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Abstract. In this paper, by using an identity we obtain some new Hermite-Hadamard type
inequalities for functions whose first derivative in absolute value is exponential type P -function

by using Hölder and power-mean integral inequalities. Then, the authors compare the results

obtained with both Hölder, Hölder-İşcan integral inequalities and prove that the Hölder-İşcan
integral inequality gives a better approximation than the Hölder integral inequality. Also,

some applications to special means of real numbers are also given.
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1. Preliminaries and fundamentals

Let Ψ : I → R be a convex function. Then the following inequalities hold

Ψ

(
r + s

2

)
≤ 1

s− r

∫ s

r

Ψ(u)du ≤ Ψ (r) + Ψ(s)

2

for all r, s ∈ I with r < s. Both inequalities hold in the reversed direction if the func-
tion Ψ is concave. This double inequality is well known as the Hermite-Hadamard
inequality [6]. Note that some of the classical inequalities for means can be derived
from Hermite-Hadamard integral integral inequalities for appropriate particular se-
lections of the mapping Ψ.

In [5], Dragomir et al. gave the following definition and related Hermite-Hadamard
integral inequalities as follow:

Definition 1.1. A nonnegative function Ψ : I ⊆ R → R is said to be P -function if
the inequality

Ψ (θr + (1− θ) s) ≤ Ψ (r) + Ψ (s)

holds for all r, s ∈ I and θ ∈ (0, 1).

Theorem 1.1. Let Ψ ∈ P (I), r, s ∈ I with r < s and Ψ ∈ L [r, s]. Then

Ψ

(
r + s

2

)
≤ 2

s− r

∫ s

r

Ψ(u)du ≤ 2 [Ψ (r) + Ψ(s)] .
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Definition 1.2 ([17]). Let h : J → R be a non-negative function, h 6= 0. We say that
Ψ : I → R is an h-convex function, or that Ψ belongs to the class SX (h, I), if Ψ is
non-negative and for all u, v ∈ I, θ ∈ (0, 1) we have

Ψ (θr + (1− θ) s) ≤ h(θ)Ψ (r) + h(1− θ)Ψ (s) .

If this inequality is reversed, then Ψ is said to be h-concave, i.e. Ψ ∈ SV (h, I). It
is clear that, if we choose h(θ) = θ and h(θ) = 1, then the h-convexity reduces to
convexity and definition of P -function, respectively.

Readers can look at [1, 17] for studies on h-convexity.

In [13], Kadakal and İşcan gave the following definition and related Hermite-
Hadamard integral inequalities as follow:

Definition 1.3. A non-negative function Ψ : I ⊂ R → R is called exponential type
convex function if for every r, s ∈ I and θ ∈ [0, 1],

Ψ (θr + (1− θ) s) ≤
(
eθ − 1

)
Ψ(r) +

(
e1−θ − 1

)
Ψ(s).

We note that every nonnegative convex function is exponential type convex func-
tion.

Theorem 1.2 ([13]). Let Ψ : [r, s] → R be a exponential type convex function. If
r < s and Ψ ∈ L [r, s], then the following Hermite-Hadamard type inequalities hold:

1

2 [
√
e− 1]

Ψ

(
r + s

2

)
≤ 1

s− r

∫ s

r

Ψ(u)du ≤ (e− 2) [Ψ (r) + Ψ (s)] .

In recent years many authors have studied error estimations of Hermite-Hadamard
type inequalities; for refinements, counterparts, generalizations, for some related pa-
pers see [2, 3, 4, 5, 9, 10, 11, 12, 13, 14, 16].

In [15], Numan and İşcan gave the following definition and Hermite-Hadamard
integral inequality:

Definition 1.4 ([15]). A non-negative function Ψ : I ⊂ R→ R is called exponential
type P -function if for every r, s ∈ I and θ ∈ [0, 1],

Ψ (θr + (1− θ) s) ≤
(
eθ + e1−θ − 2

)
[Ψ(r) + Ψ(s)] .

