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Semihypergroup Actions by using the Generalized
Permutations
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Abstract. An ordered hypergroupoid is a hypergroupoid together with a partial order such
that satisfies the monotone condition. In this paper, we introduce the notion of semihyper-

group actions on ordered hypergroupoids. Some results in this respect are investigated. In

particular, we prove that if S is a commutative semihypergroup acting on an ordered hy-

pergroupoid H, then there exists a commutative semihypergroup S̃ acting on the ordered

hypergroupoid H̃ := (H × S)/ρ̄ in such a way that H is embedded in H̃.
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1. Introduction

The concept of algebraic hyperstructures was introduced in 1934 by Marty [21] and
has been studied in the following decades and nowadays by many mathematicians.
Marty published some notes on hypergroups, using them in different contexts: al-
gebraic functions, rational fractions, non-commutative groups. Several books have
been written on hyperstructure theory, see [4, 5, 8, 10, 11, 22]. The concept of a
semihypergroup is a generalization of the concept of a semigroup. As we know, in a
semigroup, the composition of two elements is an element, while in a semihypergroup,
the composition of two elements is a non-empty set. Indeed, semihypergroups are the
simplest algebraic hyperstructures which possess the properties of closure and asso-
ciativity. Semihypergroups are studied by many authors, for example, Bonansinga
and Corsini [1], Davvaz [6, 7], De Salvo et al. [13], Freni [15], Hila et al. [17], Leo-
reanu [19], and many others. The concept of ordering hypergroups investigated by
Chvalina [3] as a special class of hypergroups and studied by him and many others. In
[16], Heidari and Davvaz studied a semihypergroup (H, ◦) besides a binary relation
≤, where ≤ is a partial order relation such that satisfies the monotone condition.
Several mathematicians considered actions of algebraic hyperstructures, for example
see [9, 20, 23]. In [20], Madanshekaf and Ashrafi considered a generalized action of a
hypergroup H on a non-empty set X and obtained some results in this respect. In
[18], Kehayopulu and Tsingelis are studied semigroup actions on ordered groupoids.
Now, in this paper, we apply their results to algebraic hyperstructures and introduce
the notion of semihypergroup actions on ordered hypergroupoids.
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2. Semihypergroups

Let H be a non-empty set. A mapping ◦ : H ×H → P∗(H), where P∗(H) denotes
the family of all non-empty subsets of H, is called a hyperoperation on H. The couple
(H, ◦) is called a hypergroupoid. In the above definition, if A and B are two non-empty
subsets of H and x ∈ H, then we denote

A ◦B =
⋃
a∈A
b∈B

a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}.

A hypergroupoid (H, ◦) is called a semihypergroup if for every x, y, z ∈ H, x◦(y ◦z) =
(x ◦ y) ◦ z, that is ⋃

u∈y◦z
x ◦ u =

⋃
v∈x◦y

v ◦ z.

A semihypergroup H is commutative if it satisfies x◦y = y◦x, for all x, y, z ∈ H. The
associativity for semihypergroups can be applied for subsets. A non-empty subset A
of H is called a subsemihypergroup if x ◦ y ⊆ A for all x, y in A.

Remark 2.1. Every semigroup is a semihypergroup.

A hypergroupoid (H, ◦) called a quasihypergroup if for every x ∈ H, x ◦H = H =
H ◦ x. This condition is called the reproduction axiom. The couple (H, ◦) is called a
hypergroup if it is a semihypergroup and a quasihypergroup.

Definition 2.1. [16] An ordered hypergroupoid (G, ◦,≤) is a hypergroupoid (H, ◦)
together with a partial order ≤ that is compatible with the hyperoperation, meaning
that for any x, y, z in H,

x ≤ y ⇒ z ◦ x ≤ z ◦ y and x ◦ z ≤ y ◦ z.
Here, z ◦ x ≤ z ◦ y means for any a ∈ z ◦ x there exists b ∈ z ◦ y such that a ≤ b. The
case x ◦ z ≤ y ◦ z is defined similarly.

Example 2.1. [2] We have (S, ◦,≤) is an ordered semihypergroup where the hyper-
operation and the order relation are defined by:

◦ a b c d
a a {a, b} {a, c} {a, d}
b a {a, b} {a, c} {a, d}
c a b c d
d a b c d

≤ = {(a, a), (b, b), (c, c), (d, d), (a, b)}.

Example 2.2. [12] Suppose that S = {x, y, z, r, s, t}. We consider the ordered semi-
hypergroup (S, ◦,≤), where the hyperoperation ◦ is defined by the following table:

◦ x y z r s t
x r {r, s} {r, t} x {x, y} {x, z}
y r s {r, t} x y {x, z}
z r {r, s} t x {x, y} z
r x {x, y} {x, z} r {r, s} {r, t}
s x y {x, z} r s {r, t}
t x {x, y} z r {r, s} t
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and the order ≤ is defined by:

≤:= {(x, x), (y, y), (z, z), (r, r), (s, s), (t, t), (s, r), (t, r), (y, x), (z, x)}.

Let (H,+,≤H) and (H ′,+,≤H′) be two ordered hypergroupoids. Let f : H → H ′

be a mapping. Then,
• f is called isotone if x, y ∈ H, x ≤H y implies that f(x) ≤H′ f(y).
• f is called reverse isotone if x, y ∈ H, f(x) ≤H′ f(y) implies that x ≤H y;

(each reverse isotone mapping is one-to-one.)
• f is called a homomorphism if it is isotone and satisfies f(x+ y) = f(x) + f(y)

for all x, y ∈ H;
• f is called an isomorphism if it is homomorphism, onto and reverse isotone.

We say H is embedded in H ′ if there exists a mapping f : H → H ′ which is homo-
morphism and reverse isotone.

3. Generalized permutations and semihypergroup actions

According to [14, 22], we can consider a generalized permutation on a non-empty set
X as a map f : X → P∗(X) such that the reproductive axiom holds, i.e.,⋃

x∈X
f(x) = f(X) = X.

