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Abstract. The goal of this manuscript is to introduce a new sequence of generalized-Baskakov-
Durrmeyer-Schurer Operators. Further, basic estimates are calculated. In the subsection se-

quence, rapidity of convergence and order of approximation are studied in terms of first and
second order modulus of continuity. We prove a Korovkin-type approximation theorem and

obtain the rate of convergence of these operators. Moreover, local and global approximation

properties are discussed in different functional spaces. Lastly, A-statistical approximation
results are presented.
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1. Introduction

In 1998, Mihesan [10] presented a generalized Baskakov type operators as:

Ln,a(h;x) =

∞∑
k=1

W a
n,k(x)h

(
k

n

)
, (1)

where h ∈ C[0,∞) and W a
n,k(x) = e

ax
1+x

pk(n,a)
k!

xk

(1+x)(k+n)
with W a

n,k(x) = 1. He

proved uniform convergence for these sequence of operators on [0, b] for functions that
have exponential growth and also discussed a pointwise estimate. In [3], Wafi and
Khatoon studied the rate of convergence of these operators in terms of the modulus of
continuity and obtained the Voronovskaja type theorem and a direct estimate of these
operators in terms of the Ditzian-Totik modulus of smoothness. Subsequently, Wafi
et al. ([2], [3]) and Rao et al. ([34, 35, 36]) studied the simultaneous approximation
properties of these operators for functions of one and two variables in exponential and
polynomial weighted spaces.

In [4], Erencin and Bascanbaz-Tunca studied the weighted approximation proper-
ties and they estimated the order of approximation in terms of the usual modulus of
continuity of these operators. For f ∈ CB [0,∞), the space of all bounded and contin-
uous function on [0,∞), Erencin [5] introduced the Durrmeyer type modification of
the operators defined and established some local results for these operators. Agrawal
et al. [9] extended her study and discussed some direct results in simultaneous approx-
imation by these operators, e.g., pointwise convergence theorem, Voronovskaja type

Received March 26, 2023. Accepted October 7, 2023.
∗Corresponding author.

90



APPROXIMATION BEHAVIOUR OF BDS OPERATORS 91

theorem and error in the estimate of the modulus of continuity. Also, they obtained
the error in the approximation of functions having derivatives of bounded variation.

To approximate in a bigger class, i.e., class of Lebesgue measurable function, Dur-
rmeyer type modification of Baskakov operators was introduced by [5]. In the last
few decades, the integral modifications of several operators were constructed and their
approximation behavior studied, we mention some of the work in this direction, e.g.,
Raiz et al. ([6], [7]), Rao et al.([27], [34], [35], [36], [42]), constructed a new sequence
of the operators and Karsli[13], Mohiuddine et al. [37], Mursaleen et al. [38], Ansari
[40], Nasiruzzaman et al. [39], Devdhara et al. [41] etc. On the other hand, Stancu
[14] introduced and investigated a new parameter-dependent linear positive operators
of Bernstein type associated to a function h ∈ C[0, 1]. The new construction of his
operators shows that the new sequence of Bernstein polynomials present a better ap-
proach with the suitable selection of the parameters. We also refer to reader for a deep
historical background [15, 16, 17, 19, 20, 21, 22, 23, 41, 42]. Kumar et al. [24] pro-
posed Stancu type modification of generalized Baskakov Durrmeyer operators. They
defined the Stancu type generalization of Baskakov Durrmeyer type of the operators
as:

Lα,βn,a (h;x) =

∞∑
k=1

W a
n,k(x)

B(k, n)

∫ ∞
0

tk−1

(1 + t)n+k
f

(
nt+ α

n+ β

)
dt

+W a
n,0(x)h

(
α

n+ β

)
. (2)

Motivated by the above development, we introduce Schurer type modification of Gen-
eralized Baskakov Durrmeyer operators. For h ∈ D, s + d ∈ N and 0 ≤ σ ≤ τ , we
defined the Schurer type generalization of the operators defined in (2) as:

Dσ,τ
s+d,c(h;u) =

∞∑
i=1

P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i
h

(
(s+ d)t+ σ

s+ d+ τ

)
dt

+ P cs+d,0(u)h

(
σ

s+ d+ τ

)
, (3)

where

P cs+d,i(u) = e−
cu

1+u
Qi(s+ d, c)

i!

ui

(1 + u)s+d+i
,

∞∑
i=0

P cs+d,i(u) = 1,

Qi(s+ d, c) =

i∑
j=0

(
i
j,

)
(s+ d)jc

i−j ,

where (s + d)j denote the Pochhammer symbol given by (s + d)0 = 1, (s + d)j =
(s+ d)(s+ d+ 1) . . . (s+ d+ j − 1), for j ≥ 1 and D denotes the class of all Lebesgue
measurable functions h on [0,∞) as:

D =

{
h :

∫ ∞
0

|h(t)|
(1 + t)s+d

dt <∞ for some positive integer s+ d

}
.

We observe that CB [0,∞) ⊂ D. The operators (3) are linear, positive and for σ =
τ = 0 and s+ d = n they reduce to generalized Baskakov Durremeyer operators.

