ε
+

4β2
1 +

∫ τ2

τ1

β2(s)ds

2ε

(
β1 −

∫ τ2

τ1

β2(s)ds

)
 ∥F∥H ∥U∥H . (50)

Since
∥∥∥(u, v, z)T∥∥∥2

H
=
∥∥∥(u, v)T∥∥∥2

H0

+

∫ τ2

τ1

(
sβ2(s)

∫ 1

0

|z(·, r, s)|2dr
)
ds, we deduce that

∥U∥2H ≤

C0 +
1

ε
+

4β2
1 +

∫ τ2

τ1

β2(s)ds

2ε

(
β1 −

∫ τ2

τ1

β2(s)ds

)
 ∥F∥H ∥U∥H+

∫ τ2

τ1

(
sβ2(s)

∫ 1

0

|z(·, r, s)|2dr
)
ds.

(51)

Now we need a best estimation for

∫ τ2

τ1

(
sβ2(s)

∫ 1

0

|z(·, r, s)|2dr
)
ds.

Following (30) and solving the next Cauchy problem (52){
s−1zr + iλz = l
z(·, 0, s) = v(L)

(52)

we obtain

z(·, r, s) = v(L)e−iλsr + s

∫ r

0

e−iλs(r−σ)l(·, σ, s) dσ, ∀ r ∈ (0, 1) . (53)

Using the triangular inequality, it follows from (53) that

|z(·, r, s)| ≤ |v(L)|+ s

∫ ρ

0

|l(·, σ, s)| dσ, ∀ r ∈ (0, 1) ,

which leads to

|z(·, r, s)|2 ≤ |v(L)|2+s2
(∫ ρ

0

|l(·, σ, s)| dσ
)2

+2 |v(L)| s
(∫ ρ

0

|l(·, σ, s)| dσ
)
, ∀ r ∈ (0, 1) .

(54)
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On the one hand, by Cauchy-Schwarz’s inequality we obtain(∫ ρ

0

|l(·, σ, s)| dσ
)2

≤
(∫ ρ

0

|l(·, σ, s)|2 dσ
)(∫ ρ

0

dσ

)
≤

∫ ρ

0

|l(·, σ, s)|2 dσ;

that is (∫ ρ

0

|l(·, σ, s)| dσ
)2

≤
∫ ρ

0

|l(·, σ, s)|2 dσ. (55)

On the other hand, Young’s inequality guarantees that

2 |v(L)| s
(∫ ρ

0

|l(·, σ, s)| dσ
)

≤ |v(L)|2 + s2
(∫ ρ

0

|l(·, σ, s)| dσ
)2

. (56)

Combining (54), (55) and (56) it follows that

|z(·, r, s)|2 ≤ 2 |v(L)|2 + 2s2
∫ ρ

0

|l(·, σ, s)|2 dσ. (57)

Integrating (57) on × (τ1, τ2)× (0, 1) yields∫ τ2

τ1

(
sβ2(s)

∫ 1

0

|z(·, r, s)|2dr
)
ds

≤ 2

∫ τ2

τ1

sβ2(s) |v(L)|2 ds+ 2

∫ τ2

τ1

s3β2(s)

∫ 1

0

|l(·, r, s)|2 dsdr

≤ 2τ2

∫ τ2

τ1

β2(s)ds

∫
ΓN

|v|2 + 2τ22

∫ τ2

τ1

sβ2(s)

∫ 1

0

|l(·, r, s)|2 dsdr.

Then using (45) and the H-norm definition, the above relation can be rewritten as

∫ τ2

τ1

(
sβ2(s)

∫ 1

0

|z(·, r, s)|2dr
)
ds ≤

 2τ2

∫ τ2

τ1

β2(s)ds

β1 −
∫ τ2

τ1

β2(s)ds

 ∥F∥H ∥U∥H + 2τ22 ∥F∥2H .