We denote the set of all generalized permutations by MX . A generalized permutation
f is said to satisfy the condition θ [22] if

x ∈ X and z ∈ f(x) ⇒ f(z) = f(x).

We denote the set of all generalized permutations that satisfies the condition θ by
Mθ.

Theorem 3.1. [22, Theorem 6.2.9] Let f ∈Mθ and Mf = {g ∈MX | g ⊆ f}. Then,
Mf is a hypergroup with respect to the hyperoperation ? defined by

f1 ? f2 = {p ∈MX | p ⊆ f1 ◦ f2},
where f1 ◦ f2 is defined by

f1 ◦ f2 =
⋃

y∈f2(x)

f1(y).

Now, we give the definition of an action of a commutative semihypergroup on an
ordered hypergroupoid.

Definition 3.1. Let (H,+,≤H) be an ordered hypergroupoid and (S, ·) be a com-
mutative semihypergroup. The map f : S ×H → P∗(H) is called an action of S on
H and denoted by (H,S, f), if the following axioms hold:
(1) For all α ∈ S, for all x, y ∈ H, f(α, x + y) = f(α, x) + f(α, y), where for all

g ∈ H and X ∈ P∗(H),

f(g,X) =
⋃
x∈X

f(g, x).

(2) For all α, β ∈ S and for all x ∈ H, f(αβ, x) = f(α, f(β, x)), where for all
B ∈ P∗(S) and g ∈ H,

f(B, g) =
⋃
b∈B

f(b, g).
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(3) For all α ∈ S and for all x, y ∈ H, f(α, x) ≤H f(α, y)⇔ x ≤H y.

Lemma 3.2. Consider (H,S, f). Then,
(1) For all A,B ∈ P∗(H) and for all m ∈ S, we have

f(m,A+B) = f(m,A) + f(m,B).

(2) For all a, b ∈ H and for all M ∈ P∗(S), we have

f(M,a+ b) = f(M,a) + f(M, b).

(3) For all A,B ∈ P∗(H) and M ∈ P∗(S), we have

f(C,A+B) = f(C,A) + f(C,B).

Proof. (1) We have

f(m,A+B) = f
(
m,
( ⋃
a∈A
b∈B

a+ b
))

=
⋃
a∈A
b∈B

f(m, a+ b)

=
⋃
a∈A
b∈B

(
f(m, a) + f(m, b)

)
=
⋃
a∈A
b∈B

( ⋃
i∈f(m,a)
j∈f(m,b)

i+ j
)

=
⋃

i∈f(m,A)
j∈f(m,B)

i+ j

= f(m,A) + f(m,B).

(2) We have

f(M,a+ b) =
⋃

m∈M
f(m, a+ b)

=
⋃

m∈M

(
f(m, a) + f(m, b)

)
=

⋃
m∈M

( ⋃
α∈f(m,a)
β∈f(m,b)

α+ β
)

=
⋃

α∈f(M,a)
β∈f(M,b)

α+ β

= f(M,a) + f(M, b).

(3) We have

f(C,A+B) =
⋃
c∈C

f(c, A+B)

=
⋃
c∈C

(
f(c, A) + f(c,B)

)
=
⋃
c∈C

( ⋃
a∈A

f(c, a) +
⋃
b∈B

f(c, b)
)

=
⋃
c∈C
a∈A

f(c, a) +
⋃
c∈C
b∈B

f(c, b)

= f(C,A) + f(C,B).

�
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Let H be a set and ≤̃H be a relation on P∗(H)×P∗(H). Suppose that A, B and
C are arbitrary non-empty subsets of H. The following properties can be considered
(1) A≤̃HA;

(2) if A≤̃HB and B≤̃HA, then A = B;

(3) if A≤̃HB, then B≤̃HA;

(4) if A≤̃HB and B≤̃HC, then A≤̃HC.

If “≤̃H” has the properties 1, 2 and 4, then it is a partial order relation on the non-
empty subsets of H. If “≤̃H” has the properties 1, 3 and 4, then it is an equivalence
relation on the non-empty subsets of H.

A relation σ on H is called a quasi-order on H if it is reflexive and transitive. If σ
is a quasi-order on H, then the relation σ∗ = σ∩σ−1 is an equivalence relation on H.

Lemma 3.3. Let σ be a quasi-order on P∗(H), the non-empty subsets of H. Then,
each of the following equivalent definitions defines an order on the set P∗(H)/σ∗.
(1) ≤σ= {(σ∗(A), σ∗(B)) | ∃ A1 ∈ σ∗(A), ∃ B1 ∈ σ∗(B),3: (A1, B1) ∈ σ}.
(2) ≤σ= {σ∗((A), σ∗(B)) | ∀A1 ∈ σ∗(A), ∀ B1 ∈ σ∗(B),3: (A1, B1) ∈ σ}.
(3) σ∗(A) ≤σ σ∗(B) ⇔ (A,B) ∈ σ.

Proof. It is straightforward. �

Definition 3.2. Consider (H,S, f), A,B ∈ P∗(H) and C ∈ P∗(S). Then,

A≤̃HB ⇔ f(C,A)≤̃Hf(C,B).

In particular, if C := {c}, then A≤̃HB ⇔ f(c, A)≤̃Hf(c,B). Moreover, if A := {a}
and B := {b}, then a ≤H b ⇔ f(C, a)≤̃Hf(C, b).

Remark 3.1. If (H,S, f), α, β ∈ S and x ∈ H, then f(β, f(α, x)) = f(α, f(β, x)).

Lemma 3.4. (1) If (H,S, f), α, β, γ ∈ S and x ∈ H, then f(αβ, f(γ, x)) = f(αβγ, x).
(2) If (H,S, f), A,B ∈ P∗(S) and C ∈ P∗(H), then f(A, f(B,C)) = f(B, f(A,C)).

Proof. (1) We have

f(αβ, f(γ, x)) =
⋃

a∈αβ
f(a, f(γ, x)) =

⋃
a∈αβ

f((aγ), x) = f((αβγ), x).

