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Abstract. This paper deals with some existence of solutions for some classes of coupled

systems of conformable fractional differential equations with initial and boundary conditions
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space; fixed point.

1. Introduction

In recent years, fractional differential equations have found applications in diverse
fields such as engineering, mathematics, and physics, as well as other applied sciences.
There has been a significant focus on studying the existence of solutions for initial
and boundary value problems related to fractional differential equations. To this end,
several monographs [1, 2, 17, 23, 24, 28] and papers [8, 9, 19, 20, 22] have explored
this area in depth.

In a recent publication by Khalil et al. [16], a novel definition of the fractional deriv-
ative was introduced. This definition, known as the conformable fractional derivative,
is a natural extension of the standard first derivative. The conformable fractional de-
rivative possesses several desirable properties, such as linearity, product rule, quotient
rule, power rule, and chain rule, similar to those of the classical integral derivative. Its
adoption has greatly facilitated the modeling of various physical problems, resulting
in an extensive literature on the topic [3, 4, 6, 5, 7, 10, 13, 14, 15, 26, 27].

In [18], the authors considered the following conformable impulsive problem:
T ϑζχ(ζ) = ℵ

(
ζ, χζ , T ϑ χ(ζ)

)
, ζ ∈ ;ג  = 0, 1, . . . , ς,

∆χ|ζ=ζ = Υ(χζ− ),  = 1, 2, . . . , ς,

χ(ζ) = µ(ζ), ζ ∈ (−∞,κ],

where 0 ≤ κ = ζ0 < ζ1 < · · · < ζς < ζς+1 = κ̄ < ∞, T ϑζχ(ζ) is the conformable

fractional derivative of order 0 < ϑ < 1, ℵ : ג × Q × R → R is a given continuous
function, ג := [κ, κ̄], 0ג := [κ, ζ1], ג := (ζ, ζ+1];  = 1, 2, . . . , ς, µ : (−∞,κ] → R
and Υ : Q → R are given continuous functions, and Q is called a phase space.
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In this paper we investigate the existence of solutions for the following coupled
conformable fractional differential system:{

(T µ1

0+ χ)(θ) = ℵ1(θ, χ(θ), ξ(θ))

(T µ2

0+ ξ)(θ) = ℵ2(θ, χ(θ), ξ(θ))
; θ ∈ 0, (1)

with the following coupled boundary conditions:

(χ(0), ξ(0)) = (δ1ξ(κ), δ2χ(κ)), (2)

where κ > 0, 0 := [0,κ], µ ∈ (0, 1];  = 1, 2 ℵ : 0×R×R→ R;  = 1, 2 are given
continuous functions, T µa is the conformable fractional derivative of order µ;  = 1, 2,
and δ1, δ2 are real numbers with δ1δ2 6= 1.

Next, we investigate the following coupled conformable fractional differential sys-
tem: {

(T µ1

a+ χ)(θ) = ℵ1(θ, χ(θ), ξ(θ))

(T µ2

a+ ξ)(θ) = ℵ2(θ, χ(θ), ξ(θ))
; θ ∈ [a,∞), (3)

with the coupled initial conditions:

(χ(a), ξ(a)) = (χa, ξa), (4)

where a > 0, µ ∈ (0, 1];  = 1, 2, (Ξ, ‖ · ‖) is a (real or complex) Banach space,
χa, ξa ∈ Ξ and ℵ : R+ × Ξ× Ξ→ Ξ;  = 1, 2 are given continuous functions.

2. Preliminaries

First, let us introduce some basic lemmas and definitions that are needed throughout
all the manuscript.
Let C := C(0,Ξ) be the Banach space equipped with the norm defined by

‖χ‖∞ := sup
θ∈0
‖χ(θ)‖.

In the case when Ξ := R we have ‖χ‖∞ := sup
θ∈0
|χ(θ)|.

By k := C × C, we denote the complete metric space with the usual metric

D((χ1, ξ1), (χ2, ξ2)) := d(χ1, χ2) + d(ξ1, ξ2).

k is a Banach space with the norm

‖(χ, ξ)‖k = ‖χ‖∞ + ‖ξ‖∞.
By L1(0,Ξ) we denote the Banach space of measurable functions χ : 0 → Ξ, which
are Bochner integrable, equipped with the norm

‖χ‖1 =

∫ κ

0

‖χ(θ)‖dθ.

Let k := C(R+,Ξ) be the Fréchet space of all continuous functions χ from R+ into
Ξ, equipped with the family of semi norms

‖χ‖ı = sup
θ∈[0,ı]

{‖χ(θ)‖ : ı ∈ N},

and the distance

d(χ, ξ) =

∞∑
ı=0

2−ı‖χ− ξ‖ı
1 + ‖χ− ξ‖ı

; χ, ξ ∈ k.
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Definition 2.1 ([25]). A nonempty subset ∇ ⊂ k is said to be bounded if

sup
χ∈∇
‖χ‖ı <∞; for ı ∈ N.