(58)
Putting (58) in (82), it follows that

∥U∥2H ≤

C0 +
1

ε
+

4β2
1 + (1 + 4ετ2)

∫ τ2

τ1

β2(s)ds

2ε

(
β1 −

∫ τ2

τ1

β2(s)ds

)
 ∥F∥H ∥U∥H + 2τ22 ∥F∥2H

that is

∥U∥2H ≤ Cε ∥F∥H ∥U∥H + 2τ22 ∥F∥2H (59)

where Cε is a positive constant which doesn’t depend on λ. More precisely,

Cε = C0 +
1

ε
+

4β2
1 + (1 + 4ετ2)

∫ τ2

τ1

β2(s)ds

2ε

(
β1 −

∫ τ2

τ1

β2(s)ds

) . (60)
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Applying Young’s inequality to (59) it follows that

∥U∥2H ≤ Cε

2ε′
∥F∥2H +

ε′Cε

2
∥U∥2H + 2τ22 ∥F∥2H , with ε′ > 0. (61)

One can choose ε′ small enough such that
ε′Cε

2
< 1. Consequently, (61) becomes

∥U∥2H ≤ Cεε′ ∥F∥2H , (62)

where one sets

Cεε′ =

Cε

2ε′
+ 2τ22

1− ε′Cε

2

. (63)

Finally (62) directly leads to (31) with

C =
√
Cεε′ . (64)

That means the resolvent of A is uniformly bounded on the imaginary axis. The
proof of theorem 4.3 is thus completed. □

4.2. Exponential stability of the microbeam system with internal distributed
delay.

Theorem 4.3. Assume that (u0, u1, f0)
⊤ ∈ D(Â). Then, the system (3) is exponen-

tially stable in the energy space Ĥ.

Proof. As the condition (28) is guaranteed by Lemma 3.2, it suffices now to check
the condition (29) in other words, the boundedness of the resolvent on the imaginary

axis. For that, we will establish that for any λ ∈ R and F = (f, g, h)
T ∈ Ĥ, the

solution U = (u, v, z)
T ∈ D(Â) of(

iλI − Â
)
U = F (65)

satisfies

∥U∥H ≤ C∥F∥Ĥ (66)

where C is a positive constant (independent of λ and F ).
Problem (3) without delay (corresponding to β2 = 0) is the following one

ρAutt(x, t) +M1uxxxx(x, t)−M2uxxxxxx(x, t) + β1ut(x, t) = 0 in (0, L)× (0,+∞)

u(0, t) = ux(0, t) = uxx(0, t) = 0 t ∈ (0,+∞)

M1uxxx(L, t)−M2uxxxxx(L, t) = 0 t ∈ (0,+∞)

M1uxx(L, t)−M2uxxxx(L, t) = 0 t ∈ (0,+∞)

M2uxxx(L, t) = 0 t ∈ (0,+∞)

u(x, 0) = u0(x), ut(x, 0) = u1(x) x ∈ (0, L)
(67)
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System (67) is well-posed and equivalent to the abstract formulation

Â0 (u, v)
T
=

(
v,− 1

ρA
M1uxxxx +

1

ρA
M2uxxxxxx − β1

ρA
v

)T

(68)

with domain

D(Â0) =


(u, v)

T ∈
(
H6(0, L) ∩ V

)
× V,

M1uxx(L)−M2uxxxx(L) = 0,M2uxxx(L) = 0,

M1uxxx(L)−M2uxxxxx(L) = 0

 . (69)

in the Hilbert space

Ĥ0 = V × L2(0, L) (70)

endowed with the norm∥∥∥(u, v)T∥∥∥2
Ĥ0

= M1∥uxx∥2L2(0,L) + ρA∥v∥2L2(0,L) +M2∥uxxx∥2L2(0,L). (71)

The system (67) has been studied in [16] by Vatankhah et al. where they proved

that the operator Â0 of the problem (67) of the problem without delay generates an

exponentially stable semigroup. So, according to this study we have iR ⊂ ρ(Â0) and
there exists a constant C0 > 0 such that∥∥∥∥(iξ − Â0

)−1
∥∥∥∥
L(Ĥ0)

≤ C0, ∀ ξ ∈ R. (72)

The relation (72) implies that the solution U∗ = (u∗, v∗)
T ∈ D

(
Â0

)
of

(iλI − Â0)

(
u∗

v∗

)
=

(
u
v

)
(73)

verifies ∥∥∥(u∗, v∗)
T
∥∥∥
Ĥ0

≤ C0

∥∥∥(u, v)T∥∥∥
Ĥ0

. (74)

Also, the system (73) can be rewritten as
iλu∗ − v∗ = u

iλv∗ + 1
ρAM1u

∗
xxxx − 1

ρAM2u
∗
xxxxxx + β1

ρAv∗ = v
. (75)