(2) We have

f(A, f(B,C)) =
⋃

a∈A,b∈B,x∈C
f(a, f(b, x))

=
⋃

a∈A,b∈B,x∈C
f((ab), x)

=
⋃

a∈A,b∈B,x∈C
f((ba), x)

=
⋃

a∈A,b∈B,x∈C
f(b, f(a, x))

= f(B, f(A,C)).

�

In the following we generalize [18, Theorem 3].

Theorem 3.5. Consider (H,S, f). Then, there exists a (H̄, S̄,�) such that
(1) H is embedded in H̄ under a mapping ψ.
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(2) There exists a homomorphism Q : S → S̄ satisfying the conditions:
(i) For every β ∈ S and every x ∈ H, ψ(f(β, x)) = Q(β)� ψ(x).
(ii) For each β ∈ S and each x ∈ H there exists qxβ ∈ H̄ such that

Q(β)� qxβ = ψ(x).

Moreover, if H is a semihypergroup, then H̄ is also a semihypergroup. If H is a
commutative hypergroupoid, then so is H̄. If H is a cancellative ordered hypergroupoid,

then H̄ is also so. Conversely, suppose ( ¯̄H, ¯̄S,�) such that

(1) H is embedded in ¯̄H under a mapping ψ′.

(2) There exists a homomorphism Q′ : S → ¯̄S having the properties:
(i) For every α ∈ S and every x ∈ H, ψ′(f(α, x)) = Q′(α)� ψ′(x)

(ii) For each β ∈ S and each x ∈ H there exists qxα ∈ ¯̄H such that

Q(β)� qxβ = ψ(x).

Then, H̄ is embedded in ¯̄H.

Proof. The proof consists of a series of constructions and steps. We shall complete
the proof in the rest of paper. �

Proposition 3.6. Consider (H,S, f). Define a relation σ by

(f(β, x) + f(α, y), αβ)σ(f(β1, x1) + f(α1, y1), α1β1)

⇔ f(α1β1, f(β, x) + f(α, y))≤̃Hf(αβ, f(β1, x1) + f(α1, y1))

on the non-empty subsets of H×S. Then, σ is a quasi-order on the non-empty subsets
of H × S.

Proof. If (f(β, x)+f(α, y), αβ) ⊆ H×S then, since f(αβ, f(β, x)+f(α, y)) ⊆ H and

≤̃H is an order on P∗(H), we have f(αβ, f(β, x)+f(α, y))≤̃Hf(αβ, f(β, x)+f(α, y)),
i.e., ((f(β, x) + f(α, y), αβ)), (f(β, x) + f(α, y), αβ)) ∈ σ, so σ is reflexive. To show
the transitivity, suppose that (f(β, x)+f(α, y), αβ)σ(f(β1, x1)+f(α1, y1), α1β1) and
(f(β1, x1) + f(α1, y1), α1β1)σ(f(β2, x2) + f(α2, y2), α2β2). Then,

(f(β, x) + f(α, y), αβ)σ(f(β1, x1) + f(α1, y1), α1β1)

⇒ f(α1β1, f(β, x) + f(α, y))≤̃Hf(αβ, f(β1, x1) + f(α1, y1))

⇒ f(α2β2, f(α1β1, f(β, x) + f(α, y)))≤̃Hf(α2β2, f(αβ, f(β1, x1) + f(α1, y1)))

⇒ f(α1β1, f(α2β2, f(β, x) + f(α, y)))≤̃Hf(αβ, f(α2β2, f(β1, x1) + f(α1, y1))).

Moreover, we have

(f(β1, x1) + f(α1, y1), α1β1)σ(f(β2, x2) + f(α2, y2), α2β2)

⇒ f(α2β2, f(β1, x1) + f(α1, y1))≤̃Hf(α1β1, f(β2, x2) + f(α2, y2))

⇒ f(αβ, f(α2β2, f(β1, x1) + f(α1, y1)))≤̃Hf(αβ, f(α1β1, f(β2, x2) + f(α2, y2))).

Consequently, we obtain

f(α1β1, f(α2β2, f(β, x) + f(α, y)))≤̃Hf(αβ, f(α1β1, f(β2, x2) + f(α2, y2)))

⇒ f(α1β1, f(α2β2, f(β, x) + f(α, y)))≤̃Hf(α1β1, f(αβ, f(β2, x2) + f(α2, y2)))

⇒ f(α2β2, f(β, x) + f(α, y))≤̃Hf(αβ, f(β2, x2) + f(α2, y2)).

This completes the proof. �
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In the following we always denote by σ the quasi-order on the non-empty subsets
of H ×S defined in Proposition 3.6. Since σ is a quasi-order on P∗(H ×S), it follows
that σ∗ is an equivalence relation on P∗(H×S). Clearly, σ∗ is an equivalence relation
on H × S too.

Proposition 3.7. Consider (H,S, f). Then, for every α, β ∈ S and x, y ∈ H, we
have
(1) σ∗((x, α)) = σ∗((y, β))⇔ f(β, x) = f(α, y),
(2) σ∗((f(α, x), α)) = σ∗((f(β, x), β)),
(3) σ∗((f(α, x), αβ)) = σ∗((x, β)).

Proof. (1) Since σ∗ is an equivalence relation, it follows that

(x, α)σ∗(y, β)⇔ (x, α)σ(y, β) and (y, β)σ−1(x, α)

⇔ (x, α)σ(y, β) and (y, β)σ(x, α)

⇔ f(β, x)σf(α, y) and f(α, y)σf(β, x)

⇔ f(β, x) = f(α, y).

The proofs of (2) and (3) are similar to the proof of (1). �

Proposition 3.8. Consider (H,S, f). Define the hyperoperation “� ” and the order
“ �σ ” on (H × S)/σ∗ by

� :
(

(H × S)/σ∗
)
×
(

(H × S)/σ∗
)
→ P∗

(
(H × S)/σ∗

)(
σ∗((x, α)), σ∗((y, β))

)
7→ σ∗((f(β, x) + f(α, y), αβ))

σ∗((x, α)) �σ σ((y, β))⇔ f(β, x)≤̃Hf(α, y).