Definition 2.2. Let Yk be the family of all nonempty and bounded subsets of a
Fréchet space k. A family of functions {ζı}ı ∈ N where ζı : Yk → [0,∞) is said to be
a family of measures of noncompactness in the real Fréchet space k if it satisfies the
following conditions for all ∇,∇1,∇2 ∈ Yk:
• (a) {ζı}ı ∈ N is full, that is: ζı(∇) = 0 for ı ∈ N and only if ∇ is precompact,
• (b) ζı(∇1) < ζı(∇2) for ∇1 ⊂ ∇2 and ı ∈ N,
• (c) ζı(Conv∇) = ζı(∇) for ı ∈ N.

If {∇}=1 is a sequence of closed sets from Yk such that∇+1 ⊂ ∇ and if lim
→∞

ζı(∇) =

0, for each ı ∈ N, then the intersection set ∇∞ := ∩∞=1∇ is nonempty.

Property 2.1. We have the following properties:
(1) We call the family of measures of noncompactness {ζı}ı ∈ N to be homogeneous

if ζı($∇) = |$|ζı(∇); for $ ∈ R and ı ∈ N.
(2) If the family {ζı}ı ∈ N satisfied the condition ζı(∇1 ∪∇2) < ζı(∇1) + ζı(∇2), for

ı ∈ N, it is called subadditive.
(3) We say that the family of measures {ζı}ı ∈ N has the maximum property if

ζı(∇1 ∪∇2) = max{ζı(∇1), ζı(∇2)}.
(4) The family of measures of noncompactness {ζı}ı ∈ N is said to be regular if if

the conditions (a), (3) and (4) hold; (full sublinear and has maximum property.

Example 2.1 ([25, 12]). For ∇ ∈ Yk, ψ ∈ ∇, ı ∈ N and γ > 0, let us denote by
=ı(ψ, γ) the modulus of continuity of the function ψ on the interval [0, ı], that is

=ı(ψ, γ) = sup{‖ψ(θ)− ψ(%)‖ : θ, % ∈ [0, ı], |θ − %| < γ}.
Further, let us put

=ı(∇, γ) = sup{=ı(ψ, γ) : ψ ∈ ∇},
=ı0(∇) = lim

γ→0+
=ı(∇, γ),

ζ−ı(∇) = sup
θ∈[0,ı]

ζ(∇(θ)) = sup
θ∈[0,ı]

ζ({ψ(θ) : ψ ∈ ∇}),

and
ςı(∇) = =ı0(∇) + ζ−ı(∇).

The family of mappings {ςı}ı∈N where ςı : Yk → [0,∞) satisfies the conditions (a)-(d)
from definition 2.2.

Lemma 2.2 ([21]). If Y is a bounded subset of a Banach space k, there is a sequence
(yk)

∞
k=1 ⊂ Y such that

ζ(Y ) ≤ 2ζ((yk)
∞
k=1) + γ, for each γ > 0,

where ζ is the Kuratowskii measure of noncompactness.

Lemma 2.3 ([21]). If {χk}∞k=1 ⊂ L1([0,κ]) is uniformly integrable, then ζ({χk}∞k=1)
is measurable and

ζ

({∫ θ

1

χk(%)d%

}∞
k=1

)
≤ 2

∫ θ

1

ζ({χk(%)}∞k=1)d%, for each θ ∈ [0,κ].
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Definition 2.3. Let ג be a nonempty subset of a Fréchet space k and let be A a
continuous operator which transforms bounded subsets of onto bounded ones. One
says that A satisfies the Darbo condition with constants (kı)ı∈N with respect to a
family of measures of noncompactness (ζı)ı∈N, if

ζı(A(∇)) ≤ kıζı(∇), for each bounded set ∇ ⊂ ג and ı ∈ N.

If kı < 1; ı ∈ N, then A is called a contraction with respect to (ζı)ı∈N.

Let us now recall some essential definitions on conformable derivatives that can be
found in [16, 3].

Let ı < µ < ı+ 1, and set ς = µ− ı. For a function ℵ : [a,∞)→ R, let

J µa ℵ(θ) =

∫ θ

a

(%− a)µ−1ℵ(%)d%, ı = 0,

and

J µa ℵ(θ) =
1

ı!

∫ θ

a

(θ − %)ıℵ(%)dς(%, a) =
1

ı!

∫ θ

a

(θ − %)ı(%− a)ς−1ℵ(%)d%; ı ≥ 1.

Remark 2.1. Since 0 < ς < 1, J µa ℵ(θ) is the Lebesgue-Stieltjes integral of the
function (θ− %)ıℵ(%) on [a, θ] and dς(%, a) = (%− a)ς−1d% is an absolutely continuous
measure with respect to the Lebesgue measure on the real line, generated by the
absolutely continuous function (θ − a)ς and the weight function (%− a)ς−1 ∈ L1[a, b]
is its Radon- Nikodym derivative according to the Lebesgue measure.

