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An elementary argument regarding the long-time behaviour of
the solution to a stochastic differential equation
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Abstract. We describe the long-time behaviour of the solution to a stochastic differential
equation without resorting to arguments based upon the study of the associated Fokker Planck
equation. This work is motivated by our interest in the modelling of polymeric fluid flows [5,
6, 4].
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1. Introduction

1.1. General mathematical setting. In this short article, we are interested in
the long-time behaviour of a stochastic process Xt ∈ IRN solution to a stochastic
differential equation (SDE) of the following form:

dXt = −∇Π(Xt) dt+ b(t,Xt) dt+ dWt, (1)

where the stochastic processesXt andWt are defined on a probability space (Ω,F , (Ft), IP),
and Wt is a standard N -dimensional (Ft)-adapted Brownian motion.

We suppose that the function Π (called the potential, see Section 2 for the physical
background) and the function b are such that there exists a unique strong global-in-
time solution to (1) (see [7] for possible conditions).

Regarding the long-time behaviour of b, we assume that ∃C <∞, s.t. for a.e. t, X,

|b(t,X)| ≤ Ce−βt (1 + |X|) , (2)

where |.| denotes the Euclidean norm on IRN . It is thus expected that, at least in a
vague sense that will be made precise below, Xt behaves in the long-time limit as a
process X∞

t solution to:

dX∞
t = −∇Π(X∞

t ) dt+ dWt.

For our analysis, we need to impose that Π is an α-convex function, i.e. a function
satisfying, for all X and Y in IRN , and for all λ ∈ (0, 1):

Π(λX + (1 − λ)Y ) ≤ λΠ(X) + (1 − λ)Π(Y ) − αλ(1 − λ)

2
|X − Y |2. (3)

Received : October 10, 2004.

39



40 BENJAMIN JOURDAIN, CLAUDE LE BRIS AND TONY LELIÈVRE

1.2. The case of a radial potential. A case of particular interest in the applica-
tions we have in mind (see Section 2) is the case of a radial potential:

Π(X) = π(|X|) (4)

where π is a C2 function on IR+, which we can assume to be zero at zero.
In this particular case, the α-convexity of Π (3) is equivalent to:

π is an α-convex function such that π′(0) ≥ 0. (5)

1.3. Long-time behaviour. The stochastic differential equation (1) is standardly
associated to the Fokker-Planck equation:

∂tψ(t,X) = −div X

(

(−∇Π(X) + b(t,X))ψ(t,X) − 1

2
∇Xψ(t,X)

)

(6)

where ψ(t,X) is the density with respect to the Lebesgue measure of the random
variable Xt.

An information on the long-time behaviour of Xt is provided by the study of (6).
Indeed, entropy methods (see [2, 4]) allow one to deduce the convergence as t goes to
infinity of ψ(t,X) to ψ∞(X) solution to:

0 = div X

(

(∇Π(X))ψ∞(X) +
1

2
∇Xψ∞(X)

)

. (7)

Explicitely, ψ∞(X) ∝ exp(−2Π(X)). The convergence typically holds in L1-norm.
Following this approach, we obtain that the law of the solution Xt to (1) converges
in variation to the measure µ∞ defined by dµ∞(X) = ψ∞(X) dX (in the case of
continuous measures, the convergence in variation is equivalent to the convergence of
the densities in L1-norm). The method provides the additional information that the
rate of convergence is exponential.

For this approach to work, it is well known that some conditions on the poten-
tial Π are required, which allow for some functional inequalities involving the mea-
sure µ∞ (Poincaré or log-Sobolev inequalities). A usual assumption which ensures a
log-Sobolev inequality with respect to µ∞ is the α-convexity of Π. This can be some-
what weakened (for example, a log-Sobolev inequality also holds if Π is a bounded per-
turbation of an α-convex function, see [1]) but in any case, the strong convexity of Π is
the natural assumption to obtain a log-Sobolev inequality. This is linked to some con-
tractivity property of the semigroup associated with the operator div

(

∇Π .+ 1
2∇.

)

(see again [1]).
Our approach here is different. We wish to identify the long-time behaviour of Xt

by manipulating Xt itself and not some non-linear functionals of the density of Xt,
as is the case in entropy methods. A major reason that motivates this alternative
approach is that non-linear functionals of the density of Xt cannot in general be easily
expressed in terms of Xt. Consequently, the approaches that make use of them are not
likely to be easily transposed at the discrete level and provide useful information on the
discretized process, which is an important purpose for the numerical simulations. We
therefore believe that a proof at the continuous level using only the processXt is a first
step towards the comprehension of the long-time behaviour of the discretized problem.
We have here in mind the long-time behaviour of some observables IE(φ(Xt)), the
expectation value being discretized by an empirical mean (Monte Carlo method), and
the process Xt being approximated by an Euler scheme on (1).