Then,
(

(H × S)/σ∗,�,�σ
)

is an ordered hypergroupoid.

Proof. The hyperoperation is single-valued. Let (x, α), (x′, α′), (y, β), (y′, β′) ∈ H×S
be such that σ∗((x, α)) = σ∗((x′, α′)) and σ∗((y, β)) = σ∗(y′, β′)). Then, by Proposi-
tion 3.7 (1), we have f(α′, x) = f(α, x′) and f(β′, y) = f(β, y′). Hence,

σ∗((f(β, x) + f(α, y), αβ)) = σ∗((f(β′, x′) + f(α′, y′), α′β′)),

or equivalently

f(α′β′, f(β, x) + f(α, y)) = f(αβ, f(β′, x′) + f(α′, y′)).

Thus, we conclude that

f(α′β′, f(β, x) + f(α, y)) = f(α′β′, f(β, x)) + f(α′β′, f(α, y))
= f(ββ′, f(α′, x)) + f(αα′, f(β′, y)) = f(ββ′, f(α, x′)) + f(αα′, f(β, y′))
= f(αβ, f(β′, x′) + f(α′, y′)).

Consequently, (H × S)/σ∗ is a hypergroupoid.
Since σ is a quasi-order on H × S, it follows that σ∗ is an equivalence relation on

non-empty subsets of H × S. Then, by Lemma 3.3, the relation

σ∗((x, α)) �σ σ∗((y, β))⇔ (x, α)σ(y, β)

is an order relation on (H × S)/σ∗. On the other hand,

(x, α)σ(y, β)⇔ f(β, x)≤̃Hf(α, y).
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Finally, we prove that the operation � is compatible with the ordering. Suppose that
σ∗((x, α)) �σ σ∗((y, β)) and (z, γ) ∈ H × S. Then,

σ∗((z, γ))� σ∗((x, α)) �σ σ∗((z, γ))� σ∗((y, β)).

In fact, we have to prove that

σ∗((f(α, z) + f(γ, x), γα)) �σ ((f(β, z) + f(γ, y), γβ)),

or equivalently,

f(γβ, [f(α, z) + f(γ, x)])≤̃Hf(γα, [f(β, z) + f(γ, y)]).

Since σ∗((x, α)) �σ σ∗((y, β)), it follows that f(β, x)≤̃Hf(α, y). Now, we have

f((γβ), [f(α, z) + f(γ, x)]) = [(f(γβ), f(α, z))] + [f((γβ), f(γ, x))]
= [f((γβα), z)] + [f((γβγ), x)] = [f((γαβ), z)] + [f((γγβ), x)]
= [f((γα), f(β, z))] + [f((γγ), f(β, x))].

Since f(β, x)≤̃Hf(α, y) and γγ ∈ P∗(S), by Definition 3.2, we obtain

f(γγ, f(β, x))≤̃Hf(γγ, f(α, y)).

Since (H,+,≤H) is an ordered hypergroupoid and f(γα, f(β, z)) ⊆ H, we have

[f((γα), f(β, z))] + [f((γγ), f(β, x))]≤̃H [f((γα), f(β, z))] + [f((γγ), f(α, y))].

Hence, we conclude that

f((γβ), [f(α, z) + f(γ, x)])≤̃H [f((γα), f(β, z)]) + [f((γγ), f(α, y))]
= [f((γα), f(β, z))] + [f((γγα), y)] = [f((γα), f(β, z))] + [f((γαγ), y)]
= [f((γα), f(β, z))] + [f((γα), f(γ, y))]
= f((γα), [f(β, z) + f(γ, y)]).

Similarly, it can be proved that σ∗((x, α)) �σ σ∗((y, β)) and (z, γ) ∈ H × S imply

σ∗((x, α))� σ∗((z, γ)) �σ σ∗((y, β))� σ∗((z, γ)).

�

Proposition 3.9. Let (H,S, f). Define φα : (H × S)/σ∗ → P∗(H × S)/σ∗) by

φα
(
σ∗((x, β))

)
= σ∗((f(α, x), β)) := {σ∗((t, β)) | t ∈ f(α, x)}.

is an isomorphism and a generalized permutation.

Proof. The mapping φα is well defined, since

σ∗((x, β)) = σ∗((x′, β′))⇒ f(β′, x) = f(β, x′)⇒ f(α, f(β′, x)) = f(α, f(β, x′))
⇒ f(β′, f(α, x)) = f(β, f(α, x′)⇒ σ∗((f(α, x), β)) = σ∗((f(α, x′), β′)).
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The mapping φα is a homomorphism, since

φα[σ∗((x, β))� σ∗((y, γ))] = {φα
(
σ∗((z, θ))

)
| z ∈ f(γ, x) + f(β, y), θ ∈ βγ}

= {σ∗((f(α, z), θ)) | z ∈ f(γ, x) + f(β, y), θ ∈ βγ}
= {σ∗((t, θ)) | t ∈ f(α, f(γ, x) + f(β, y)), θ ∈ βγ}
= {σ∗((t, θ)) | t ∈ f(α, f(γ, x)) + f(α, f(β, y)), θ ∈ βγ}
= {σ∗((t, θ)) | t ∈ f(γ, f(α, x)) + f(β, f(α, y)), θ ∈ βγ}
= {σ∗((t, θ)) | t ∈ f(γ,m) + f(β, n),m ∈ f(α, x), n ∈ f(α, y), θ ∈ βγ}
= {σ∗((f(γ,m) + f(β, n), βγ)) | m ∈ f(α, x), n ∈ f(α, y)}
= {σ∗((m,β))� σ∗((n, γ)) | m ∈ f(α, x), n ∈ f(α, y)}
= σ∗((f(α, x), β))�̃σ∗((f(α, y), γ))

= φα
(
σ∗((x, β))

)
�̃φα

(
σ∗((y, γ))

)
.