The conformable derivative of order 0 < µ < 1, of a function ℵ : [a,∞) → R is
defined by

T µa ℵ(θ) = lim
γ→0

ℵ(θ + γ(θ − a)1−µ − ℵ(θ)

γ
, θ > a.

If T µa ℵ(θ) exists on (a, b), b > a and lim
θ→a+

T µa ℵ(θ) exists, then we define

T µa ℵ(a) = lim
θ→a+

T µa ℵ(θ).

The conformable derivative of order ı < µ < ı+ 1 of a function ℵ : [a,∞)→ R, when
ℵ(ı) exists, is defined by T µa ℵ(θ) = T ςa ℵ(ı)(θ), where ς = µ− ı ∈ (0, 1).

Lemma 2.4. For the properties of the conformable derivative, we mention the fol-
lowing:
• Let ı < µ < ı+ 1 and ℵ be an (ı+ 1)-differentiable at θ > a, then we have

T µa ℵ(θ) = (θ − a)ı+1−µℵ(ı+1)(θ),

and

J µa T µa ℵ(θ) = ℵ(θ)−
ı∑

k=0

ℵ(ı)(a)(θ − a)k

k!
.

• In particular, if 0 < µ < 1, then we have

J µa T µa ℵ(θ) = χ(θ)− χ(a).

Remark 2.2. We provide the following remarks:
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• For 0 < µ < 1, using Lemma 2.4 it follows that, if a function ℵ is differentiable
at θ > a, then one has

lim
µ→1
T µa ℵ(θ) = ℵ′(θ)

and

lim
µ→0
T µa ℵ(θ) = (θ − a)ℵ′(θ),

i.e. the zero order derivative of a differentiable function does not return to the
function itself.

• Let ı < µ < ı + 1, if ℵ is (ı + 1)-differentiable on (a, b), b > a and lim
θ→a+

ℵ(ı+1)

exists, then from Lemma 2.4, we get T µa ℵ(a) = lim
θ→a+

T µa ℵ(θ) = 0.

• Let ı < µ < ı + 1, if ℵ is (ı + 1)-differentiable at θ > a, then we can show that
T µa ℵ(θ) = T µ−ka ℵ(k)(θ) for all positive integer k < µ.

Proposition 2.5. Let 1 < µ < 2, if a function ℵ ∈ C1[a, b] attains a global maxi-
mum (respectively minimum) at some point θ ∈ (a, b), then T µa ℵ(θ) ≤ 0 (respectively
T µa ℵ(θ) ≥ 0.

Proof. The result follows from the fact that

T µa ℵ(θ) = T µ−1a ℵ′(θ) = lim
γ→0

ℵ′(θ + γ(θ − a)2−µ)

γ
.

�

Theorem 2.6 (Schaefer’s fixed point theorem [11]). Let U be a Banach space and
T : U → U be continuous and compact mapping (completely continuous mapping).
Moreover, suppose

S = {χ ∈ U : χ = $Tu, for some $ ∈ (0, 1)}

be a bounded set. Then, T has at least one fixed point in U .

Theorem 2.7 ([25]). Let ג be a nonempty, bounded, closed, and convex subset of a
Fréchet space k and let V : ג → ג be a continuous mapping. Suppose that V is a
contraction with respect to a family of measures of noncompactness ζıı∈N. Then the
mapping V has at least one fixed point in the set .ג

Lemma 2.8. Let ψ, ψ̂ ∈ C, and δ1δ2 6= 1 Then the unique solution (χ, ξ) of problem
T µ1
a χ(θ) = ψ(θ); θ ∈ 0 := [0,κ], µ1 ∈ (0, 1],

T µ2
a ξ(θ) = ψ̂(θ); θ ∈ 0 := [0,κ], µ2 ∈ (0, 1],

χ(0) = δ1ξ(κ),

ξ(0) = δ2χ(κ),

(5)

is given by

χ(θ) =
δ1

1− δ1δ2

[
δ2

∫ κ

0

%µ1−1ψ(%)ds+

∫ κ

0

%µ2−1ψ̂(%)d%

]
+

∫ θ

0

%µ1−1ψ(%)d%,

ξ(θ) =
δ2

1− δ1δ2

[
δ1

∫ κ

0

%µ2−1ψ̂(%)ds+

∫ κ

0

%µ1−1ψ(%)d%

]
+

∫ θ

0

%µ2−1ψ̂(%)d%.
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Proof. By Lemma 2.4, solving the linear fractional differential equation

T µ1

0 χ(θ) = ψ(θ),

we find that

J µ1

0 T
µ1

0 χ(θ) = J µ1

0 ψ(θ).