We will denote by ETP (I) the class of all exponential type P -functions on interval
I. We note that, every exponential type P -function is a h-convex function with the
function h(θ) = eθ + e1−θ − 2. Also, every exponential type convex function is also a
exponential type P -function, every P -function is also a exponential type P -function
and every nonnegative convex function is also an exponential type P -function.

Theorem 1.3. Let Ψ : [r, s] → R be a exponential type P -function. If r < s and
Ψ ∈ L [r, s], then the following Hermite-Hadamard type inequalities hold:

1

4 [
√
e− 1]

Ψ

(
r + s

2

)
≤ 1

s− r

∫ s

r

Ψ(u)du ≤ (2e− 4) [Ψ(r) + Ψ(s)] .

Theorem 1.4 (Hölder-İşcan integral inequality [8]). Let p > 1 and 1
p + 1

q = 1. If

f and g are real functions defined on interval [a, b] and if |f |p, |g|q are integrable
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functions on [a, b] then

∫ b

a

|f(x)g(x)| dx ≤ 1

b− a


(∫ b

a

(b− x) |f(x)|p dx

) 1
p
(∫ b

a

(b− x) |g(x)|q dx

) 1
q

+

(∫ b

a

(x− a) |f(x)|p dx

) 1
p
(∫ b

a

(x− a) |g(x)|q dx

) 1
q


2. Some new integral inequalities for exponential type P -functions

The main purpose of this section is to establish new estimates that refine Hermite-
Hadamard inequality for functions whose first derivative in absolute value is exponen-
tial type P -function and then we will compare the results obtained with both Hölder,
Hölder-İşcan integral inequalities and prove that the Hölder-İşcan integral inequality
gives a better approximation than the Hölder integral inequality. In this section, we
will denote by L [r, s] the space of (Lebesgue) integrable functions on [r, s] .İşcan [7]
used the following lemma:

Lemma 2.1 ([7]). Let f : I ⊆ R → R be a differentiable mapping on I◦, such that
f ′ ∈ L [a, b], where a, b ∈ I with a < b and θ, λ ∈ [0, 1]. Then the following equality
holds:

(1− θ) (λf(a) + (1− λ)f(b)) + θf ((1− λ)a+ λb)− 1

b− a

∫ b

a

f(x)dx

= (b− a)

[
−λ2

∫ 1

0

(t− θ)f ′ (ta+ (1− t) [(1− λ)a+ λb]) dt

+ (1− λ)
2
∫ 1

0

(t− θ)f ′ (tb+ (1− t) [(1− λ)a+ λb]) dt

]
.

Theorem 2.2. Let f : I ⊆ [0,∞) → R be a differentiable mapping on I◦, such that
f ′ ∈ L [a, b], where a, b ∈ I◦ with a < b and λ, θ ∈ [0, 1]. If |f ′| is exponential type
P -function on interval [a, b], then the following inequality holds∣∣∣∣∣(1− θ) (λf(a) + (1− λ)f(b)) + θf ((1− λ)a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ 2(b− a)

(
2eθ + 2e1−θ − 2θ2 + 2θ − e− 2

)
×
[
λ2A (|f ′(a)| , |f ′(Aλ)|) + (1− λ)

2
A (|f ′(b)| , |f ′(Aλ)|)

]
, (1)

where Aλ = Aλ(a, b) = (1−λ)a+λb, and A(u, v) = A1/2(u, v) = u+v
2 is the arithmetic

mean

Proof. Using Lemma 2.1 and the following inequalities

|f ′ (ta+ (1− t)cλ)| ≤
(
et + e1−t − 2

)
[|f ′(a)|+ |f ′(Aλ)|]

|f ′ (tb+ (1− t)cλ)| ≤
(
et + e1−t − 2

)
[|f ′(b)|+ |f ′(Aλ)|] ,
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we get∣∣∣∣∣(1− θ) (λf(a) + (1− λ)f(b)) + θf ((1− λ)a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)