We have〈
(iλI − Â)

u
v
z

 ,

u∗

v∗

αz

〉
Ĥ

=

∫ L

0

M1 (iλu− v)xx u
∗
xxdx+

∫ L

0

M2 (iλu− v)xxx u
∗
xxxdx

+

∫ L

0

ρA

(
iλv +

1

ρA
M1uxxxx − 1

ρA
M2uxxxxxx +

β1

ρA
v

)
v∗dx

+

∫ L

0

(∫ τ2

τ1

a(x)β2(s)z(x, 1, s)ds

)
v∗dx

+ α

∫ L

0

a(x)

∫ τ2

τ1

(
β2(s)

∫ 1

0

(
iλz + s−1zr

)
zdr

)
dsdx.
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Integrating by parts, we get∫ L

0

M1 (iλu− v)xx u
∗
xxdx =

∫ L

0

M1uxx(−iλu∗)xxdx−
∫ L

0

M1vu∗
xxxxdx

−M1vx(L)u∗
xx(L) +M1v(L)u∗

xxx(L),∫ L

0

M2 (iλu− v)xxx u
∗
xxxdx =

∫ L

0

M2uxxx(−iλu∗)xxxdx+

∫ L

0

M2vu∗
xxxxxxdx

−M2vxx(L)u∗
xxx(L) +M2vx(L)u∗

xxxx(L)−M2v(L)u∗
xxxxx(L),∫ L

0

ρA

(
iλv +

1

ρA
M1uxxxx − 1

ρA
M2uxxxxxx

)
v∗dx

=

∫ L

0

ρAiλvv∗dx+M1uxxx(L)v∗(L)−M1uxx(L)v∗x(L) +

∫ L

0

M1uxxv∗xxdx

−M2uxxxxx(L)v∗(L) +M2uxxxx(L)v∗x(L)−M2uxxx(L)v∗xx(L) +

∫ L

0

M1uxxv∗xxdx

and

α

∫ L

0

a(x)

∫ τ2

τ1

(
sβ2(s)

∫ 1

0

(
iλz + s−1zr

)
zdr

)
dsdx

= iλα

∫ L

0

a(x)

∫ τ2

τ1

(
sβ2(s)

∫ 1

0

|z|2dr
)
dsdx+ α

∫ L

0

a(x)

∫ τ2

τ1

(
β2(s)

∫ 1

0

zrzdr

)
dsdx.

Adding the last integrals and using the (75) and (71) , we obtain that〈
(iλI − Â)

u
v
z

 ,

u∗

v∗

αz

〉
Ĥ

= −
∥∥∥(u, v)T∥∥∥2

Â0

+

∫ L

0

(∫ τ2

τ1

a(x)β2(s)z(x, 1, s)ds

)
v∗dx

+ iλα

∫ L

0

a(x)

∫ τ2

τ1

(
sβ2(s)

∫ 1

0

|z|2dr
)
dsdx

+ α

∫ L

0

a(x)

∫ τ2

τ1

(
β2(s)

∫ 1

0

zrzdr

)
dsdx. (76)

In the sequel we set α = −1

ε
. Now taking the real part in (76), we obtain

∥∥∥(u, v)T∥∥∥2
Ĥ0

= −ℜ

〈
F,

 u∗

v∗

−1

ε
z

〉
Ĥ

+ ℜ

(∫ L

0

(∫ τ2

τ1

a(x)β2(s)z(x, 1, s)ds

)
v∗dx

)

− ℜ

(
1

ε

∫ L

0

a(x)

∫ τ2

τ1

(
β2(s)

∫ 1

0

zrzdr

)
dsdx

)
. (77)

Using Cauchy-Schwarz’s inequality we have

−ℜ

〈
F,

 u∗

v∗

−1

ε
z

〉
Ĥ

≤ C0 ∥F∥Ĥ
∥∥∥(u, v)T∥∥∥

Ĥ0

+
1

ε
∥F∥Ĥ ∥U∥Ĥ . (78)
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Using (74) and Young’s inequality we obtain

ℜ

(∫ L

0

(∫ τ2

τ1

a(x)β2(s)z(x, 1, s)ds

)
v∗dx

)

≤ 1

2ε

∫ L

0

∫ τ2

τ1

a(x)β2(s) |z(x, 1, s)|2 dsdx+

εC0 ∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds

β1

∥∥(u, v)⊤∥∥2H0
.