Hence,

χ(θ) = χ(0) +

∫ θ

0

%µ1−1ψ(%)d%, (6)

ξ(θ) = ξ(0) +

∫ θ

0

%µ2−1ψ̂(%)d%. (7)

By using the boundary conditions χ(0) = δ1ξ(κ), and ξ(0) = δ2χ(κ), we obtain

χ(0) = δ1

[
ξ(0) +

∫ κ

0

%µ2−1ψ̂(%)d%

]
, (8)

and

ξ(0) = δ2

[
χ(0) +

∫ κ

0

%µ1−1ψ(%)d%

]
. (9)

It follows from (8) and (9) that

χ(0) =
δ1

1− δ1δ2

[
δ2

∫ κ

0

%µ1−1ψ(%)d%+

∫ κ

0

%µ2−1ψ̂(%)d%

]
,

and

ξ(0) =
δ2

1− δ1δ2

[
δ1

∫ κ

0

%µ2−1ψ̂(%)d%+

∫ κ

0

%µ1−1ψ(%)d%

]
.

Thus,
χ(θ) =

δ1
1− δ1δ2

[
δ2

∫ κ

0

%µ1−1ψ(%)d%+

∫ κ

0

%µ2−1ψ̂(%)d%

]
+

∫ θ

0

%µ1−1ψ(%)d%,

ξ(θ) =
δ2

1− δ1δ2

[
δ1

∫ κ

0

%µ2−1ψ̂(%)d%+

∫ κ

0

%µ1−1ψ(%)d%

]
+

∫ θ

0

%µ2−1ψ̂(%)d%.

�

The following lemma is a direct conclusion of Lemma 2.8.

Lemma 2.9. Let ℵ : 0 × R × R → R,  = 1, 2, be such that ℵ(·, χ, ξ) ∈ C(0) for
each χ, ξ ∈ C(0). Then the coupled system (1)-(2) is equivalent to the coupled system
of integral equations

χ(θ) =
δ1

1− δ1δ2

[
δ2

∫ κ

0

%µ1−1ℵ1(%, χ(%), ξ(%))ds+

∫ κ

0

%µ2−1ℵ2(%, χ(%), ξ(%))d%

]
+

∫ θ

0

%µ1−1ℵ1(%, χ(%), ξ(%))d%,

ξ(θ) =
δ2

1− δ1δ2

[
δ1

∫ κ

0

%µ2−1ℵ2(%, χ(%), ξ(%))d%+

∫ κ

0

%µ1−1ℵ1(%, χ(%), ξ(%))d%

]
+

∫ θ

0

%µ2−1ℵ2(%, χ(%), ξ(%))d%.
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3. Existence results in Banach spaces

Now, we shall prove the main results concerning the existence of solutions of our first
problem by applying Schaefer’s fixed point theorem.

Let us introduce the following hypothesis:
(H) there exist real constants L,K,Y > 0;  = 1, 2, such that

|ℵ(θ, χ1, χ2)| ≤ L +K|χ1|+ Y|χ2|; for θ ∈ 0 and χ ∈ R.
Set

W1 =

[
|δ1δ2|
|1− δ1δ2|

+ 1

]
T µ1

µ1
, W2 =

[
|δ1|

|1− δ1δ2|

]
T µ2

µ2
,

W3 =

[
|δ2|

|1− δ1δ2|

]
T µ1

µ1
, W4 =

[
|δ1δ2|
|1− δ1δ2|

+ 1

]
T µ2

µ2
.

Theorem 3.1. Assume that the hypothesis (H) is satisfies. If

(W1 +W3)(K1 + Y1) + (W2 +W4)(K2 + Y2) < 1, (10)

then the problem (1)-(2) has at least one solution.

Proof. Define the operator Ψ : k→ k by

(Ψ(χ, ξ))(θ) = ((Ψ1χ)(θ), (Ψ2ξ)(θ)), (11)

where Ψ1,Ψ2 : C → C are given by

(Ψ1χ)(θ) = δ1
1−δ1δ2

[
δ2

∫ κ

0

%µ1−1ℵ1(%, χ(%), ξ(%))ds+

∫ κ

0

%µ2−1ℵ2(%, χ(%), ξ(%))ds

]
+

∫ θ

0

%µ1−1ℵ1(%, χ(%), ξ(%))ds,

and

(Ψ2ξ)(θ) = δ2
1−δ1δ2

[
δ1

∫ κ

0

%µ2−1ℵ2(%, χ(%), ξ(%))ds+

∫ κ

0

%µ1−1ℵ1(%, χ(%), ξ(%))ds

]
+

∫ θ

0

%µ2−1ℵ2(%, χ(%), ξ(%))ds.