[
λ2
∫ 1

0
|t− θ| f |′ (ta+ (1− t)Aλ)| dt

+ (1− λ)
2 ∫ 1

0
|t− θ| |f ′ (tb+ (1− t)Aλ)| dt

]

≤ (b− a)

[
λ2

∫ 1

0

|t− θ|
(
et + e1−t − 2

)
[|f ′(a)|+ |f ′(Aλ)|] dt

+ (1− λ)
2
∫ 1

0

|t− θ|
(
et + e1−t − 2

)
[|f ′(b)|+ |f ′(Aλ)|] dt

]
= (b− a)

[
λ2 [|f ′(a)|+ |f ′(Aλ)|]

∫ 1

0

|t− θ|
(
et + e1−t − 2

)
dt

+ (1− λ)
2

[|f ′(b)|+ |f ′(Aλ)|]
∫ 1

0

|t− θ|
(
et + e1−t − 2

)
dt

]
= (b− a)

[
λ2 [|f ′(a)|+ |f ′(Aλ)|]

(
2eθ + 2e1−θ − 2θ2 + 2θ − e− 2

)
+ (1− λ)

2
[|f ′(b)|+ |f ′(Aλ)|]

(
2eθ + 2e1−θ − 2θ2 + 2θ − e− 2

)]
= 2(b− a)λ2A (|f ′(a)| , |f ′(Aλ)|)

(
2eθ + 2e1−θ − 2θ2 + 2θ − e− 2

)
+2(b− a) (1− λ)

2
A (|f ′(b)| , |f ′(Aλ)|)

(
2eθ + 2e1−θ − 2θ2 + 2θ − e− 2

)
= 2(b− a)

(
2eθ + 2e1−θ − 2θ2 + 2θ − e− 2

)
×
[
λ2A (|f ′(a)| , |f ′(Aλ)|) + (1− λ)

2
A (|f ′(b)| , |f ′(Aλ)|)

]
where ∫ 1

0

|t− θ|
(
et + e1−t − 2

)
dt = 2eθ + 2e1−θ − 2θ2 + 2θ − e− 2

This completes the proof of the theorem. �

Theorem 2.3. Let f : I ⊆ [0,∞) → R be a differentiable mapping on I◦, such that
f ′ ∈ L [a, b], where a, b ∈ I◦ with a < b and λ, θ ∈ [0, 1]. If |f ′|q , q > 1 is exponential
type P -function on interval [a, b], then the following inequality holds∣∣∣∣∣(1− θ) (λf(a) + (1− λ)f(b)) + θf ((1− λ)a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a) (2e− 4)

1
q

(
θp+1 + (1− θ)p+1

p+ 1

) 1
p

×
[
λ2
[
|f ′(a)|q + |f ′(Aλ)|q

] 1
q + (1− λ)

2 [|f ′(b)|q + |f ′(Aλ)|q
] 1

q

]
, (2)

where 1
p + 1

q = 1 and Aλ = (1− λ)a+ λb.
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Proof. Using Lemma 2.1, well known Hölder’s integral inequality and the following
inequalities

|f ′ (ta+ (1− t)cλ)|q ≤
(
et + e1−t − 2

) [
|f ′(a)|q + |f ′(Aλ)|q

]
|f ′ (tb+ (1− t)cλ)|q ≤

(
et + e1−t − 2

) [
|f ′(b)|q + |f ′(Aλ)|q

]
which is the property of the exponential type P -function of |f ′|q, we get∣∣∣∣(1− θ) (λf(a) + (1− λ)f(b)) + θf ((1− λ)a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣
≤ (b− a)

∫ 1

0

|t− θ|λ2
∣∣f ′ (ta+ (1− t)Aλ)

∣∣ dt
+(b− a)

∫ 1

0

|t− θ| (1− λ)2
∣∣f ′ (tb+ (1− t)Aλ)

∣∣ dt
≤ (b− a)

(∫ 1

0

|t− θ|p dt
) 1

p
(∫ 1

0

λ2q
∣∣f ′ (ta+ (1− t)Aλ)