The purpose of this paper is to investigate and study the convergence properties
of the operators defined in (3). First, we derive the recurrence relation and central
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moments of these operators and then we study the local approximation, weighted
approximation and A-statistical convergence of the operators.

2. Basic results

In the sequel, we shall need the following auxiliary results which will be necessary to
prove our main results.

Lemma 2.1. [9] For every u ∈ (0,∞), we have

u(1 + u)2
{
d

du
P cs+d,i(u)

}
= {(i− s+ du)(1 + u)− cu}P cs+d,i(u).

Lemma 2.2. We have the following recurrence relation:

u(1 + u)2
(
Dσ,τ
s+d,c (tm;u)

)′
= Dσ,τ

n+p,c (tm;u)

[
(1 + u)

(
2σ(m+ 1)

s+ d
−m

− σ

s+ d+ τ
− s+ du

)
− cu

]
+Dσ,τ

s+d,c

(
tm+1;u

) (s+ d)(1 + u)

s+ d+ τ
(s+ d−m− 1)

+Dσ,τ
s+d,c

(
tm−1;u

)
(1 + u)

mσ

s+ d+ τ

(
1− σ

s+ d

)
.

Proof. For u = 0, the above relation is easily verified. For u ∈ (0,∞), we proceed as
follows:
From Lemma 2.1, we can write

(
Dσ,τ
s+d,c (tm;u)

)′
=

∞∑
i=0

d
du

(
P cs+d,i(u)

)
B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i

(
s+ dt+ σ

s+ d+ τ

)m
dt

+
d

du

(
P cs+d,0(u)

)( σ

s+ d+ τ

)m
=J1

1

u(1 + u)
− c

(1 + u)2
Dσ,τ
s+d,c (tm;u)

− s+ d

(1 + u)
Dσ,τ
s+d,c (tm;u) . (4)

We may write J1 as

J1 =

∞∑
i=0

P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1(i− 1− (s+ d+ 1)t)

(1 + t)s+d+i

(
s+ dt+ σ

s+ d+ τ

)m
dt

+

∞∑
i=0

P cs+d,i(u)

B(i, n+ p)

∫ ∞
0

ti−1

(1 + t)s+d+i

(
s+ dt+ σ

s+ d+ τ

)m
dt

+ (s+ d+ 1)

∞∑
i=0

P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i
t

(
(s+ d)t+ σ

s+ d+ τ

)m
dt

=J2 + J3. (5)



APPROXIMATION BEHAVIOUR OF BDS OPERATORS 93

Using t = s+d+τ
s+d

[(
s+dt+σ
s+d+τ

)
−
(

σ−τ
s+d+τ

)]
and integrating by parts, we obtain

J2 =−mDσ,τ
s+d,c (tm;u) +

mσ

s+ d+ τ
Dσ,τ
s+d,c

(
tm−1;u

)
− (m+ 2)(n+ p+ τ)

s+ d
Dσ,τ
s+d,c

(
tm+1;u

)
− mσ2

(s+ d)(n+ τ)
Dσ,τ
s+d,c

(
tm−1;u

)
+

2σ(m+ 1)

s+ d
Dσ,τ
s+d,c (tm;u) . (6)

Again using t = n+p+τ
s+d

[(
(s+d)t+σ
s+d+τ

)
−
(

σ−τ
s+d+τ

)]
, we get

J3 =
(s+ d+ 1)(s+ d+ τ)

s+ d
Dσ,τ
s+d,c

(
tm+1;u

)
− σ

s+ d+ τ
Dσ,τ
s+d,c (tm;u) . (7)

Combining the equalities (4)-(7), we get the desired result. �

Corollary 2.3. For the function Dσ,τ
s+d,c (tm;u), we have

(i) Dσ,τ
s+d,c(t;u) =

(s+ d)2

(n+ p− 1)(s+ d+ τ)

(
u+

cu

(s+ d)(1 + u)

)
+

σ

s+ d+ τ
,

(s+ d) > 1,

(ii) Dσ,τ
s+d,c

(
t2;u

)
=

(s+ d)3

(s+ d− 1)(s+ d− 2)(s+ d+ τ)2

(
u+

cu

(s+ d)(1 + u)

)

+
(s+ d)4

(s+ d− 1)(s+ d− 2)(s+ d+ τ)2

(
u2

(s+ d)2
+

u

s+ d
+ u2 +

c2u2

(s+ d)2(1 + u)2

+
2cu2

(s+ d)(1 + u)
+

cu

(s+ d)2(1 + u)

)
+

(
2(s+ d)2σ

(s+ d− 1)(s+ d+ τ)

)
×
(
u+

cu

(s+ d)(1 + u)

)
+

(
σ

s+ d+ τ

)2

, s+ d > 2.

(iii) For each u ∈ (0,∞) and m ∈ N,

Dσ,τ
s+d,c (tm;u) = cm(s+ d, τ)um + (s+ d)−1 (rm(u, c, σ, τ)+ o(1)),

where cm(s+ d, τ) =
(

s+d
s+d+τ

)m∏m−1
l=0

(s+d+l)
(s+d−l−1) and rm(u, c, σ, τ) is a rational func-

tion of u depending on the parameters c, σ and τ .