Set

R ≥ (W1 +W3)L1 + (W2 +W4)L2

1− (W1 +W3)(K1 + Y1)− (W2 +W4)(K2 + Y2)
,

and consider the closed and convex ball

∇R = {(χ, ξ) ∈ k : ‖(χ, ξ)‖k ≤ R}.
Let (χ, ξ) ∈ ∇R. Then, for each θ ∈ 0 and any  = 1, 2, we have

|(Ψ1χ)(θ)| =

∣∣∣∣∣ δ1δ2
1− δ1δ2

∫ κ

0

%µ1−1ℵ1(%, χ(%), ξ(%))d%

+
δ1

1− δ1δ2

∫ κ

0

%µ2−1ℵ2(%, χ(%), χ(%))d%

+

∫ θ

0

%µ1−1ℵ1(%, χ(%), ξ(%))d%

∣∣∣∣∣
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≤
∣∣∣∣ δ1δ2
1− δ1δ2

∣∣∣∣ ∫ κ

0

%µ1−1|ℵ1(%, χ(%), ξ(%))|d%

+

∣∣∣∣ δ1
1− δ1δ2

∣∣∣∣ ∫ κ

0

%µ2−1|ℵ2(%, χ(%), χ(%))|d%

+

∫ κ

0

%µ1−1|ℵ1(%, χ(%), ξ(%))|d%

≤
[
|δ1δ2|
|1− δ1δ2|

+ 1

] ∫ κ

0

%µ1−1(L1 +K1|χ(%)|+ Y1|ξ(%)|)d%

+
|δ1|

|1− δ1δ2|

∫ κ

0

%µ2−1(L2 +K2|χ(%)|+ Y2|ξ(%)|)d%

≤
[
|δ1δ2|
|1− δ1δ2|

+ 1

]
κµ1

µ1
(L1 + (K1 + Y1)R)

+

[
|δ1|

|1− δ1δ2|

]
κµ2

µ2
(L2 + (K2 + Y2)R)

≤W1(L1 + (K1 + Y1)R) +W2(L2 + (K2 + Y2)R).

Also,

|(Ψ2ξ)(θ)| =
∣∣∣∣ δ2δ1
1− δ2δ1

∫ κ

0

%µ2−1ℵ2(%, χ(%), ξ(%))d%

+
δ2

1− δ2δ1

∫ κ

0

%µ1−1ℵ1(%, χ(%), χ(%))d%

+

∫ θ

0

%µ2−1ℵ2(%, χ(%), ξ(%))d%

∣∣∣∣
≤
∣∣∣∣ δ2δ1
1− δ2δ1

∫ κ

0

%µ2−1ℵ2(%, χ(%), ξ(%))d%

∣∣∣∣
+

∣∣∣∣ δ2
1− δ2δ1

∫ κ

0

%µ2−1ℵ1(%, χ(%), χ(%))d%

∣∣∣∣
+

∣∣∣∣∫ κ

0

%µ2−1ℵ2(%, χ(%), ξ(%))d%

∣∣∣∣
≤W3(L1 + (K1 + Y1)R) +W4(L2 + (K2 + Y2)R).

Thus, we get

|Ψ(χ, ξ)(θ)| ≤ ((W1 +W3)(K1 + Y1) + (W2 +W4)(K2 + Y2))R

+ (W1 +W3)L1 + (W2 +W4)L2.

Thus,

‖Ψ(χ, ξ)‖k ≤ R.
Hence, Ψ maps the ball ∇R into itself. We shall show that the operator Ψ : ∇R → ∇R
satisfies the assumptions of Schaefer’s fixed point theorem. The proof will be given
in several steps.

Step 1. We show that Ψ is continuous. Let {(χı, ξı)} be a sequence such that
(χı, ξı)→ (χ, ξ) in ∇R. Then, for each θ ∈ 0, we have

|Ψ1(χı, ξı)(θ)−Ψ1(χ, ξ)(θ)|
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≤ [
|δ1δ2|
|1− δ1δ2|

+ 1]

∫ κ

0

%µ1−1|[ℵ1(%, χı(%), ξı(%))− ℵ1(%, χ(%), ξ(%))]|d%

+
|δ1|

|1− δ1δ2|

∫ κ

0

%µ2−1|[ℵ2(%, χı(%), ξı(%))− ℵ2(%, χ(%), ξ(%))]|d%.

Analogously, we get

|Ψ2(χı, ξı)(θ)−Ψ2(χ, ξ)(θ)|

≤ [
|δ1δ2|
|1− δ1δ2|

+ 1]

∫ κ

0

%µ1−1|[ℵ2(%, χı(%), ξı(%))− ℵ2(%, χ(%), ξ(%))]|d%

+
|δ2|

|1− δ1δ2|

∫ κ

0

%µ2−1|[ℵ1(%, χı(%), ξı(%))− ℵ1(%, χ(%), ξ(%))]|d%.

Since (χı, ξı) → (χ, ξ) as ı → ∞ and ℵ,  = 1, 2, are continuous, by the Lebesgue
dominated convergence theorem

‖Ψ(χı, ξı)−Ψ(χ, ξ)‖k → 0 as ı→∞.

Step 2. We show that Ψ maps bounded sets into bounded and equicontinuous
sets in ∇R. Ψ(∇R) is bounded. This is clear since Ψ : ∇R → ∇R and ∇R is bounded.