The mapping φα is isotone and reverse isotone, since

σ∗((x, β)) �σ σ∗((x′, β′)) ⇔ f(β′, x)≤̃Hf(β, x′)

⇔ f(α, f(β′, x))≤̃Hf(α, f(β, x′))

⇔ f(β′, f(α, x))≤̃Hf(β, f(α, x′))

⇔ σ∗((f(α, x), β))�̃σσ∗((f(α, x′), β′))

⇔ φα
(
σ∗((x, β))

)
�̃σφα

(
σ∗((x′β′))

)
.

Clearly, φα is onto. The mapping φα is a generalized permutation, since⋃
σ∗((x,β))∈(H×S)/σ∗

φασ
∗((x, β)) =

⋃
σ∗((x,β))∈(H×S)/σ∗

σ∗((f(α, x), β))

=
⋃

a∈f(x,α),x∈H
σ∗((a, β)).

On the other hand, σ∗((f(x, α), β)) ⊆ (H × S)/σ∗, so σ∗((a, β)) ∈ (H × S)/σ∗.
Therefore, we get ⋃

σ∗((a,β))∈(H×S)/σ∗
σ∗((a, β)) = (H × S)/σ∗.

This completes the proof. �

In the following, for (H,S, f), we denote S̄ the set of all generalized permutation
on (H × S)/σ∗. We can define operation “ • ” the usual composition on S̄, i.e., if
φα, φβ ∈ S̄, then

φα • φβ
(
σ∗((x, α))

)
=

⋃
y∈φβ

(
σ∗((x,α))

)φα(y),

for all σ∗((x, α)) ∈ (H × S)/σ∗.

Proposition 3.10. Let φα, φβ ∈ S̄. We define ∗ : S̄ × S̄ → P∗(S̄) by

φα ∗ φβ =
{
φγ | φγ ⊆ φα • φβ ,

⋃
σ∗((x,α))∈(H×S)/σ∗

φγ
(
σ∗((x, α))

)
= (H × S)/σ∗

}
.

Then, (S̄, ∗) is a commutative semihypergroup.
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Proof. The hyperoperation “∗” is associative, because the operation “•” is associative.
More precisely for each φα, φβ , φγ ∈ S̄ we have

φα ∗ (φβ ∗ φγ) = {φλ ∈ S̄ | φλ ⊆ φα • φβ • φγ} = (φα ∗ φβ) ∗ φγ .

We show φα • φβ = φαβ . In fact, if (x, γ) ∈ H × S, then

(φα • φβ)
(
σ∗((x, γ))

)
=

⋃
r∈φβ

(
σ∗((x,γ))

)φα(r)

=
⋃

r∈σ∗((t,γ))
t∈f(β,x)

φα(r)

=
⋃

t∈f(β,x)

φα
(
σ∗((t, γ))

)
=

⋃
t∈f(β,x)

{σ∗((z, γ)) | z ∈ f(α, t)}

= {σ∗((z, γ)) | z ∈ f(αβ, x)}
= {σ∗((z, γ)) | z ∈ f(k, x), k ∈ αβ}
= {σ∗((f(k, x), γ)) | k ∈ αβ}
= {φk

(
σ∗((x, γ))

)
| k ∈ αβ}

= φαβ
(
σ∗((x, γ))

)
.

The semihypergroup S̄ is commutative, since

φα ∗ φβ = {φγ | φγ ⊆ φα • φβ} = {φγ | φγ ⊆ φαβ}
= {φγ | φγ ⊆ φβα} = {φγ | φγ ⊆ φβ • φα}
= φβ ∗ φα.

�

Proposition 3.11. Consider (H,S, f). We define

� : (S̄, ∗)× ((H × S)/σ∗,�,�σ)→ (P∗((H × S)/σ∗), �̃, �̃σ)

by φα � σ∗((x, β)) = φα
(
σ∗((x, β))

)
. Then, for every α, β, γ ∈ S and for every

x, y ∈ H. We have
(1) φα � [σ∗((x, β)) � σ∗((y, γ))] = [φα � σ∗((x, β))] �̃ [φα � σ∗((y, γ))], where for

any φα ∈ S̄ and σ∗((A,B)) ⊆ (H × S)/σ∗,
φα � σ∗((A,B)) =

⋃
σ∗((x,α))∈σ∗((A,B))

φα � σ∗((x, α)).

(2) (φα ∗ φβ) � σ∗((x, γ)) = φα � (φβ � σ∗((x, γ))), where for any K ⊆ S̄ and
σ∗((x, β)) ∈ (H × S)/σ∗,

K♦σ∗((x, β)) =
⋃

φα∈K
φα � σ∗((x, β)).

(3) φα � σ∗((x, β))�̃σφασ∗((y, γ)) if and only if σ∗((x, β)) �σ σ∗((y, γ)).

Proof. The proof follows from By Proposition 3.9. �

Theorem 3.12. If (H,S, f), then ((H × S)/σ∗, S̄,�).

Proof. By Proposition 3.11, the proof is straightforward. �

Definition 3.3. Consider (H,S, f). If C ∈ P∗(S) and A,B ∈ P∗(H), then f(C,A) =
f(C,B) ⇔ A = B. In particular, if A := {x}, B := {y}, then f(C, x) = f(C, y) ⇔
x = y. If A := {x}, B := {y} and C := {α}, then f(α, x) = f(α, y)⇔ x = y.
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Theorem 3.13. Let (H,S, f). We define ψα : (H,+,≤H)→ (P∗(H ×S/σ∗), �̃, �̃σ)
by

ψα(x) = σ∗((f(α, x), α)) := {σ∗((t, α)) | t ∈ f(α, x)}.
Then, ψα is a reverse isotone homomorphism.

Proof. We have

x = y ⇒ f(β, x) = f(β, y)
⇒ f(α, f(β, x)) = f(α, f(β, y))
⇒ f(β, f(α, x)) = f(α, f(β, y))
⇒ σ∗((f(α, x), α)) = σ∗((f(β, y), β))
⇒ ψα(x) = ψα(y).