Actually, our alternative approach reveals also interesting for the following three
reasons:
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• since we use elementary arguments, we see in a very clear way why and how the
α-convexity of Π plays a role,

• we can handle irregular initial conditions for the law of X0 (like Dirac functions),
• we obtain a somehow stronger information on the behaviour of Xt since we prove

the exponential convergence of the process (Xt−X∞
t ) to 0 (see Proposition 3.1).

On the other hand, as opposed to methods based on the Fokker-Planck equation
that have a broad range of applications, we are restricted to consider very simple
cases.

In Section 2, we motivate the study of (1) by explaining how such a SDE arises in
the modelling of polymeric fluid flows. We next give in Section 3 the mathematical
analysis of the long-time behaviour of the solution to (1).

2. Physical background

2.1. Multiscale models for polymeric fluids.

One motivation for this mathematical study stems from our interest in multiscale
models for polymeric fluids. In such models, the macroscopic quantities (such as
the velocity or the pressure of the fluid) evolve following a partial differential equa-
tion translating some macroscopic conservation laws (typically Navier-Stokes type
equations with an additional non-newtonian contribution in the stress tensor). The
microscopic variables which describe the conformation of the polymer chains in the
fluid follow a stochastic differential equation. The probabilistic nature of the equa-
tions at the microscopic level arises through a Langevin description of the interaction
between the (small) fluid molecules and the (larger) polymeric chains: the fluid influ-
ences the dynamics of the polymer chains through a drag force plus a Brownian term.
The problem is fully coupled since the conformation of the polymer chains also influ-
ences the flow field through the perturbation of the stress tensor in the momentum
equations.

2.2. The dumbbell model.

X

Figure 1. In the dumbbell model, the polymer (in dashed line)
is modelled by two beads linked by a spring. The length and the
orientation of the polymer is given by the so-called end-to-end vec-
tor X.

In the sequel, we focus on the dumbbell model (see Figure 1): the conformation of
a polymer chain is represented by a vector X (of the dimension of the ambient space)
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which gives the orientation and the length of the molecule. To derive the dynamics
of this vector in a given velocity field u(t, x) (where t denotes time and x denotes
position in space), a Langevin equation is written for each end of the vector X. One
then obtains the following stochastic partial differential equation (see [3, 9]) on the
vector Xt(x) (which represents the conformation of the representative polymer chain
at time t at a given point x in space):

dXt(x) + u(t, x).∇Xt(x) dt = (∇u(t, x)Xt(x) −∇Π(Xt(x))) dt+ dWt. (8)

In equation (8), Π(X) models the potential of the entropic force between the two ends
of the polymeric chain. Two commonly used models are the Hookean model for which

Π(X) = |X|2
4 and the FENE model (which takes into account the finite extensibility of

the polymer chain) for which Π(X) = − b
4 ln

(

1 − |X|2
b

)

, ∀|X| < b and Π(X) = +∞,

∀|X| ≥ b (this is the case of an “explosive potential”). For mathematical purposes,

the case of a polynomial force Π(X) = |X|2
4 + |X|n

2n may also be considered. It is easy
to check that in all these cases, Π is a radially symmetric (1/2)-convex potential.

The contribution of the polymer chains to the stress tensor is given by the Kramers
formula (see [3, 9]):

τ(t, x) = (IE(Xt(x) ⊗∇Π(Xt(x))) − Id) . (9)

We henceforth assume that the velocity field is given and regular enough (say C1)
so that one can use the characteristic method (by integrating the vector field u) to
rewrite Equation (8) in the following form:

dXt = (G(t)Xt −∇Π(Xt)) dt+ dWt (10)

where G(t) is ∇u(t, x(t)), with x(t) the position at time t of the fluid particle which
was at x(0) at time 0. We indeed recover a SDE of the form (1), with b(t,X) = G(t)X.
We suppose that the velocity field goes exponentially fast to 0, in such a way that (2)
is satisfied (for example, ||∇u||L∞

x
≤ Ce−βt).

Then, two questions of practical interest are for example:
• What is the long-time behaviour of the root mean square length

√

IE(|Xt|2) ?
• What is the long-time behaviour of the stress tensor τ defined by (9) ?