Now, let θ1, θ2 ∈ [0,κ] be such that θ1 < θ2. and let (χ1;χ2) ∈ ∇R. Then, we have

|(Ψ1χ)(θ2)− (Ψ1χ)(θ1)| ≤
∫ θ2

0

%µ1−1|ℵ1(%, χ(%), ξ(%))|d%−
∫ θ1

0

%µ1−1|ℵ1(%, χ(%), ξ(%)|d%

≤
∫ θ2

θ1

%µ1−1|ℵ1(%, χ(%), ξ(%))|d%

≤ L1 +K1R+ Y1R

µ1
(θµ1

2 − θ
µ1

1 ).

Thus,

|(Ψ1χ)(θ2)− (Ψ1χ)(θ1)| ≤ L1 +K1R+ Y1R

µ1
(θµ1

2 − θ
µ1

1 ). (12)

In a similar manner, we can easily get

|(Ψ2ξ)(θ2)− (Ψ2ξ)(θ1)| ≤ L1 +K2R+ Y2R

µ2
(θµ2

2 − θ
µ2

1 ). (13)

The right-hand sides of the inequalities (12) and (13) tend to zero as θ2 → θ1. There-
fore, the operator Ψ(χ, ξ) is equicontinuous. By collecting the above steps along with
the Arzela-Ascoli theorem, we deduce that Ψ : ∇R → ∇R is completely continuous
mapping.

Step 3. The set ג = {(χ, ξ) ∈ k : (χ, ξ) = $Ψ(χ, ξ); 0 ≤ $ ≤ 1} is bounded.
Let (χ, ξ) ∈ ג such that (χ, ξ) = $Ψ(χ, ξ). Then for any θ ∈ 0, we have

χ(θ) = $(Ψ1χ)(θ), and ξ(θ) = $(Ψ2ξ)(θ).

Hence,

χ(θ) =
$δ1

1− δ1δ2

[
δ2

∫ κ

0

%µ1−1ℵ1(%, χ, ξ)ds+

∫ κ

0

%µ2−1ℵ2(%, χ(%), ξ(%))d%

]
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+$

∫ θ

0

%µ1−1ℵ1(%, χ(%), ξ(%))d%.

From the assumption (H), we obtain

|χ(θ)| ≤W1(L1 + (K1 + Y1)(|χ(θ)|+ |ξ(θ)|)) +W2(L2 + (K2 + Y2)(|χ(θ)|+ |ξ(θ)|)).

By the same approach, we have

|ξ(θ)| ≤W3(L1 + (K1 + Y1)(|χ(θ)|+ |ξ(θ)|)) +W4(L2 + (K2 + Y2)(|χ(θ)|+ |ξ(θ)|)).

Thus, we obtain

|χ(θ)|+ |ξ(θ)| ≤ ((W1 +W3)(K1 + Y1) + (W2 +W4)(K2 + Y2))(|χ(θ)|+ |ξ(θ)|)
(14)

+ (W1 +W3)L1 + (W2 +W4)L2. (15)

This gives

|χ(θ)|+ |ξ(θ)| ≤ (W1 +W3)L1 + (W2 +W4)L2

1− ((W1 +W3)(K1 + Y1) + (W2 +W4)(K2 + Y2))
:= ν.

Hence,

‖(χ, ξ)‖k ≤ ν.
Therefore, the set ג is bounded.

As a consequence of Theorem 2.6, we conclude that Ψ has at least one fixed point.
This confirms that there exists at least one solution of the coupled system (1)-(2). �

4. Existence results in Fréchet spaces

Let us introduce the following hypotheses:
(H1) The functions ℵ;  = 1, 2 are measurable on R+; for each θ ∈ 0 and χ, ξ ∈ Ξ,

and the the functions (χ, ξ)→ ℵ(θ, χ, ξ) are continuous on Ξ for a.e.θ ∈ R+;  =
1, 2.

(H2) There exist continuous functions h, p, q : R+ → R+ and 0 < k < 1;  = 1, 2,
such that

‖ℵ(θ, χ1, χ2)‖ ≤ h(θ) + p(θ)‖χ1‖+ q(θ)‖χ2‖; for θ ∈ R+, and χ, ξ ∈ Ξ.

(H3) For each bounded sets ∇ ⊂ Ξ;  = 1, 2 and for each θ ∈ R+, we have

ζ(ℵ(θ,∇1,∇2)) ≤ p(θ)ζ(∇1) + q(θ)ζ(∇2),

where ζ is a measure of noncompactness on the Banach space Ξ.
For ı ∈ N, set

p∗ = sup
θ∈[0,ı]

p(θ), q
∗
 = sup

θ∈[0,ı]
q(θ), h

∗
 = sup

θ∈[0,ı]
h(θ).