∣∣q dt) 1
q

+(b− a) (1− λ)2
(∫ 1

0

|t− θ|p dt
) 1

p
(∫ 1

0

(1− λ)2q
∣∣f ′ (tb+ (1− t)Aλ)

∣∣q dt) 1
q

≤ (b− a)
(∫ 1

0

|t− θ|p dt
) 1

p
(∫ 1

0

(
et + e1−t − 2

)
λ2q [∣∣f ′(a)∣∣q + ∣∣f ′(Aλ)∣∣q] dt) 1

q

+(b− a)
(∫ 1

0

|t− θ|p dt
) 1

p
(∫ 1

0

(
et + e1−t − 2

)
(1− λ)2q

[∣∣f ′(b)∣∣q + ∣∣f ′(Aλ)∣∣q] dt) 1
q

= (b− a) (2e− 4)
1
q

(
θp+1 + (1− θ)p+1

p+ 1

) 1
p

×
[(
λ2q [∣∣f ′(a)∣∣q + ∣∣f ′(Aλ)∣∣q]) 1

q +
(
(1− λ)2q

[∣∣f ′(b)∣∣q + ∣∣f ′(Aλ)∣∣q]) 1
q

]
,

where ∫ 1

0

|t− θ|p dt =
θp+1 + (1− θ)p+1

p+ 1
,∫ 1

0

(
et + e1−t − 2

)
dt = 2e− 4.

This completes the proof of the theorem. �

Theorem 2.4. Let f : I ⊆ [0,∞) → R be a differentiable mapping on I◦, such that
f ′ ∈ L [a, b], where a, b ∈ I◦ with a < b and λ, θ ∈ [0, 1]. If |f ′|q is exponential type
P -function on interval [a, b] and q ≥ 1, then the following inequality holds∣∣∣∣∣(1− θ) (λf(a) + (1− λ)f(b)) + θf ((1− λ)a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ 2

1
q (b− a)

(
θ2 − θ +

1

2

)1− 1
q [

2eθ + 2e1−θ − 2θ2 + 2θ − e− 4
] 1

q

×
[
λ2A

1
q
(
|f ′(a)|q , |f ′(Aλ)|q

)
+ (1− λ)

2
A

1
q
(
|f ′(b)|q , |f ′(Aλ)|q

)]
, (3)

where 1
p + 1

q = 1, Aλ = Aλ(a, b) = (1 − λ)a + λb, and A(u, v) = A1/2(u, v) = u+v
2 is

the arithmetic mean.
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Proof. From Lemma 2.1, well known power-mean integral inequality and the property
of exponential type P -function of |f ′|q, we obtain∣∣∣∣(1− θ) (λf(a) + (1− λ)f(b)) + θf ((1− λ)a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣
≤ (b− a)λ2

∫ 1

0

|t− θ|
∣∣f ′ (ta+ (1− t)Aλ)

∣∣ dt
+(b− a) (1− λ)2

∫ 1

0

|t− θ|
∣∣f ′ (tb+ (1− t)Aλ)

∣∣ dt
≤ (b− a)λ2

(∫ 1

0

|t− θ| dt
)1− 1

q
(∫ 1

0

|t− θ|
∣∣f ′ (ta+ (1− t)Aλ)

∣∣q dt) 1
q

+(b− a) (1− λ)2
(∫ 1

0

|t− θ| dt
)1− 1

q
(∫ 1

0

|t− θ|
∣∣f ′ (tb+ (1− t)Aλ)

∣∣q dt) 1
q

≤ (b− a)λ2

(∫ 1

0

|t− θ| dt
)1− 1

q
(∫ 1

0

|t− θ|
(
et + e1−t − 2

) [∣∣f ′(a)∣∣q + ∣∣f ′(Aλ)∣∣q] dt) 1
q

+(b− a) (1− λ)2
(∫ 1

0

|t− θ| dt
)1− 1

q
(∫ 1

0

|t− θ|
(
et + e1−t − 2

) [∣∣f ′(b)∣∣q + ∣∣f ′(Aλ)∣∣q] dt) 1
q

= (b− a)λ2

(
θ2 − θ + 1

2

)1− 1
q ([∣∣f ′(a)∣∣q + ∣∣f ′(Aλ)∣∣q] [2eθ + 2e1−θ − 2θ2 + 2θ − e− 4

]) 1
q

+(b− a) (1− λ)2
(
θ2 − θ + 1

2

)1− 1
q ([∣∣f ′(b)∣∣q + ∣∣f ′(Aλ)∣∣q] [2eθ + 2e1−θ − 2θ2 + 2θ − e− 4

]) 1
q

= 2
1
q (b− a)