For m ∈ N0 = N ∪ {0}, the m−th order central moment for the operators (3) is
defined as:

θc,σ,τs+d,m(x) : = Dσ,τ
s+d,c ((t− u)m;u)

=

∞∑
i=1

P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i

(
(s+ d)t+ σ

s+ d+ τ
− u
)m

dt

+ P cs+d,0(u)

(
σ

s+ d+ τ
− u
)m

, s+ d > m.
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Lemma 2.4. For the function θc,σ,τs+d,m(u), we have θc,σ,τs+d,0(u) = 1 and the following
recurrence relation holds:

(s+ d+ τ)(s+ d−m− 1)θc,σ,τs+d,m+1(u)

= (s+ d)u(1 + u)

((
θc,σ,τs+d,m(u)

)′
+mθc,σ,τs+d,m−1(x)

)
+ θc,σ,τs+d,m(u)

(
ms+ d− (s+ d+ τ)

(
σ

s+ d+ τ
− u
)

(2m− (s+ d) + 1)

+ (s+ d)2u+
s+ dcu

(1 + u)

)
+ θc,σ,τs+d,m−1(u)

(
m(s+ d+ τ)

(
σ

s+ d+ τ
− u
)2

−ms+ d

(
σ

s+ d+ τ
− u
))

. (8)

Proof. For u = 0, the relation (8) holds. For u ∈ (0,∞), we proceed as follows from
Lemma 2.1, we can write

(
θc,σ,τs+d,m(u)

)′
=

∞∑
i=1

d
du

(
P cs+d,i(u)

)
B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i

(
s+ dt+ σ

s+ d+ τ
− u
)m

dt

−m
∞∑
i=1

P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i

(
(s+ d)t+ σ

s+ d+ τ
− u
)m−1

dt

+
d

du

(
P cs+d,0(u)

)( σ

s+ d+ τ
− u
)m
−mP cs+d,0(u)

(
σ

s+ d+ τ
− u
)m−1

=J1 −mθc,σ,τs+d,m−1(u), (say) . (9)

On making use of Lemma 2.1, we obtain

u(1 + u)2I1 =

∞∑
i=1

u(1 + u)2
d
du

(
P cs+d,i(u)

)
B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i

(
(s+ d)t+ σ

s+ d+ τ
− u
)m

dt,

+ u(1 + u)2
d

du

(
P cs+d,0(u)

)( σ

s+ d+ τ
− u
)m

=

∞∑
i=1

((i− (s+ d)u)(1 + u)− cu)P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+k

×
(

(s+ d)t+ σ

s+ d+ τ
− u
)m

dt− ((s+ d)u(1 + u) + cu)P cs+d,0(u)

(
σ

s+ d+ τ
− u
)m

= (1 + u)I2 − (s+ d)u(1 + u)θc,σ,τs+d,m(u)− cuθc,σ,τs+d,m(u). (10)

We can write J2 as

J2 =

∞∑
i=1

P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i
((i− 1)− (s+ d+ 1)t)

(
(s+ d)t+ σ

s+ d+ τ
− u
)m

dt

+

∞∑
i=1

P cs+d,i(u)

B(k, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i
((s+ d+ 1)t+ 1)

(
(s+ d)t+ σ

s+ d+ τ
− u
)m

dt

= J3 + J4, say. (11)
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Now, using the identity t = s+d+τ
s+d

[(
(s+d)t+σ
s+d+τ − u

)
−
(
σ−τu
s+d+τ

)]
, we have

J4 =
(s+ d+ 1)(s+ d+ τ)

s+ d

[ ∞∑
i=1

P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+k

(
(s+ d)t+ σ

s+ d+ τ
− u
)m+1

dt

+P cs+d,0(u)

(
σ

s+ d+ τ
− u
)m+1

]
−
(

σ

s+ d+ τ
− u
)

(s+ d+ 1)(s+ d+ τ)

s+ d

×

[ ∞∑
i=1

P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i

(
(s+ d)t+ σ

s+ d+ τ
− u
)m

dt

+P cs+d,0(u)

(
σ

s+ d+ τ
− u
)m]

=
(s+ d+ 1)(s+ d+ τ)

s+ d
θc,σ,τs+d,m+(u)−

(
σ

s+ p+ β
− u
)

× (ns+ d+ 1)(s+ d+ τ)

s+ d
θc,σ,τs+d,m(u). (12)

Making use of the identity t(1 + t) ddt

(
ti

(1+t)s+d+i+1

)
= (i − (s + d + 1)t) ti

(1+t)s+d+i+1

and then integrating by parts, we obtain

J3 =

∞∑
i=1

P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i

(
(s+ d)t+ σ

s+ d+ τ
− u
)m

dt

−
∞∑
i=1

P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i
d

dt
t(1 + t)

(
(s+ d)t+ σ

s+ d+ τ
− u
)m

dt. (13)

Again using t = s+d+τ
s+d

[(
(s+d)t+σ
s+d+τ − u

)
−
(
σ−τu
s+d+τ

)]
, we have

J3 =

∞∑
i=1

P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i

(
(s+ d)t+ σ

s+ d+ τ
− u
)m

dt

− (m+ 1)