Theorem 4.1. Assume that (H1)-(H3) are satisfied. If

(p∗1 + q∗1)
(ı− a)µ1

µ1
+ (p∗2 + q∗2)

(ı− a)µ2

µ2
<

1

2
,

for each ı ∈ N∗, then the problem (3)-(4) has at least one solution.
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Proof. Define the operator Ψ : k→ k by

(Ψ(χ, ξ))(θ) = ((Ψ1χ)(θ), (Ψ2ξ)(θ)), (16)

where Ψ1,Ψ2 : C → C with

(Ψ1χ))(θ) = χa +

∫ θ

1

(%− a)µ1−1ℵ1(%, χ(%), ξ(%))ds, (17)

and

(Ψ2ξ))(θ) = ξa +

∫ θ

1

(%− a)µ2−1ℵ2(%, χ(%), ξ(%))ds. (18)

Clearly, the fixed points of the operator Ψ are solutions of the coupled system (3)-(4).

For any ı ∈ N∗, we set

Rı ≥
‖χa‖+ ‖ξa‖+ h∗1

(ı−a)µ1
µ1

+ h∗2
(ı−a)µ2
µ2

1− ((p∗1 + q∗1) (ı−a)µ1
µ1

+ (p∗2 + q∗2) (ı−a)µ2
µ2

)
.

Consider the ball

∇Rı := ∇(0, Rı) = {(χ, ξ) ∈ k : ‖χ‖ı ≤ Rı, ‖ξ‖ı ≤ Rı}.
For any ı ∈ N∗, and each χ, ξ ∈ ∇Rı and θ ∈ [0, ı] we have

‖(Ψ1χ)(θ)‖ ≤ ‖χa‖+

∫ θ

1

(%− a)µ1−1 ‖ℵ1(%, χ(%), ξ(%))‖ d%

≤ ‖χa‖+

∫ θ

1

(%− a)µ1−1(h1(%) + p1(%) ‖χ1‖+ q1(%) ‖χ2‖)d%

≤ ‖χa‖+ (h∗1 + (p∗1 + q∗1)Rı)

∫ θ

1

(%− a)µ1−1d%

≤ ‖χa‖+ (h∗1 + (p∗1 + q∗1)Rı)
(ı− a)µ1

µ1
,

and

‖(Ψ2ξ)(θ)‖ ≤ ‖ξa‖+

∫ θ

1

(%− a)µ2−1 ‖ℵ2(%, χ(%), ξ(%))‖ d%

≤ ‖ξa‖+

∫ θ

1

(%− a)µ2−1(h2(%) + p2(%) ‖χ1‖+ q2(%) ‖χ2‖)d%

≤ ‖ξa‖+ (h∗2 + (p∗2 + q∗2)Rı)

∫ θ

1

(%− a)µ2−1d%

≤ ‖ξa‖+ (h∗2 + (p∗2 + q∗2)Rı)
(ı− a)µ2

µ2
.

Then,

‖(Ψ(χ, ξ))(θ)‖ ≤ ‖χa‖+ ‖ξa‖+ h∗1
(ı− a)µ1

µ1
+ h∗2

(ı− a)µ2

µ2
+ ((p∗1 + q∗1)

(ı− a)µ1

µ1

+ (p∗2 + q∗2)
(ı− a)µ2

µ2
)Rı

≤ Rı.
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Thus,

‖(Ψ(χ, ξ)‖ı ≤ Rı. (19)

This proves that Ψ transforms the ball ∇Rı into itself. We shall show that the oper-
ator Ψ : ∇Rı → ∇Rı satisfies all the assumptions of Theorem 2.7. The proof will be
given in two steps.

Step 1: Ψ(∇Rı) is bounded and Ψ : Ψ(∇Rı)→ Ψ(∇Rı) is continuous.
Since Ψ(∇Rı) ⊂ ∇Rı and ∇Rı is bounded, Ψ(∇Rı) is bounded. Let {(χk, ξk)}k∈N be
a sequence such that (χk, ξk)→ (χ, ξ) in ∇Rı . Then, for each θ ∈ [0, ı], we have

‖(Ψ(χı, ξı))(θ)− (Ψ(χ, ξ))(θ)‖

≤
2∑
=1

∫ θ

a

∥∥(%− a)µ−1[ℵ(%, χı(%), ξı(%)− ℵ(%, (χ(%), ξ(%))]
∥∥d%

≤
2∑
=1

∫ θ

a

(%− a)µ−1 ‖[ℵ(%, χı(%), ξı(%)− ℵ(%, (χ(%), ξ(%))]‖d%.

Since (χk, ξk) → (χ, ξ) as k → ∞ and ℵ,  = 1, 2, are continuous, by the Lebesgue
dominated convergence theorem

‖Ψ(χı, ξı)−Ψ(χ, ξ)‖ı → 0 as k →∞.
Step 2: For each bounded equicontinuous subset D of ∇Rı , ζı(Ψ(D)) < `ıζı(D).