(
θ2 − θ + 1

2

)1− 1
q [

2eθ + 2e1−θ − 2θ2 + 2θ − e− 4
] 1

q

×
[
λ2A

1
q
(∣∣f ′(a)∣∣q , ∣∣f ′(Aλ)∣∣q)+ (1− λ)2A

1
q
(∣∣f ′(b)∣∣q , ∣∣f ′(Aλ)∣∣q)] ,

where ∫ 1

0

|t− θ| dt = θ2 − θ + 1

2∫ 1

0

|t− θ|
(
et + e1−t − 2

)
dt = 2eθ + 2e1−θ − 2θ2 + 2θ − e− 4

This completes the proof of the theorem. �

Corollary 2.5. Under the assumption of Theorem 2.4, If we take q = 1 in the
inequality (3), then we get the following inequality:∣∣∣∣∣(1− θ) (λf(a) + (1− λ)f(b)) + θf ((1− λ)a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ 2(b− a)

[
2eθ + 2e1−θ − 2θ2 + 2θ − e− 4

]
×
[
λ2A (|f ′(a)| , |f ′(Aλ)|) + (1− λ)

2
A (|f ′(b)| , |f ′(Aλ)|)

]
.

This inequality coincides with the inequality (1).
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Corollary 2.6. Under the assumption of Theorem 2.4, If we take θ = 1 in the
inequality (3), then we get the following inequality:∣∣∣∣∣f ((1− λ)a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)e

1
q

(
1

2

)1− 2
q [
λ2A

1
q
(
|f ′(a)|q , |f ′(Aλ)|q

)
+ (1− λ)

2
A

1
q
(
|f ′(b)|q , |f ′(Aλ)|q

)]
.

Corollary 2.7. Under the assumption of Theorem 2.4 with θ = 1, If we take |f ′(x)| ≤
M,x ∈ [a, b] then we get the following Ostrowski type integral inequality:∣∣∣∣∣f (x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤M(b− a)e
1
q

(
1

2

)1− 2
q
[

(x− a)2 + (b− x)2

2(b− a)

]
for each x ∈ [a, b] .

Proof. There exist λx ∈ [0, 1] such that x = (1− λx) a + λxb for each x ∈ [a, b] . So,
we take λx = x−a

b−a and 1 − λx = b−x
b−a . Therefore, for each x ∈ [a, b] we obtain the

required inequality from the inequality (3). �

Corollary 2.8. Under the assumption of Theorem 2.4 with θ = 1, then we have
following generalized trapezoid type integral inequality∣∣∣∣∣λf(a) + (1− λ)f(b)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ e

1
q (b− a)

(
1

2

)1− 2
q [
λ2A

1
q
(
|f ′(a)|q , |f ′(Aλ)|q

)
+ (1− λ)

2
A

1
q
(
|f ′(b)|q , |f ′(Aλ)|q

)]
,

where c = (1− λ)a+ λb.