∞∑
i=1

P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i

(
(s+ d)t+ σ

s+ d+ τ
− u
)m

dt

+m

(
σ

s+ d+ τ
− u
) ∞∑
i=1

P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i

(
(s+ d)t+ σ

s+ d+ τ
− u
)m−1

dt

− (m+ 2)(s+ d+ τ)

s+ d

∞∑
i=1

P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i

(
(s+ d)t+ σ

s+ d+ τ
− u
)m+1

dt

− m(s+ d+ τ)

s+ d

(
σ

s+ d+ τ
− u
)2 ∞∑

i=1

P cs+d,i(u)

B(i, s+ d)

×
∫ ∞
0

ti−1

(1 + t)s+d+i

(
(s+ d)t+ σ

s+ d+ τ
− u
)m−1

dt

=J1 + J2, say. (14)
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Now, we estimate J1

J1 = −(m+ 1)

[ ∞∑
i=1

P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i

(
(s+ d)t+ σ

s+ d+ τ
− u
)m

dt

+P cs+d,0(u)

(
σ

s+ d+ τ
− u
)m]

+m

(
σ

s+ d+ τ
− u
)

[ ∞∑
i=1

P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i

(
(s+ d)t+ σ

s+ d+ τ
− u
)m−1

dt

+P cs+d,0(u)

(
σ

s+ d+ τ
− u
)m−1]

+

[ ∞∑
i=1

P cs+d,i(u)

B(i, s+ d)

∫ ∞
0

ti−1

(1 + t)s+d+i

(
(s+ d)t+ σ

s+ d+ τ
− u
)m

dt

+ P cs+d,0(u)

(
σ

s+ d+ τ
− u
)m ]

= −mθc,σ,τs+d,m(u) +m

(
σ

s+ d+ τ
− u
)
θc,σ,τs+d,m−1(u). (15)

Proceeding in a similar manner, we obtain the estimate of J2 as

J2 =− (m+ 2)(s+ d+ τ)

s+ d
θc,σ,τs+d,m+1(u) +

2(m+ 1)(s+ d+ τ)

s+ d
θc,σ,τs+d,m(u)

− m(s+ d+ τ)

s+ d

(
σ

s+ d+ τ
− u
)2

θc,σ,τs+d,m−1(u). (16)

Combining (9)-(16), we get the desired recurrence relation. �

Corollary 2.5. For the function θc,σ,τs+d,m(u), the following hold (i) θc,σ,τs+d,m(u) is a

rational function of u and s+d. (ii) For every u ∈ (0,∞), θc,σ,τs+d,m(u) = O

(
1

s+d[m+1
2 ]

)
,

where [η] denotes the integer part of η.

Proof. The assertions (i) and (ii) easily follow from the recurrence relation (8) by
using the mathematical induction on m. �

3. Uniform convergence of the operators Dσ,τ
s+d,c(.; .)

Definition 3.1. Let k ∈ C[0,∞), then, modulus of continuous for a uniformly con-
tinuous function h is presented as:

ω(h; η) = sup|s1−s2|≤η|h(s1)− h(s2)|, s1, s2 ∈ [0,∞).

For a uniformly continuous function h in C[0,∞) and η > 0, one has

|h(s1)− h(s2)| ≤
(

1 +
(1− s)2

η2

)
ω(h; η). (17)
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Theorem 3.1. For Dσ,τ
s+d,c(.; .) the operators introduced by (3), with Dσ,τ

s+d,c(.; .) con-

verges to g uniformly on each bounded subset of [0,∞] where g ∈ C[0,∞] ∩ {g : v ≥

0,
g(v)

1 + v2
converges as v →∞}.

Proof. In the light of Korovkin-type property (iv) of Theorem 4.1.4 in [11], it is
sufficient to show that Dσ,τ

s+d,c(.; .) → tm(u), for m = 0, 1, 2. By Corollary 2.3, it is

obvious Dσ,τ
s+d,c(.; .) → t(u) as (s + d) → ∞ for m = 0, 1, 2..., which completes the

proof of Theorem 3.1. �

Theorem 3.2. [12] Suppose L : C[p, q]→ B[c, d] be a linear and positive operator and
suppose βu be the function defined by

βv(u) = |u− v|, (u, v) ∈ [c, d]× [p, q].

If g ∈ CB([p, q]) for any u ∈ [p, q] and η > 0, the operator L verifies:

|(Lg)(u)− g(u)| ≤ |g(u)||(Lt)(u)− 1|{(Lt)(u) + η−1
√

(Lt)(u)(Lβ2
u(u))}ωg(η).

Theorem 3.3. Let g ∈ CB [0,∞). Then, for the operator Dσ,τ
s+d,c(.; .) presented by

(3), we get

|Dσ,τ
s+d,c(.; .)(g, u)− g(u)| ≤ 2ω(g; η), where η =

√
Dσ,τ
s+d,c(φ

2
u;u).

Proof. In term of Lemma 2.2, Corollary 2.3, and Theorem 3.2, one has∣∣∣Dσ,τ
s+d,c(g, u)− g(u)

∣∣∣ ≤ {1 + δ−1
√
Dσ,τ
s+d,c(φ

2
u);u

}
ω(g; η),

which completes the proof. �

4. Local approximation

Let CB [0,∞) be the space of all real valued continuous and bounded functions h on
the interval [0,∞), with the norm

‖h‖CB := sup
u∈[0,∞)

|h(u)|.