From Lemmas 2.2 and 2.3, for any D ⊂ ∇Rı and any γ > 0, there exists a sequence
{χk, ξk}∞k=0 ⊂ D, such that for all θ ∈ [a, ı], we have

ζ((ND)(θ)) =

2∑
=1

ζ({χia +

∫ θ

a

(%− a)µ−1ℵ(%, (χ(%), ξ(%))ds; (χ, ξ) ∈ D})

≤
2∑
=1

ζ({
∫ θ

a

(%− a)µ−1ℵ(%, (χk(%), ξk(%))ds}∞k=1) + γ

≤ 2

2∑
=1

∫ θ

a

(%− a)µ−1ζ({ℵ(%, (χk(%), ξk(%))}∞k=1)ds+ γ

≤ 2

2∑
=1

∫ θ

a

(%− a)µ−1p(%)ζ({(χk(%))}∞k=1) + q(%)ζ({ξk(%))}∞k=1)ds+ γ

≤ 2((p∗1 + q∗1)
(ı− a)µ1

µ1
+ (p∗2 + q∗2)

(ı− a)µ2

µ2
)ζı(D) + γ.

Since γ > 0 is arbitrary, then

ζ((ND)(θ)) ≤ 2((p∗1 + q∗1)
(ı− a)µ1

µ1
+ (p∗2 + q∗2)

(ı− a)µ2

µ2
)ζı(D).

Thus,

ζı(ND) ≤ 2((p∗1 + q∗1)
(ı− a)µ1

µ1
+ (p∗2 + q∗2)

(ı− a)µ2

µ2
)ζı(D).

By combining steps 1 and 2 with Theorem 2.7, it follows that there exists a fixed
point of Ψ within ∇Rı , which serves as a solution to problem (3)-(4). �
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5. Examples

Example 5.1. Consider the coupled system of Conformable fractional differential
equations {

(T
1
2

0+χ)(θ) = ℵ1(θ, χ(θ), ξ(θ))

(T
1
2

0+ξ)(θ) = ℵ2(θ, χ(θ), ξ(θ))
; θ ∈ [0, 1], (20)

with the following coupled boundary conditions:

(χ(0), ξ(0)) = (1, 2), (21)

where

ℵ1(θ, χ, ξ) =
sin(χ+ ξ)

40(eθ + 1)
,

ℵ2(θ, χ, ξ) =
tanχ

10 + |χ|+ |ξ|
, θ ∈ [0, 1]; χ, ξ ∈ R.

The hypothesis (H) and the condition (10) are satisfied with

Y1 = K1 =
1

80
, K2 =

1

10
, δ1 = δ2 =

1

2
,

W1 = W4 =
8

3
,W2 = W3 =

4

3
.

Hence, Theorem 3.1 implies that the system (20)–(21) has at least one solution defined
on [0, 1].

Example 5.2. Let

l1 =

{
χ = (χ1, χ2, . . . , χı, . . .),

∞∑
k=1

|χk| <∞

}
be the Banach space with the norm

‖χ‖ =

∞∑
k=1

|χk|,

and C(R+, l
1) be the Fréchet space of all continuous functions ξ from R+ into l1,

equipped with the family of seminorms

‖ξ‖ı = sup
θ∈[0,ı]

‖ξ(θ)‖; ı ∈ N.

Consider the coupled system of Conformable fractional differential equations{
(T

1
5

0+χk)(θ) = ℵk(θ, χ(θ), ξ(θ))

(T
1
5

0+ξk)(θ) = ℵ̂k(θ, χ(θ), ξ(θ))
; θ ∈ [1,∞), k = 1, 2, . . . , (22)

with the following initial coupled conditions:

(χ(1), ξ(1)) = (0, 0), (23)

where

ℵk(θ, χ, ξ) =
c

1 + ‖χ‖+ ‖ξ|
(e−7 +

1

eθ+5
)(2−k + χk(θ)), θ ∈ [1,∞),

ℵ̂k(θ, χ, ξ) =
c

eθ+5(1 + ‖χ‖+ ‖ξ‖)
(2−k + ξk(θ)), θ ∈ [1,∞), k = 1, 2, · · · , c > 0,



COUPLED CONFORMABLE FRACTIONAL DIFFERENTIAL SYSTEMS 131

for each θ ∈ [1, ı]; ı ∈ N, with

ℵ = (ℵ1,ℵ2, . . . ,ℵk, . . .), ℵ̂ = (ℵ̂1, ℵ̂2, . . . , ℵ̂k, . . .), and χ = (χ1, χ2, . . . , χk, . . .).

We can show that all hypotheses of Theorem 4.1 are satisfied with

h1(θ) = p1(θ) = c(e−7 +
1

eθ+5
), q1(θ) = p2(θ) = 0, h2(θ) = q2(θ) =

c

eθ+5
.

So,

h∗1 = p∗1 = c(e−7 + e−6), h∗2 = q∗2 = ce−6.

Therefore, Theorem 4.1 implies that the system (22)–(23) has at least one solution
defined on [1,∞).
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