So, ψα is well defined. Since

ψα(x+ y) = {ψα(k) | k ∈ x+ y}
= {σ∗((f(α, k), α)) | k ∈ x+ y}
= {σ∗((f(α2, k), α2)) | k ∈ x+ y}
= {σ∗((z, α2)) | z ∈ f(α2, x+ y)}
= {σ∗((z, α2)) | z ∈ f(α2, x) + f(α2, y)}
= {σ∗((z, α2)) | z ∈ f(α, f(α, x)) + f(α, f(α, y))}
= σ∗((f(α, x), α))�̃σ∗((f(α, y), α))
= ψα(x)�̃ψα(y),

it follows that ψα is a homomorphism.
Now, let x ≤H y. Since α2 ∈ P∗(S), by Definition 3.2, we have f(α2, x)≤̃Hf(α2, y),

that is f(αα, x)≤̃Hf(αα, y). Then, by Definition 3.1 (2), f(α, f(α, x))≤̃Hf(α, f(α, y)),

from which σ∗((f(α, x), α))�̃σσ∗((f(α, y), α)), i.e., ψα(x)�̃σψα(y). Thus, the map-
ping ψα is isotone.

Finally, if x, y ∈ H such that ψα(x)�̃σψα(y), i.e., σ∗((f(α, x), α))�̃σσ∗((f(α, y), α)),

then f(α, f(α, x))≤̃Hf(α, f(α, y)) then, by Definition 3.1 (2) f(αα, x)≤̃Hf(αα, y),
and by Definition 3.2, x ≤H y. Hence, the mapping ψα is reverse isotone. �

We remark that if (H,S, f) and α, β ∈ S, then ψα = ψβ . If x ∈ H then, by
Proposition 3.7 (2), we obtain ψα(x) := σ∗((f(α, x), α)) = σ∗((f(β, x), x)) := ψβ(x).

Proposition 3.14. Consider (H,S, f). Then, Q : (S, .)→ (S̄, ∗) with α 7→ φα is an
onto homomorphism.

Proof. If α, β ∈ S then, by Proposition 3.10, we have

Q(αβ) = {Q(λ) | λ ∈ αβ} = {φλ | φλ ⊆ φαβ}
= {φλ | φλ ⊆ φα • φβ} = Q(α) ∗Q(β),

because (λ ∈ αβ ⇒ Q(λ) ⊆ Q(αβ) = φαβ = φα • φβ). So, Q is a homomorphism.
Clearly, Q is onto. �

Proposition 3.15. If (H,S, f), then

∀β ∈ S, ∀x ∈ H; ψα(f(β, x)) = Q(β)� ψα(x).
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Proof. We have

ψα(f(β, x)) = {ψα(y) | y ∈ f(β, x)}
= {σ∗((p, α)) | y ∈ f(β, x), p ∈ f(α, y)}
= {σ∗((p, α)) | p ∈ f(α, f(β, x))}
= {σ∗((p, α)) | p ∈ f(β, f(α, x))}
= {σ∗((p, α)) | p ∈ f(β, z), z ∈ f(α, x)}
= {σ∗((f(β, z), α)) | z ∈ f(α, x)}
= {φβ

(
σ∗((z, α))

)
| z ∈ f(α, x)}

= {φβ � σ∗((z, α)) | z ∈ f(α, x)}
= φβ � σ∗((f(α, x), α))
= φβ � ψα(x)
= Q(β)� ψα(x).

�

Proposition 3.16. Consider (H,S, f) and α ∈ S. Then, for each β ∈ S and each
x ∈ H there exists (y, γ) ∈ H × S such that Q(β)� σ∗((y, γ)) = ψα(x).

Proof. Suppose that β ∈ S, x ∈ H. Since ψα(x) ∈ P∗((H × S)/σ∗) and Fβ is a
mapping of (H × S)/σ∗ onto P∗((H × S)/σ∗), there exists (y, γ) ∈ H × S so that
φβ
(
σ∗((y, γ))

)
= ψα(x). On the other hand, since ψβ

(
σ∗((y, γ))

)
:= φβ � σ∗((y, γ))

and φβ := Q(β), we have Q(β)� σ∗((y, γ)) = ψα(x). �

Definition 3.4. An ordered hypergroupoid (H, ·,≤H) is said to be s-cancellative if
for every A,B,C ∈ P∗(H), we have

(1) AB≤̃HAC implies B≤̃HC;

(2) BA≤̃HCA implies B≤̃HC.

Proposition 3.17. Consider (H,S, f). Then, we have the following statements.
(1) If (H,+) is a semihypergroup, then ((H × S)/σ∗,�) is a semihypergroup.
(2) If (H,+) is a commutative hypergroupoid, then ((H×S)/σ∗,�) is a commutative

hypergroupoid.
(3) If (H,+,≤H) is an s-cancellative ordered hypergroupoid, then ((H×S)/σ∗,�,�σ

) is an s-cancellative ordered hypergroupoid as well.

Proof. (1) Let (x, α), (y, β), (z, γ) ∈ H × S. Then, we show that

[σ∗((x, α))� σ∗((y, β))]� σ∗((z, γ)) = σ∗((x, α))� [σ∗((y, β))� σ∗((z, γ))].

We have

[σ∗((x, α))� σ∗((y, β))]� σ∗((z, γ))
= {σ∗((t, λ)) | t ∈ f(β, x) + f(α, y), λ ∈ αβ} � σ∗((z, γ))
= {σ∗((p, θ)) | p ∈ f(γ, t) + f(λ, z), θ ∈ λγ, λ ∈ αβ, t ∈ f(β, x) + f(α, y)}
= {σ∗((p, θ)) | p ∈ f(γ, f(β, x) + f(α, y)) + f(αβ, z)}
= {σ∗((p, θ)) | p ∈ [f(γ, f(β, x)) + f(γ, f(α, y))] + f(α, f(β, z)), θ ∈ (αβ)γ}.