Let δ > 0 and C2
B [0,∞) = {g ∈ CB [0,∞); g′, g′′ ∈ CB [0,∞)}. For h ∈ CB [0,∞), the

Peetre’s K-functional is given by

K2(h, δ) = inf
{
‖h− g‖+ δ ‖g′′‖ ; g ∈ C2

B [0,∞)
}
. (18)

By DeVore and Lorentz ([8] , p. 177, Theorem 2.4), there exists an absolute constant
C > 0 such that

K2(h, δ) ≤ Cω2(h,
√
δ), (19)

where the second order modulus of continuity is defined as:

ω2(h,
√
δ) = sup

0<g≤
√
δ

sup
u∈[0,∞)

|h(u+ 2g)− 2h(u+ g) + h(u)|. (20)

For h ∈ CB [0,∞), the usual modulus of continuity is defined as:

ω(h, δ) = sup
0<g≤

√
δ0≤u<∞

sup
0
|h(u+ g)− h(u)|.
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Theorem 4.1. Let h ∈ CB [0,∞). Then, there exists a constant K > 0 such that∣∣∣Dσ,τ
s+d,c(h;u)− h(u)

∣∣∣ ≤ Kω2

(
h;

√
η
(σ,τ)
s+d,c(u)

)

+ω

h;

(s+d)cu
(1+u) + σ(s+ d− 1)− u((s+ d)τ − (s+ d)− τ)

(s+ d+ τ)(s+ d− 1)


where

η
(σ,τ)
s+d,c(u) = Dσ,τ

s+d,c

(
(t− u)2;u

)
+

(
(s+ d)2

(s+ d+ τ)(s+ d− 1)

(
u+

cu

(s+ d)(1 + u)

)
+

σ

s+ d+ τ
− u
)2

.

Proof. First, let us consider the auxiliary operators

D̄σ,τ
s+d,c(h;u) = Dσ,τ

s+d,c(h;u) + h(u)

−h
(

(s+ d)2

(s+ d+ τ)(s+ d− 1)

(
u+

cu

(s+ d)(1 + u)

)
+

σ

s+ d+ τ

)
.

(21)

According to definition of the auxiliary operators, D̄σ,τ
s+d,c(1, u) = 1 and D̄σ,τ

s+d,c(t;u) =

u Let h ∈ C2
B [0,∞). Using Taylor’s expansion of g, we write

h(t) = h(u) + (t− u)g′(u) +

∫ t

u

(t− v)h′′(v)dv.

Applying the operators D̄σ,τ
s+d,c(.; .), to both sides of above equality, we deduce∣∣∣D̄σ,τ

s+d,c(h;u)− h(u)
∣∣∣ ≤ Dσ,τ

s+d,c

(∣∣∣∣∫ t

u

(t− v)h′′(v)dv

∣∣∣∣ ;u)

+

∣∣∣∣ ∫
{
u

(s+ d)2

(s+ d+ τ)(s+ d− 1)

(
u+

cu

(s+ d)(1 + u)

)
+

σ

s+ d+ τ

}∣∣∣∣( (s+ d)2

(s+ d+ τ)(s+ d− 1)

(
u+

cu

(s+ d)(1 + u)

)
+

σ

s+ d+ τ
− v
)
| |g′′(v)| dv |≤ Dσ,τ

s+d,c

(
(t− u)2;u

)
‖g′′‖

+

(
(s+ d)2

(s+ d+ τ)(s+ d− 1)

(
u+

cu

(s+ d)(1 + u)

)
+

σ

s+ d+ τ
− u
)2

‖g′′‖

= η
(σ,τ)
s+d,c(u) ‖g′′‖ . (22)

From (21), we have ∣∣∣D̄σ,τ
s+d,c(h;u)

∣∣∣ ≤ 3‖h‖. (23)
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Since g ∈ C2
B [0,∞) and using (22),(23) in (21), we obtain∣∣∣Dσ,τ

s+d,c(h;u)− h(u)
∣∣∣ ≤ ∣∣∣D̄σ,τ

s+d,c(h− g;u)
∣∣∣+
∣∣∣D̄σ,τ

s+d,c(g;u)− g(u)
∣∣∣+ |g(u)− h(u)|

+

∣∣∣∣h( s+ d

(s+ d+ τ)(s+ d− 1)

(
(s+ d)u+

cu

1 + u
+ 1

)
+

σ

s+ d+ τ

)
− h(u)

∣∣∣∣
≤ 4‖h− g‖+

∣∣∣D̄σ,τ
s+d,c(g;u)− g(u)

∣∣∣
+

∣∣∣∣h( s+ d

(s+ d+ τ)(s+ d− 1)

(
(s+ d)u+

cu

1 + u
+ 1

)
+

σ

s+ d+ τ

)
− h(u)

∣∣∣∣
≤ 4‖h− g‖+ η

(σ,τ)
s+d,c(u) ‖g′′‖

+

∣∣∣∣h( (s+ d)2

(s+ d+ τ)(s+ d− 1)

(
u+

cu

(s+ d)(1 + u)

)
+

σ

s+ d+ τ

)
− h(u)

∣∣∣∣
≤ 4‖h− g‖+ η

(σ,τ)
s+d,c(u) ‖g′′‖

+ω

h;

(s+d)cu
(1+u) + σ(s+ d− 1)− u((s+ d)τ − (s+ d)− τ)

(s+ d+ τ)(s+ d− 1)

 .