Remark 2.1. A more accurate description of the polymer chains configuration leads
to a SDE of the form (1) in a space of larger dimension (for example N = 2n or
N = 3n in the case of a bead-spring model, with n springs).

Remark 2.2. Our approach is here completely decoupled, since we suppose that the
velocity field is given a priori. In general, the velocity is not known in advance, and
the velocity field is influenced by the conformation of the polymers modelled by Xt

(see [4] for the long-time behaviour of the coupled system). Notice however that in the
case of a homogeneous flow (u(t, x) = κ(t)x), the stress tensor τ defined by (9) does
not depend on space, so that it is divergence free. Therefore, in this special case, it is
natural to suppose that the velocity field is given independently of Xt. Homogeneous
flows are indeed used in practice to study the rheology of polymeric fluids.

3. Mathematical analysis

3.1. Convergence in the case of a Lipschitz function φ.
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We want here to study the long-time behaviour of IE(φ(Xt)) for some smooth
functions φ. The idea is to introduce the stationary process X∞

t solution to:
{

dX∞
t = −∇Π(X∞

t ) dt+ dWt,
X∞

0 ∼ µ∞.
(11)

Following for example the proof by Rogers in [10], one can prove that X∞
t satisfies

the detailed balance property, so that for any time t, the law of X∞
t is µ∞ (see [5] for

the case of an explosive potential Π).
When φ is a globally Lipschitz function, we have, for t ≥ 0:

∣

∣

∣

∣

IE(φ(Xt)) −
∫

φ(X) dµ∞(X)

∣

∣

∣

∣

= |IE(φ(Xt)) − IE(φ(X∞
t ))| ,

≤ [φ]lipIE|Xt −X∞
t |, (12)

where [φ]lip denotes the Lipschitz constant of function φ. We can now conclude by
proving the convergence of (Xt−X∞

t ) to 0 in L1-norm. This is where the α-convexity
of Π plays a role.

We can actually prove the convergence of (Xt −X∞
t ) to 0 in Lk-norm, k being any

positive integer. Indeed, we have (using (2)-(3) and assuming that IE|X0|k < ∞ and
∫

|X|kdµ∞(X) <∞)1:

d

dt
IE|Xt −X∞

t |k = −kIE
(

1Xt 6=X∞
t
|Xt −X∞

t |k−2 (∇Π(Xt) −∇Π(X∞
t )) . (Xt −X∞

t )
)

+kIE
(

1Xt 6=X∞
t
|Xt −X∞

t |k−2b(t,Xt). (Xt −X∞
t )

)

,

≤ −αkIE|Xt −X∞
t |k + kCe−βtIE

(

|Xt||Xt −X∞
t |k−1

)

+kCe−βtIE|Xt −X∞
t |k−1,

≤ −αkIE|Xt −X∞
t |k + kCe−βtIE|Xt −X∞

t |k

+kCe−βtIE
(

(|X∞
t | + 1) |Xt −X∞

t |k−1
)

,

≤ −αkIE|Xt −X∞
t |k + kCe−βtIE|Xt −X∞

t |k

+kCe−βt
(

IE (|X∞
t | + 1)

k
)1/k

(

IE|Xt −X∞
t |k

)1−1/k
.

Therefore,

d

dt

(

IE|Xt −X∞
t |k

)1/k ≤ −α
(

IE|Xt −X∞
t |k

)1/k
+ Ce−βt

(

IE|Xt −X∞
t |k

)1/k
+ C ′e−βt,

where we have used the fact that IE (|X∞
t | + 1)

k
=

∫

(|X| + 1)kdµ∞(X) < ∞. From
this we deduce that:

(

IE|Xt −X∞
t |k

)1/k ≤
(

IE|X0 −X∞
0 |k

)1/k
e−αt exp

(

C

∫ t

0

e−βs ds

)

+C ′
∫ t

0

e−βse−α(t−s) exp

(

C

∫ t

s

e−βr dr

)

ds.

Using the fact that exp

(

C

∫ ∞

0

e−βr dr

)

<∞, we finally have:

(

IE|Xt −X∞
t |k

)1/k ≤ C
(

IE|X0 −X∞
0 |k

)1/k
e−αt +

C C ′

α− β

(

e−β t − e−αt
)

. (13)

1In the following, C denotes a positive constant which may change from one line to another, and
which does not depend on t, α, β nor k.
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In particular, using (12) and (13) with k = 1, we have
∣

∣

∣

∣

IE(φ(Xt)) −
∫

φ(X) dµ∞(X)

∣

∣

∣

∣

≤ C ′′[φ]lipe
−α∧β t. (14)

We have thus shown the following result:

Proposition 3.1. We suppose (2) and (3).
• If we assume that IE|X0|k < ∞ and

∫

|X|kdµ∞(X) < ∞ where k is a positive
integer, then (Xt − X∞

t ) converges exponentially fast (with rate α ∧ β) to 0 in
Lk-norm.