Since (H,+) is a semihypergroup and f(α, f(β, z)), f(γ, f(α, y), f(γ, f(β, x)) ⊆ H,
we obtain
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{σ∗((p, θ)) | p ∈ [f(γ, f(β, x)) + f(γ, f(α, y))] + f(α, f(β, z)), θ ∈ (αβ)γ}
= {σ∗((p, θ)) | p ∈ f(γ, f(β, x)) + [f(γ, f(α, y)) + f(α, f(β, z))], θ ∈ α(βγ)}
= {σ∗((p, θ)) | p ∈ f(γβ, x) + [f(α, (f(γ, y) + f(β, z))], θ ∈ α(βγ)}
= {σ∗((p, θ)) | p ∈ f(k, x) + f(α, q), k ∈ γβ, q ∈ f(γ, y) + f(β, z), θ ∈ αk}
= {σ∗((x, α))� σ∗((q, k)) | q ∈ f(γ, y) + f(β, z), k ∈ γβ, θ ∈ αk}
= σ∗((x, α))� [σ∗((y, β))� σ∗((z, γ))].

(2) Let (x, α), (y, β) ∈ H × S. We show that

σ∗((x, α))� σ∗((y, β)) = σ∗((y, β))� σ∗((x, α)).

Since (H,+) is a commutative hypergroupoid and f(α, y), f(β, x) ⊆ H, we obtain

σ∗((x, α))� σ∗((y, β)) = {σ∗((z, γ)) | z ∈ f(β, x) + f(α, y), γ ∈ αβ}
= {σ∗((z, γ)) | z ∈ f(α, y) + f(β, x), γ ∈ βα}
= σ∗((y, β))� σ∗((x, α)).

(3) Suppose that (x, α), (y, β), (z, γ) ∈ H × S such that

σ∗((x, α))� σ∗((y, β))�̃σσ∗((x, α))� σ∗((z, γ))⇒ σ∗((y, β)) �σ σ∗((z, γ)).

Since

σ∗((x, α))� σ∗((y, β)) := σ∗((f(β, x) + f(α, y), αβ)),
σ∗((x, α))� σ∗((z, γ)) := σ∗((f(γ, x) + f(α, z), αγ)),

we have

σ∗((f(β, x) + f(α, y), αβ))�̃σσ∗((f(γ, x) + f(α, z), αγ))

⇒ f((αγ), [f(β, x) + f(α, y)]) ≤̃H f((αβ), [f(γ, x) + f(α, z)])

⇒ [f((αγ), f(β, x))] + [f((αγ), f(α, y))] ≤̃H [f(αβ, f(γ, x))] + [f((αβ), f((α, z)]

⇒ [f((αγβ), x)] + [f((αγα), y)] ≤̃H [f((αβγ), x)] + [f((αβα), z)]

⇒ [f((αβγ), x)] + [f((α2γ), y)] ≤̃H [f((αβγ), x)] + [f((α2β), z)].

Since (H,+,≤H) is an s-cancellative ordered hypergroupoid on the subsets and f((αβγ), x),

f((α2γ), y), f((α2β), z) ⊆ H, we obtain f((α2γ), y) ≤̃H f((α2β), z). Therefore, we
have

f(α2, f(γ, y)) ≤̃H f(α2, f(β, z)) ⇒ f(γ, y) ≤̃H f(β, z)
⇒ σ∗((y, β)) �σ σ∗((z, γ)).

This completes the proof. �

Theorem 3.18. Let (H,S, f) and ( ¯̄H, ¯̄S,�) having the following properties.

(1) There exists ψ′ : (H,+,≤H)→ ( ¯̄H, ¯̄+,≤ ¯̄H) reverse isotone homomorphism.

(2) There exists Q′ : (S, .)→ ( ¯̄S,¯̄.) homomorphism such that
(i) for all α ∈ S, for all x ∈ H,ψ′(f(α, x)) = Q′(α)� ψ′(x),

(ii) for all α ∈ S, for all x ∈ H, exists qxα ∈ ¯̄H, Q′(α)� qxα = ψ′(x).

Then, χ : ((H × S)/σ∗,�,�σ) → ( ¯̄H, ¯̄+,≤ ¯̄H) by χ
(
σ∗((x, α))

)
= qxα is a reverse

isotone homomorphism.
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Proof. The mapping χ is well defined. Indeed, we have

σ∗((x, α)) =σ∗((y, β))⇒ f(β, x) = f(α, y)

⇒ψ′(f(β, x)) = ψ′(f(α, y))

⇒Q′(β)� ψ′(x) = Q′(α)� ψ′(y)

⇒Q′(β)� (Q′(α)� qxα) = Q′(α)� (Q′(β)� qyβ)

⇒Q′(β)� (Q′(α)� qxα) = Q′(β)� (Q′(α)� qyβ)

⇒(Q′(β) ¯̄. Q′(α))� qxα = (Q′(α) ¯̄. (Q′(β))� qyβ
⇒Q′(βα)� qxα = Q′(βα)� qyβ .

Because qxα ∈ ¯̄H and Q′(α), Q′(β) ⊆ ¯̄S, we have Q′(α)̄̄.Q′(β) = Q′(αβ) ⊆ ¯̄S. As well

as ( ¯̄H, ¯̄S,�), thus by Definition 3.3, we have qxα = qyβ .

Suppose that χ
(
σ∗((x, α))

)
= qxα, χ

(
σ∗((y, β))

)
= qyβ and χ

(
σ∗((x, α))�σ∗((y, β))

)
=

q
(f(β,x)+f(α,y))
αβ . Then, we show

qxα
¯̄+ qyβ = q

f(β,x)+f(α,y)
αβ .

Indeed, we have

(Q′(α) ¯̄. Q′(β))� (qxα
¯̄+ qyβ)

= (Q′(α) ¯̄. Q′(β))� qxα ¯̄+ (Q′(α) ¯̄. Q′(β))� qyβ

= (Q′(β) ¯̄. Q′(α))� qxα ¯̄+ (Q′(α) ¯̄. Q′(β))� qyβ

= Q′(β)� (Q′(α)� qxα) ¯̄+ Q′(α)� (Q′(β)� qyβ)

= Q′(β)� ψ′(x) ¯̄+ Q′(α)� ψ′(y)

= ψ′(f(β, x)) ¯̄+ ψ′(f(α, y))

= ψ′(f(β, x) + f(α, y)).