Taking the infimum on the right hand side over all g ∈ C2
B [0,∞), we get∣∣∣Dσ,τ

s+d,c(h;u)− h(u)
∣∣∣ ≤4K2

(
h; η

(σ,τ)
s+d,c(u)

)
+ ω

h;

(s+d)cu
(1+u) + σ(s+ d− 1)− u((s+ d)τ − (s+ d)− τ)

(s+ d+ τ)(s+ d− 1)

 .

Thus by (19), we get∣∣∣Dσ,τ
s+d,c(h;u)− h(u)

∣∣∣ ≤ Cω2

(
h;

√
η
(σ,τ)
s+d,c(u)

)

+ ω

h;

(s+d)cu
(1+u) + σ(s+ d− 1)− u((s+ d)τ − (s+ d)− τ)

(s+ d+ τ)(s+ d− 1)

 ,

which completes the proof. �

5. Weighted approximation

Let Bρ[0,∞) be the space of all real valued functions on [0,∞) satisfying the condition
|h(u)| ≤ Mhρ(u), where Mh is a constant depending only on h and ρ(u) is a weight
function. Let Cρ[0,∞) be the space of all continuous functions in Bρ[0,∞) with the

norm ‖h‖ρ = supu∈[0,∞)
|h(u)|
ρ(u) and C0

ρ =
{
h ∈ Cρ[0,∞) : limu→∞

|h(u)|
ρ(u) <∞

}
. In

what follows, we assume the weight function as ρ(u) = 1 + u2.

Theorem 5.1. If h ∈ Cρ[0,∞), then for each u ∈ [0, b] and s+ d > 2,then we have∣∣∣Dσ,τ
s+d,c(h, u)− h(u)

∣∣∣ ≤ 6Mh

(
1 + b2

)
ξ
(σ,τ)
s+d,c(u) + 2ωb+1

(
h,
√
ξs+d,c(u)

)
,
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where ξ
(σ,τ)
s+d,c(u) = D

(σ,τ)
s+d,c

(
(t− u)2;u

)
and ωb(h, δ) is the modulus of continuity of h

on [0, b].

Proof. Let u ∈ [0, b] and t > b+ 1. Then, in view of t− u > 1 we have

|h(t)− h(u)| ≤ Mh

(
2 + t2 + u2

)
≤ Mh(t− u)2

(
3 + 2u+ 2u2

)
≤ 6Mh(t− u)2

(
1 + u2

)
≤ 6Mh(t− u)2

(
1 + b2

)
. (24)

For u ∈ [0, b] and t ≤ b+ 1, we have

|h(t)− h(u)| ≤ ωb+1(h, |t− u|) ≤ ωb+1(h, δ)

(
1 +
|t− u|
δ

)
, δ > 0. (25)

Combining (24) and (25), we obtain

|h(t)− f(u)| ≤ 6Mh

(
1 + b2

)
(t− u)2 + ωb+1(h, δ)

(
1 +
|t− u|
δ

)
.

Applying the operators Dσ,τ
s+d,c(.; .) given by (3) to the above inequality and using the

Cauchy-Schwarz inequality, we have∣∣∣Dσ,τ
s+d,c(h, u)− h(u)

∣∣∣ ≤6Mh

(
1 + b2

)
Dσ,τ
s+d,c

(
(t− u)2, u

)
+ ωb+1(h, δ)

(
1 +

1

δ

√
Dσ,τ
s+d,c

(
(t− u)2, u

))
.

Choosing δ =
√
ξ
(σ,τ)
s+d,c(u), we get the required result. �

Theorem 5.2. Let f ∈ C0
ρ . Then we have

lim
s+d→∞

∥∥∥Dσ,τ
s+d,c(h)− h

∥∥∥
ρ

= 0.

Proof. With elementary calculations, it follows easily that

lim
(s+d)→∞

‖Dσ,τ
(s+d),c (ei, .)− ei‖ρ = 0, where ei(u) = ui, i = 0, 1, 2.

By weighted Korovkin theorem given in [25], we get the required result. �

Next we give the following theorem to approximate all functions in C0
ρ . This type

of result is discussed in [26] for locally integrable functions.

Theorem 5.3. For each h ∈ C0
ρ and λ > 0, we have

lim
s+d→∞

sup
u∈[0,∞)

∣∣∣Dσ,τ
s+d,c(h, u)− h(u)

∣∣∣
(1 + u2)

1+λ
= 0.