• In particular, if IE|X0| < ∞ and
∫

|X|dµ∞(X) < ∞, for any Lipschitz func-
tion φ, we have:

∣

∣

∣

∣

IE(φ(Xt)) −
∫

φ(X) dµ∞(X)

∣

∣

∣

∣

≤ C ′′[φ]lipe
−α∧β t. (15)

Remark 3.1 (Almost sure inequality).
By a similar computation, one can obtain that a.s.,

|Xt −X∞
t | ≤ C|X0 −X∞

0 |e−αt + C

∫ t

0

|X∞
s |e−βse−α(t−s) ds.

This could be used to obtain a.s. estimates on the process (Xt −X∞
t ).

Remark 3.2 (Convergence for a locally Lipschitz function φ with polynomial growth).
We have shown that the Lk-norm of (Xt − X∞

t ) converges exponentially fast to 0
(under the assumption that IE|X0|k <∞ and

∫

|X|kdµ∞(X) <∞). In particular, for

any integer k ≥ 1, IE|Xt|k is bounded from above by a constant which does not depend
on time and converges exponentially fast to

∫

|X|kdµ∞(X). More generally, if φ is
a locally Lipschitz function with polynomial growth, which means that there exists a
positive integer k and a positive constant C such that: ∀X,Y,

|φ(X) − φ(Y )| ≤ C(1 + |X|k + |Y |k)|X − Y |,
then IE(φ(Xt)) converges exponentially fast to

∫

φ(X)dµ∞(X), provided that

IE|X0|k+1 <∞ and
∫

|X|k+1dµ∞(X) <∞.

Remark 3.3 (Convergence in the Wasserstein distance Wk, k ≥ 1).
We can state the result of Proposition 3.1 in terms of the law of the process Xt

by introducing the Wasserstein distance Wk, k being a positive integer (see [1]). For
k = 1, the Wasserstein distance W1 between two measures µ and ν can be defined as
the dual of the [.]lip-norm:

W1(µ, ν) = sup

{
∫

fdµ−
∫

fdν, [f ]lip ≤ 1

}

.

We recall that, more generally, for k ≥ 1, the Wasserstein distance Wk between two
measures µ and ν can be defined as:

Wk(µ, ν) =

(

sup

{
∫

fdµ−
∫

gdν, f, g L∞ and Lipschitz, f(x) − g(y) ≤ 1

k
|x− y|k

})1/k

,

or, equivalently,

Wk(µ, ν) =

(

inf

{
∫

1

k
|x− y|kdλ(x, y), λ with marginals µ and ν

})1/k

.

We have shown that for any k ≥ 1, if IE|X0|k < ∞ and
∫

|X|kdµ∞(X) < ∞, the

Lk-norm of (Xt −X∞
t ) converges exponentially fast to 0. Therefore, we have actually
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proven that the convergence of the law of Xt to µ∞ holds for the Wasserstein distance
Wk, for any k ≥ 1.

Remark 3.4 (Convergence in variation). To obtain the convergence of the law of Xt

to µ∞ in variation (the Wasserstein distance W0), at least when b = 0, one can use
more sophisticated coupling techniques (see for example [8]), based on the fact that

W0(µ, ν) = inf

{
∫

1x6=ydλ(x, y), λ with marginals µ and ν

}

.

3.2. Back to polymeric fluids: long-time behaviour of IE(Xt ⊗∇Π(Xt)). As
noticed in Section 2.2, one problem of practical interest in the context of polymeric
fluids is the long-time behaviour of IE(Xt ⊗∇Π(Xt)). In this framework, it is natural
to restrict ourselves to the case of a radial potential Π (see (4)). The problem here is
therefore to prove the convergence of IE(φ(Xt)) to

∫

φ(X)dµ∞(X) for a non globally
Lipschitz function φ.