Corollary 2.9. Under the assumption of Theorem 2.4 with λ = 1
2 and θ = 2

3 , then
we have the following Simpson type integral inequality∣∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ 2

1
q (b− a)

(
7

18

)1− 1
q
[
2e

2
3 + 2e

1
3 − e− 8

9

] 1
q

×
[

1

4
A

1
q

(
|f ′(a)|q ,

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)+
1

4
A

1
q

(
|f ′(b)|q ,

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)] .
Corollary 2.10. Under the assumption of Theorem 2.4 with λ = 1

2 and θ = 1, then
we have the following midpoint type integral inequality∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ e

1
q (b− a)

(
1

2

)2− 2
q
[
A

1
q

(
|f ′(a)|q ,

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)+A
1
q

(
|f ′(b)|q ,

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)] .
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Corollary 2.11. Under the assumption of Theorem 2.4 with λ = 1
2 and θ = 0, then

we have the following trapezoid type integral inequality∣∣∣∣∣λf(a) + (1− λ)f(b)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ e

1
q (b− a)

(
1

2

)2− 2
q
[
A

1
q

(
|f ′(a)|q ,

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)+A
1
q

(
|f ′(b)|q ,

∣∣∣∣f ′(a+ b

2

)∣∣∣∣q)] .
Theorem 2.12. Let f : I ⊆ [0,∞)→ R be a differentiable mapping on I◦, such that
f ′ ∈ L [a, b], where a, b ∈ I◦ with a < b and λ, θ ∈ [0, 1]. If |f ′|q , q > 1 is exponential
type P -function on interval [a, b], then the following inequality holds∣∣∣∣∣(1− θ) (λf(a) + (1− λ)f(b)) + θf ((1− λ)a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ 2(b− a)(e− 2)

1
q

[
λ2
[
|f ′(a)|q + |f ′(Aλ)|q

] 1
q + (1− λ)

2 [|f ′(b)|q + |f ′(Aλ)|q
] 1

q

]
×

[(
(p− θ + 2) θp+1 + (1− θ)p+2

(p+ 1) (p+ 2)

) 1
p

+

(
θp+2 + (p+ θ + 1) (1− θ)p+1

(p+ 1) (p+ 2)

) 1
p

]
(4)

where 1
p + 1

q = 1 and Aλ = (1− λ)a+ λb.

Proof. Using Lemma 2.1, Hölder-İşcan integral inequality and the following inequal-
ities

|f ′ (ta+ (1− t)c)|q ≤
(
et + e1−t − 2

) [
|f ′(a)|q + |f ′(Aλ)|q

]
|f ′ (tb+ (1− t)c)|q ≤

(
et + e1−t − 2

) [
|f ′(b)|q + |f ′(Aλ)|q

]
which is the property of the exponential type P -function of |f ′|q, we get∣∣∣∣(1− θ) (λf(a) + (1− λ)f(b)) + θf ((1− λ)a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣
≤ (b− a)

∫ 1

0

|t− θ|λ2
∣∣f ′ (ta+ (1− t)Aλ)

∣∣ dt
+ (b− a)

∫ 1

0

|t− θ| (1− λ)2
∣∣f ′ (tb+ (1− t)Aλ)

∣∣ dt
≤ (b− a)

{(∫ 1

0

(1− t) |t− θ|p dt
) 1

p
(∫ 1

0

(1− t)λ2q
∣∣f ′ (ta+ (1− t)Aλ)

∣∣q dt) 1
q

+

(∫ 1

0

t |t− θ|p dt
) 1

p
(∫ 1

0

tλ2q
∣∣f ′ (ta+ (1− t)Aλ)

∣∣q dt) 1
q

}

+ (b− a)

{(∫ 1

0

(1− t) |t− θ|p dt
) 1

p
(∫ 1

0

(1− t) (1− λ)2q
∣∣f ′ (tb+ (1− t)Aλ)

∣∣q dt) 1
q

+

(∫ 1

0

t |t− θ|p dt
) 1

p
(∫ 1

0

t (1− λ)2q
∣∣f ′ (tb+ (1− t)Aλ)

∣∣q dt) 1
q

}
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≤ (b− a)

{(∫ 1

0

(1− t) |t− θ|p dt
) 1

p
(∫ 1

0

(1− t)
(
et + e1−t − 2

)
λ2q [∣∣f ′(a)∣∣q + ∣∣f ′(Aλ)∣∣q] dt) 1

q

+

(∫ 1

0

t |t− θ|p dt
) 1

p
(∫ 1

0

t
(
et + e1−t − 2

)
λ2q [∣∣f ′(a)∣∣q + ∣∣f ′(Aλ)∣∣q] dt) 1

q

}

+ (b− a)