Proof. For any fixed x0 > 0,

sup
u∈[0,∞)

∣∣∣Dσ,τ
s+d,c(h, u)− h(u)

∣∣∣
(1 + u2)

1+λ
≤ sup
u≤u0

∣∣∣Dσ,τ
s+d,c(h, u)− h(u)

∣∣∣
(1 + u2)

1+λ
+ sup
u≥u0

∣∣∣Dσ,τ
s+d,c(h, u)− h(u)

∣∣∣
(1 + u2)

1+λ
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≤
∥∥∥Dσ,τ

s+d,c(h)− h
∥∥∥
C[0,u0]

+ ‖h‖ρ sup
u≥x0

∣∣∣Dσ,τ
s+d,c

(
1 + t2, u

)∣∣∣
(1 + u2)

1+λ
+ sup
u≥u0

|h(x)|
(1 + u20)

1+λ

= I1 + I2 + I3, say. (26)

Since |h(u)| ≤ ‖h‖ρ
(
1 + u2

)
, we have

I3 = sup
u≥u0

|h(u)|
(1 + u2)

1+λ
≤ sup
u≥u0

‖h‖ρ
(1 + u2)

λ
≤ ‖h‖ρ

(1 + u20)
λ
.

Let ε > 0 be arbitrary. In view of Theorem 3.1, there exists n1 ∈ N such that

‖h‖ρ

∣∣∣Dσ,τ
s+d,c

(
1 + t2, u

)∣∣∣
(1 + u2)

1+λ
<

1

(1 + u2)
1+λ
‖h‖ρ

((
1 + u2

)
+

ε

3‖h‖ρ

)
,∀(s+ d) ≥ n1

<
‖h‖ρ

(1 + u2)
λ

+
ε

3
,∀(s+ d) ≥ n1. (27)

Hence, ‖h‖ρ supu≥u0

|Dσ,τs+d,c(1+t2,u)|
(1+u2)1+λ

<
‖h‖ρ

(1+u2
0)
λ + ε

3 ,∀(s + d) ≥ n1. Thus, I2 + I3 <

2||h‖ρ
(1+u2

0)
λ + ε

3 , ∀(s+ d) ≥ n1. Now, let us choose u0 to be so large that
‖h‖ρ

(1+u2)λ
< ε

6 .

Then,

I2 + I3 <
2ε

3
∀(s+ d) ≥ n1. (28)

By

I1 =
∥∥∥Dσ,τ

s+d,c(h)− h
∥∥∥
C[0,u0]

<
ε

3
, ∀(s+ d) ≥ n2. (29)

Let n0 = max (n1, n2). Then, combining (27)-(29)

sup
u∈[0,∞)

∣∣∣Dσ,τ
s+d,c(h, u)− h(u)

∣∣∣
(1 + u2)

1+λ
< ε, ∀(s+ d) ≥ n0.

This completes the proof. �

6. Statistical convergence

Let A =
(
c(s+d)i

)
be a non-negative infinite summability matrix. For a given sequence

u := (ui), the A-transform of u denoted by Au : ((Au)s+d) is defined as

(Au)s+d =

∞∑
i=1

c(s+d)iui.

Provided the series converges for each s+d. A is said to be regular if lims+d(Au)s+d =
D whenever limu = D. Then u = (us+d) is said to be a A-statistically convergent
to D i.e.stA − limu = D if for every ε > 0, lims+d

∑
i:|ui−D|≥ε c(s+d)i = 0. Recently,

the statistical convergence properties have been investigated for several operators by
following the work of Gadjiev and Orhan [32], for instance, Agratini [29], Özarslan

[28], Erkus et al. [31], Doǧru and Örkcü [30] etc.
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Theorem 6.1. Let u ∈ [0,∞) and A =
(
c(s+d)i

)
be a non-negative regular summa-

bility matrix. Then, for all h ∈ C0
ρ we have

stA − lim
s+d

∥∥∥Dσ,τ
s+d,c(h, .)− h

∥∥∥
ρσ

= 0,

where ρσ(u) = 1 + u2+σ, σ > 0.

Proof. In [33], it is enough to prove that

stA − lim
s+d
‖Dσ,τ

s+d,c (ei, .)− ei‖ρ0 = 0,

where ei(u) = ui, i = 0, 1, 2

stA − lim
s+d

∥∥∥Dσ,τ
s+d,c (e0, .)− e0

∥∥∥
ρ0

= 0.

Using Corollary 2.3, we have∣∣∣Dσ,τ
s+d,c(t;u)− u

∥∥∥
ρ

= sup
u∈[0,∞)

‖
(

(s+ d)2

(s+ d+ τ)(s+ d− 1)
− 1

)
u

+
c(s+ d)

(s+ d+ τ)(s+ d− 1)

u

(1 + u)
+

σ

(s+ d+ τ)

∣∣∣∣ 1

1 + u2

≤
(

(s+ d)2

(s+ d+ τ)(s+ d− 1)
− 1

)
+

(s+ d)c

(s+ d+ τ)(s+ d− 1)
+

σ

s+ d+ τ
.

For each ε > 0, we define the following sets

C1 : =
{
s+ d :

∥∥∥D(σ,τ)
s+d,c (e1, .)− e1

∥∥∥ ≥ ε}
C2 : =

{
s+ d :

(
(s+ d)2

(s+ d+ τ)(s+ d− 1)
− 1

)
≥ ε

3

}
C3 : =

{
s+ d :

(s+ d)c

(s+ d+ τ)(s+ d− 1)
≥ ε

3

}
C4 : =

{
s+ d :

σ

s+ d+ τ
≥ ε

3

}
.