(79)

Using the dissipativeness of Â0, one can write

ℜ

(
−1

ε

∫ L

0

a(x)

∫ τ2

τ1

(
β2(s)

∫ 1

0

zrzdr

)
dsdx

)

≤ − 1

2ε

∫ L

0

∫ τ2

τ1

a(x)β2(s) |z(x, 1, s)|2 dsdx+

∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds

2ε

(
β1 − ∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds

) ∥F∥Ĥ ∥U∥Ĥ .

(80)

Now adding (78), (79) and (80) one gets

∥∥∥(u, v)T∥∥∥2
Ĥ0

≤ C0 ∥F∥H
∥∥∥(u, v)T∥∥∥

Ĥ0

+
1

ε
∥F∥Ĥ ∥U∥Ĥ

+

2εC0 ∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds

β1

∥∥(u, v)⊤∥∥2Ĥ0

+

∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds

2ε

(
β1 − ∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds

) ∥F∥Ĥ ∥U∥Ĥ .

For ε sufficiently small that is ε ≪
2εC0 ∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds

β1
, we obtain

∥∥∥(u, v)T∥∥∥2
Ĥ0

≤

C0 +
1

ε
+

∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds

2ε

(
β1 − ∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds

)
 ∥F∥Ĥ ∥U∥Ĥ . (81)
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Since
∥∥∥(u, v, z)T∥∥∥2

Ĥ
=
∥∥∥(u, v)T∥∥∥2

Ĥ0

+

∫ L

0

a(x)

∫ τ2

τ1

(
sβ2(s)

∫ 1

0

|z(x, r, s)|2dr
)
dsdx,

we deduce that

∥U∥2Ĥ ≤

C0 +
1

ε
+

∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds

2ε

(
β1 − ∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds

)
 ∥F∥Ĥ ∥U∥Ĥ

+

∫ L

0

a(x)

∫ τ2

τ1

(
sβ2(s)

∫ 1

0

|z(x, r, s)|2dr
)
dsdx. (82)

Now we need a best estimation for

∫ L

0

a(x)

∫ τ2

τ1

(
sβ2(s)

∫ 1

0

|z(x, r, s)|2dr
)
dsdx.

Solving the next Cauchy problem{
s−1zr + iλz = h
z(·, 0, s) = v(x)

(83)

we obtain

z(·, r, s) = v(x)e−iλsr + s

∫ r

0

e−iλs(r−σ)h(·, σ, s) dσ, ∀ r ∈ (0, 1) . (84)

Arguing analogously to the previous case, we can show that∫ L

0

a(x)

∫ τ2

τ1

(
sβ2(s)

∫ 1

0

|z(·, r, s)|2dr
)
dsdx

≤

 2τ2 ∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds

β1 − ∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds

 ∥F∥Ĥ ∥U∥Ĥ + 2τ22 ∥F∥2Ĥ . (85)

Putting (85) in (82), it follows that

∥U∥2Ĥ ≤

C0 +
1

ε
+

(1 + 4ετ2) ∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds

2ε

(
β1 − ∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds

)
 ∥F∥Ĥ ∥U∥Ĥ + 2τ22 ∥F∥2Ĥ

that is

∥U∥2Ĥ ≤ Cε ∥F∥Ĥ ∥U∥Ĥ + 2τ22 ∥F∥2Ĥ , (86)

where Cε is a positive constant which doesn’t depend on λ. More precisely,

Cε = C0 +
1

ε
+

(1 + 4ετ2) ∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds

2ε

(
β1 − ∥a∥L∞(0,L)

∫ τ2

τ1

β2(s)ds

) . (87)

Applying Young’s inequality to (86) it follows that

∥U∥2Ĥ ≤ Cε

2ε′
∥F∥2Ĥ +

ε′Cε

2
∥U∥2Ĥ + 2τ22 ∥F∥2Ĥ , with ε′ > 0. (88)
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One can choose ε′ small enough such that
ε′Cε

2
< 1. Consequently, (88) becomes

∥U∥2Ĥ ≤ Cεε′ ∥F∥2Ĥ , (89)

where one sets

Cεε′ =

Cε

2ε′
+ 2τ22

1− ε′Cε

2

. (90)

Finally (89) directly leads to (66) with

C =
√
Cεε′ . (91)

That means the resolvent of Â is uniformly bounded on the imaginary axis. The
proof of Theorem 4.3 is thus completed. □
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