{(∫ 1

0

(1− t) |t− θ|p dt
) 1

p

×
(∫ 1

0

(1− t) (1− λ)2q
(
et + e1−t − 2

) [∣∣f ′(b)∣∣q + ∣∣f ′(Aλ)∣∣q] dt) 1
q

+

(∫ 1

0

t |t− θ|p dt
) 1

p
(∫ 1

0

t
(
et + e1−t − 2

)
(1− λ)2q

[∣∣f ′(b)∣∣q + ∣∣f ′(Aλ)∣∣q] dt) 1
q

}

= (b− a)

{(
(p− θ + 2) θp+1 + (1− θ)p+2

(p+ 1) (p+ 2)

) 1
p

(
(
e− 2)λ2q [∣∣f ′(a)∣∣q + ∣∣f ′(Aλ)∣∣q]) 1

q

+

(
θp+2 + (p+ θ + 1) (1− θ)p+1

(p+ 1) (p+ 2)

) 1
p (

(e− 2)λ2q [∣∣f ′(a)∣∣q + ∣∣f ′(Aλ)∣∣q]) 1
q

}

+ (b− a)

{(
(p− θ + 2) θp+1 + (1− θ)p+2

(p+ 1) (p+ 2)

) 1
p (

(e− 2) (1− λ)2q
[∣∣f ′(b)∣∣q + ∣∣f ′(Aλ)∣∣q]) 1

q

+

(
θp+2 + (p+ θ + 1) (1− θ)p+1

(p+ 1) (p+ 2)

) 1
p (

(e− 2) (1− λ)2q
[∣∣f ′(b)∣∣q + ∣∣f ′(Aλ)∣∣q]) 1

q

}

= (b− a)(e− 2)
1
q

[(
(p− θ + 2) θp+1 + (1− θ)p+2

(p+ 1) (p+ 2)

) 1
p

+

(
θp+2 + (p+ θ + 1) (1− θ)p+1

(p+ 1) (p+ 2)

) 1
p

]
×
[
λ2 [∣∣f ′(a)∣∣q + ∣∣f ′(Aλ)∣∣q] 1

q + (1− λ)2
[∣∣f ′(b)∣∣q + ∣∣f ′(Aλ)∣∣q] 1

q

]
where ∫ 1

0

(1− t) |t− θ|p dt =
(p− θ + 2) θp+1 + (1− θ)p+2

(p+ 1) (p+ 2)∫ 1

0

t |t− θ|p dt =
θp+2 + (p+ θ + 1) (1− θ)p+1

(p+ 1) (p+ 2)
,∫ 1

0

(1− t)
(
et + e1−t − 2

)
dt =

∫ 1

0

t
(
et + e1−t − 2

)
dt = e− 2.

This completes the proof of the theorem. �

Remark 2.1. The inequality (4) gives better results than the inequality (2). Let us
show that(

(p− θ + 2) θp+1 + (1− θ)p+2

(p+ 1) (p+ 2)

) 1
p

+

(
θp+2 + (p+ θ + 1) (1− θ)p+1

(p+ 1) (p+ 2)

) 1
p

≤ 2
1
q

(
θp+1 + (1− θ)p+1

p+ 1

) 1
p

.
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Using the well known classic inequalities uλ + vλ ≤ 21−λ(u + v)λ, u, v ∈ (0,∞) , λ ∈
(0, 1] , by sample calculation we get(

(p− θ + 2) θp+1 + (1− θ)p+2

(p+ 1) (p+ 2)

) 1
p

+

(
θp+2 + (p+ θ + 1) (1− θ)p+1

(p+ 1) (p+ 2)

) 1
p

≤ 21− 1
p

(
(p− θ + 2) θp+1 + (1− θ)p+2 + θp+2 + (p+ θ + 1) (1− θ)p+1

(p+ 1) (p+ 2)

) 1
p

= 2
1
q

(
θp+1 + (1− θ)p+1

p+ 1

) 1
p

which is the required.