We have:

|IE(Xt ⊗∇Π(Xt)) − IE(X∞
t ⊗∇Π(X∞

t ))| =

∣

∣

∣

∣

IE

(

π′(|Xt|)
|Xt|

(Xt ⊗Xt) −
π′(|X∞

t |)
|X∞

t | (X∞
t ⊗X∞

t )

)∣

∣

∣

∣

,

≤
∣

∣

∣

∣

IE

((

π′(|Xt|)
|Xt|

− π′(|X∞
t |)

|X∞
t |

)

(Xt ⊗Xt)

)
∣

∣

∣

∣

+

∣

∣

∣

∣

IE

(

π′(|X∞
t |)

|X∞
t | (Xt ⊗Xt −X∞

t ⊗X∞
t )

)
∣

∣

∣

∣

,

≤ IE

(∣

∣

∣

∣

π′(|Xt|)
|Xt|

− π′(|X∞
t |)

|X∞
t |

∣

∣

∣

∣

|Xt|2
)

+ IE

(

π′(|X∞
t |)

|X∞
t | (|Xt| + |X∞

t |)|Xt −X∞
t |

)

.

Using the fact that we have a uniform-in-time control of the moments of Xt and
exponential convergence of the Lk-norm of (Xt −X∞

t ) to 0 (see Proposition 3.1), we
see that sufficient conditions to obtain the exponential convergence of IE(Xt⊗∇Π(Xt))

to

∫

(X ⊗∇Π(X))dµ∞(X) are:















(1) the exponential convergence of IE

∣

∣

∣

∣

π′(|Xt|)
|Xt|

− π′(|X∞
t |)

|X∞
t |

∣

∣

∣

∣

p

to 0 for some p > 1,

(2) a bound from above for

∫
(

π′(|X|)
|X|

)q

exp(−2π(|X|)) for some q > 1.

If we consider the Hookean case (Π(X) = |X|2
4 ) or the polynomial case

(Π(X) = |X|2
4 + |X|n

2n ), it is then easy to check that both these conditions are ful-
filled (we are actually in the case of a locally Lipschitz function with polynomial
growth, see Remark 3.2).

Let us now turn to the FENE case. Here, the potential Π is explosive, since π is
defined on an interval (0,

√
b) and equal to +∞ on (

√
b,+∞). In this case, we cannot

apply the general results obtained above to prove the convergence of the stress tensor.
Concerning the existence of a global-in-time solution to (1) in this case, one can

show that, if b ≥ 2, the potential π explodes sufficiently fast when |X|2 → b so that
there exists a unique solution to (1), which is such that IP(∃t ≥ 0, |Xt|2 = b) = 0

(see [6, 5]). In particular, if b ≥ 2,
√

|Xt| < b a.s., so that any moment of Xt is
bounded by b.

Moreover, in the FENE framework, we have:

π′(l)

l
=

1

2

1

1 − l2/b
.



46 BENJAMIN JOURDAIN, CLAUDE LE BRIS AND TONY LELIÈVRE

The second condition therefore writes

∫

|X|2<b

(

1

1 − |X|2/b

)q
(

1 − |X|2/b
)b/2

< ∞

and is clearly fulfilled for any q if b > 2(q − 1).
For the first condition, we have:

∣

∣

∣

∣

π′(|Xt|)
|Xt|

− π′(|X∞
t |)

|X∞
t |

∣

∣

∣

∣

=
1

2

∣

∣

∣

∣

1

(1 − |Xt|2/b)
− 1

(1 − |X∞
t |2/b)

∣

∣

∣

∣

,

=
1

2

1

(1 − |Xt|2/b)
1

(1 − |X∞
t |2/b)

∣

∣

∣
|X∞

t |2 − |Xt|2
∣

∣

∣

b
,

≤ 1

(1 − |Xt|2/b)
1

(1 − |X∞
t |2/b)

∣

∣

∣
|X∞

t | − |Xt|
∣

∣

∣
.

One can then conclude using the fact that IE
(

1
1−|X∞

t
|2/b

)q

< C < ∞ as soon as

b > 2(q− 1) (where C does not depend on time) and
(

IE
(

1
1−|Xt|2/b

)r)1/r

< C +Mt

as soon as b > 2(r + 1) and IE
(

1
1−|X0|2/b

)r

< ∞ (apply Itô’s formula to compute
(

1
1−|Xt|2/b

)r

and conclude like in the end of the proof of Lemma 2 in [6]). It is then

easy to prove that:

Proposition 3.2. In the case of the FENE force, provided that b > 2(1 +
√

2) and

IE
(

1
1−|X0|2/b

)

√
2

< ∞, we have exponential convergence of the stress tensor: ∀γ <
1/2 ∧ β, ∃C > 0, ∀t ≥ 0,

∣

∣

∣

∣

IE

(

Xt ⊗Xt

1 − |Xt|2/b

)

−
∫

X ⊗X

1 − |X|2/bdµ∞(X)

∣

∣

∣

∣

≤ Ce−γt.
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