On the other hand,

(Q′(α) ¯̄. Q′(β))� q(f(β,x)+f(α,y))
αβ = Q′(αβ)� q(f(β,x)+f(α,y))

αβ

= ψ′(f(β, x) + f(α, y)).

So, (Q′(α)̄̄.Q′(β)) � (qxα
¯̄+ qyβ) = (Q′(α) ¯̄. Q′(β)) � q(f(β,x)+f(α,y))

αβ . Since ( ¯̄H, ¯̄S,�),
by Definition 3.3, we have

q
(f(β,x)+f(α,y))
αβ = (qxα

¯̄+ hyβ).

Therefore, the mapping χ is a homomorphism.
Suppose that (x, α), (y, β) ∈ H × S so that σ∗((x, α)) �σ σ∗((y, β)). Then,

qxα ≤ ¯̄H qyβ . By condition (B), we have Q′(α) � qxα = ψ′(x) and Q′(β) � qyβ = ψ′(y).

Since σ∗((x, α)) �σ σ∗((y, β)), it follows that we have f(β, x)≤̃Hf(α, y). On the other
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hand,

Q′(αβ)� qxα = (Q′(α) ¯̄. Q′(β))� qxα
= Q′(α)� (Q′(β)� qxα)
= Q′(β)� (Q′(α)� qxα)
= Q′(β)� ψ′(x)

= ψ′(f(β, x))≤̃ ¯̄H ψ′(f(α, y))
= Q′(α)� ψ′(y) = Q′(α)� (Q′(β)� qyβ)

= (Q′(α) ¯̄. Q′(β))� qyβ
= Q′(αβ)� qyβ .

Since Q′(αβ)� qxα ≤̃ ¯̄H Q′(αβ)� qyβ , by Definition 3.2, we have qxα ≤ ¯̄H qyβ . Thus, the
mapping χ is isotone.

Now, suppose that (x, α), (y, β) ∈ H × S. Then, qxα ≤ ¯̄H qyβ . So, σ∗((x, α)) �σ
σ∗((y, β)). Consequently, we have

qxα ≤ ¯̄H qyβ ⇒ Q′(αβ)� qxα ≤̃ ¯̄H Q′(αβ)� qyβ
⇒ (Q′(α) ¯̄. Q′(β))� qxα ≤̃ ¯̄H (Q′(α) ¯̄. Q′(β))� qyβ
⇒ Q′(α)� (Q′(β)� qxα) ≤̃ ¯̄H Q′(α)� (Q′(β)� qyβ)

⇒ Q′(β)� (Q′(α)� qxα) ≤̃ ¯̄H Q′(α)� (Q′(β)� qyβ)

⇒ Q′(β)� ψ′(x) ≤̃ ¯̄H Q′(α)� ψ′(y)

⇒ ψ′(f(β, x)) ≤̃ ¯̄H ψ′(f(α, y))

⇒ f(β, x) ≤̃ ¯̄H f(α, y)
⇒ σ∗((x, α)) �σ σ∗((y, β)).

This completes the proof. �

Now we complete the proof of Theorem 3.5. We put H̄ = (H × S)/σ∗. By
Theorem 3.12, we have (H̄, S̄,�). By Corollary 3.13, H is embedded in P∗(H̄) under
the mapping ψα (where α is an arbitrary element of S). By Proposition 3.14, the
mapping Q : S → S̄ is a homomorphism, by Propositions 3.15 and 3.16 conditions
(i) and (ii) of the first part of Theorem are satisfied. By Proposition 3.17, if H is
a semihypergroup, then so is H̄; if H is a commutative hypergroupoid, then so is
H̄, if H is an s-cancellative ordered hypergroupoid, then H̄ is also so. As far as the
converse statement is concerned, under the hypotheses of Theorem 3.18, P∗(H̄) is

embedded in P∗( ¯̄H). This completes the proof of theorem.
In continue, assuming that the commutative semihypergroup S considered in Def-

inition 3.1 is an ordered semihypergroup under the order “ ≤S ”, we add a new
condition in Definition 3.1, and we consider actions (H,S, f) for which the following
condition also holds:
(4) For all x ∈ H,α ≤S β ⇒ f(α, x)≤̃Hf(β, x).

Such an action is called a complete action and it is denoted by ˜(H,S, f). We prove

that if ˜(H,S, f), then the semihypergroup ( ¯̄S, ∗) is an ordered semihypergroup.

Proposition 3.19. Let ˜(H,S, f). Then,

α ≤S β, x ≤H y ⇒ f(α, x)≤̃Hf(β, y).
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Proof. Since α ≤S β and x ∈ H, by Definition 3.1 (4), we have f(α, x) ≤H f(β, x).

Since x ≤H y and β ∈ S, by Definition 3.1 (3), we have f(β, x)≤̃Hf(β, y) Thus, we

get f(α, x)≤̃Hf(β, y). �

Lemma 3.20. Let (A,≤) be an ordered set and F a set of isotone mappings of A
into P∗(A), closed under the composition “ • ” of mappings. Let be the order on F
defined by f � g if and only if for all x ∈ A, f(x) ≤ g(x). Then, (F, •,�) is an
ordered semihypergroup.

Proposition 3.21. Let ˜(H,S, f). Then, the semihypergroup (S̄, ∗) endowed with the
relation

φα � φβ ⇔ for all σ∗((x, γ)) ∈ (H × S)/σ∗, φα
(
σ∗((x, γ))

)
4̃σφβ

(
σ∗((x, γ))

)
is an ordered semihypergroup.

Proof. By Proposition 3.8, ((H×S)/σ∗,4σ) is an ordered set, by Proposition 3.9, the
set S̄ is a nonempty family of isotone mappings of (H × S)/σ∗ into P∗((H × S)/σ∗).
Moreover, φα • φβ ⊆ S̄ for all φα, φβ ∈ S̄. According to Lemma 3.20, (S̄, ∗,�) is an
ordered semihypergroup. �
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