It is clear that C1 ⊆ C2∪C3∪C4, which implies that
∑
i∈C1

c(s+d)i ≤
∑
i∈C2

c(s+d)i+∑
i∈C3

c(s+d)i +
∑
i∈C4

c(s+d)i. Hence, we have

stA − lim
s+d

∥∥∥Dσ,τ
s+d,c (e1, .)− e1

∥∥∥
ρ0

= 0.

Again using Corollary 2.3, we obtain∥∥∥Dσ,τ
s+d,c

(
t2;x

)
− x2

∥∥∥
ρ

= sup
u∈[0,∞)

| u
(

2(s+ d)3

(s+ d+ τ)2(s+ d− 1)(s+ d− 2)

+
2(s+ d)2σ

(s+ d+ τ)(s+ d− 1)

)
+ u2

(
(s+ d)2

(s+ d+ τ)2(s+ d− 1)(s+ d− 2)

+
(s+ d)4

(s+ d+ τ)2(s+ d− 1)(s+ d− 2)
− 1

)



APPROXIMATION BEHAVIOUR OF BDS OPERATORS 103

+
u

(1 + u)

(
2(s+ d)2c

(s+ d+ τ)2(s+ d− 1)(s+ d− 2)
+

2(s+ d)cσ

(s+ d+ τ)(s+ d− 1)

)
+

(s+ d)2

(s+ d+ τ)2(s+ d− 1)(s+ d− 2)

c2u2

(1 + u)2

+
(s+ d)3

(s+ d+ τ)2(s+ d− 1)(s+ d− 2)

2cu2

(1 + u)
+

σ2

(s+ d+ τ)2
| 1

1 + u2

≤
(

2(s+ d)3

((s+ d) + τ)2(s+ d− 1)(s+ d− 2)
+

2(s+ d)2σ

(s+ d+ τ)(s+ d− 1)

)
+

(
(s+ d)2

(s+ d+ τ)2(s+ d− 1)(s+ d− 2)
+

(s+ d)4

(s+ d+ τ)2(s+ d− 1)(s+ d− 2)
− 1

)
+

(
2(s+ d)2c

(s+ d+ τ)2(s+ d− 1)(s+ d− 2)
+

2(s+ d)cσ

(s+ d+ τ)(s+ d− 1)

)
+

c2(c+ d)2

(s+ d+ τ)2(s+ d− 1)(s+ d− 2)
+

2c(s+ d)3

(s+ d+ τ)2(s+ d− 1)(s+ d− 2)

+
σ2

(s+ d+ τ)2
.

For a given ε > 0, we have the following sets

D1 : =
{
s+ d :

∥∥∥Dσ,τ
s+d,c (e2, .)− e2

∥∥∥ ≥ ε}
D2 : =

{
s+ d :

2(s+ d)3

(s+ d+ τ)2(s+ d− 1)(s+ d− 2)
+

2(s+ d)2σ

(s+ d+ τ)(s+ d− 1)
≥ ε

6

}
D3 : =

{
s+ d :

(
(s+ d)2

(s+ d+ τ)2(s+ d− 1)(s+ d− 2)

+
(s+ d)4

(s+ d+ τ)2(s+ d− 1)(s+ d− 2)
− 1

)
≥ ε

6

}
D4 : =

{
s+ d :

(
2(s+ d)2c

(s+ d+ τ)2(s+ d− 1)(s = d− 2)
+

2(s+ d)cσ

(s+ d+ τ)(s = d− 1)

)
≥ ε

6

}
D5 : =

{
s+ d :

c2(s+ d)2

(s+ d+ τ)2(s+ d− 1)(s+ d− 2)
≥ ε

6

}
D6 : =

{
s+ d :

2c(s+ d)3

(s+ d+ τ)2(s+ d− 1)(s+ d− 2)
≥ ε

6

}
.

D7 : =

{
s+ d :

σ2

(s+ d+ τ)2
≥ ε

6

}
.

Then it is clear that D1 ⊆ D2 ∪D3 ∪D4 ∪D5 ∪D6 ∪D7. Hence, we observe that∑
i∈D1

c(c+d)i ≤
∑
i∈D2

c(s+d)i +
∑
i∈D3

c(s+d)i +
∑
i∈D4

c(s+d)i

+
∑
i∈D5

c(s+d)i +
∑
i∈D6

c(s+d)i +
∑
i∈D7

c(s+d)i.

Taking limit as (s+ d)→∞, we have

stA − lim
(s+d)

∥∥∥Dσ,τ
s+d,c (e2, .)− e2

∥∥∥
ρ0

= 0.



104 N. RAO, M. RAIZ, AND V. N. MISHRA

Hence, the proof is completed. �

7. Conclusion

In this study, we provides a comprehensive analysis of the approximation properties of
Baskakov-Durrmeyer-Schurer operators. We investigate their convergence behavior,
we prove a Korovkin-type approximation theorem and obtain the rate of conver-
gence of these operators. Moreover, local and global approximation properties are
discussed in different functional spaces. Lastly, A-statistical approximation results
are presented.
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