3. Applications for special means

Throughout this section, for shortness, the following notations will be used for special
means of two nonnegative numbers r, s with s > r:

1. The arithmetic mean

A := A(r, s) =
r + s

2
, r, s ≥ 0.

2. The weighted arithmetic mean

Aα (r, s) := (1− α)r + αs, r, s ≥ 0, α ∈ [0, 1] .

3. The geometric mean

G := G(r, s) =
√
rs, r, s ≥ 0.

4. The weighted geometric mean

Gα := Gα(r, s) = r1−αsα, r, s > 0, α ∈ [0, 1] .

3. The harmonic mean

H := H(r, s) =
2rs

r + s
, r, s > 0.

4. The logarithmic mean

L := L(r, s) =

{
s−r

ln s−ln r , r 6= s

r, r = s
; r, s > 0.

5. The p-logarithmic mean

Lp := Lp(r, s) =


(
sp+1−rp+1

(p+1)(s−r)

) 1
p

, r 6= s, p ∈ R\ {−1, 0}
r, r = s

; r, s > 0.

6.The identric mean

I := I(r, s) =
1

e

(
ss

rr

) 1
s−r

, r, s > 0.

These means are often used in numerical approximation and in other areas. How-
ever, the following simple relationships are known in the literature:

H ≤ G ≤ L ≤ I ≤ A.
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It is also known that Lp is monotonically increasing over p ∈ R, denoting L0 = I and
L−1 = L.

Proposition 3.1. Let λ, θ ∈ [0, 1] , r, s ∈ [0,∞) with r < s and n ≥ 2. Then, the
following inequalities are obtained:

|Aθ (A1−λ(rn, sn), Anλ(r, s))− Lnn(r, s)| ≤ 4n(s− r)(
eθ + e1−θ − θ2 + θ − e

2
− 1
) [
λ2A

(
rn−1, An−1

λ

)
+ (1− λ)

2
A
(
sn−1, An−1

λ

)]
.

Proof. The assertion follows from the inequalities (1) for the function

f(x) = xn, x ∈ [0,∞) .

�

Proposition 3.2. Let λ, θ ∈ [0, 1] , r, s ∈ (0,∞) with r < s . Then, the following
inequalities are obtained:∣∣Aθ (A1−λ(r−1, s−1), A−1

λ (r, s)
)
− L−1(r, s)

∣∣
≤ 4(s− r)

(
eθ + e1−θ − θ2 + θ − e

2
− 1
) [
λ2H−1

(
r2, A2

λ

)
+ (1− λ)

2
H−1

(
s2, A2

λ

)]
.

Proof. The assertion follows from the inequalities (1) for the function

f(x) = x−1, x ∈ (0,∞) .

�

Proposition 3.3. Let λ, θ ∈ [0, 1] , r, s > 0 with r < s. Then, the following inequali-
ties are obtained:∣∣∣∣∣ln

(
Gθ1−λA

θ
λ

I

)∣∣∣∣∣
≤ 4(s− r)

(
eθ + e1−θ − θ2 + θ − e

2
− 1
) [
λ2H−1 (r,Aλ) + (1− λ)

2
H−1 (s,Aλ)

]
.

Proof. The assertion follows from the inequalities (1) for the function

f(x) = lnx, x > 0.

�

4. Conclusion

In this paper, with the help of an identity, some new Hermite-Hadamard type integral
inequalities are obtained using the Hölder and power-mean integral inequalities for
functions whose first derivative in absolute value is an exponential type P -function.
The authors can obtain new types of integral inequalities for exponential type P -
functions using different identities. Then, the authors compare the obtained results
with both Hölder and Hölder-İşcan integral inequalities and show that Hölder-İşcan
integral inequality provides a better approximation than Hölder inequality.
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and applications 2019 (2019), no. 1, 1–11.
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E-mail address: mahirkadakal@gmail.com
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