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Abstract. The present paper is concerned with exploiting an iterative decoupling algorithm

to address the problem of third-order tensor deblurring. The regularized deblurring problem,

which is mathematically given by the sum of a fidelity term and a regularization term, is
decoupled into an observation fidelity and a denoiser model steps. One basic advantage of the

iterative decoupling algorithm is that the deblurring problem is supervised by the efficiency of

the denoiser model. Thus, we consider a patch-based weighted low-rank tensor with sparsity
prior. Numerical tests to image deblurring are given to demonstrate the efficiency of the

proposed decoupling based algorithm.
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1. Introduction

Image deblurring is one of the earliest and most classical inverse problems, in which
the aim is to estimate the original clean image from the corresponding blurry and
noisy image. Actually, intrinsic or extrinsic factors may lead to degradation in the
quality of the acquired image, of which blur is one example. Blur is generally due to
one of five types relative motion blur, camera shake blur, defocus blur, atmospheric
turbulence blur, and intrinsic physical blur. It causes an image pixel to record light
photons from multiple scene points. The deblurring problem usually models the object
to be recovered as a vector of unknowns and the blurring operator as a matrix. Over
the years, several novel approaches have been presented to deal with the 2D image
deblurring problem driven by a variety of motivations [26, 3, 22, 23, 30, 7].

Recently, the development of modern imaging technologies has led to significant
growth in the size of data. Thus, modeling multidimensionality is of great interest. In
this vein, the use of tensors, the higher-order extension of matrices, has demonstrated
a significant impact in modeling and handling high dimensional images and videos
processing. Actually, multidimensional data has received considerable attention in a
variety of areas such as signal and image processing, machine learning, and computer
vision. Tensors are an important big data format, which play a notable role in a wide
range of real-world applications including video inpainting [17] hyperspectral data
recovery [19, 9], tensor completion [20, 11], fluorescence spectroscopy data analysis
[10] and seismic data reconstruction [18]. For example, the problem of hyperspectral
image deblurring aims at recovering sharp images with a large number of spectral
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channels from blurred and noisy observations. This problem can be seen as a third-
order tensor restoration problem.

Mathematically, given an observed third-order tensor Y ∈ Rn1×n2×n3 , the problem
of tensor deblurring can be expressed by the following equation:

find X : Y = K(X ) +N (1)

where K is a bounded linear operator representing the blur, X is the original tensor,
and N represents an additive white Gaussian noise. Recovering X from Y is called
a linear inverse problem which, for most scenarios of practical interest, is ill-posed
.i.e small changes in Y may lead to a huge deviation of the solution X . The ill-
posedness which is the most severe problem in image deblurring, is caused by either the
direct operator does not have an inverse or it is nearly singular with noise sensitivity,
or due to the ill-conditioned nature of the blur operator K [21]. To deal with ill-
posedness, researchers have been developing new approaches, as well as enhancing
the efficiency of optimization methods and algorithms. One of the most used models
is the variational method which renders the solution unique and stable through the
incorporation of regularization techniques. In order to regularize the solution X , it is
important to incorporate prior information on images. Formally, variational models
for image processing in general consist of the sum of a data term and a regularization
term:

arg min
X

{
E(X ) =

1

2
‖Y − K(X )‖2F + λJ(X )

}
(2)

The first term refers to the fidelity term which measures the disparity between K(X )
and the observation Y, while the second is the regularization term that promotes
certain solutions. The regularization parameter λ ≥ 0 balances the contributions of
the two terms.

1.1. Related works. Regarding the regularization methods, finding and modeling
appropriate prior knowledge is one of the most important concerns. Thus, different
choices lead to different reconstruction approaches. Particularly, for the deblurring
problem diverse models have been developed during the last decades. Patch-based
sparsity model assumes the sparsity of image under learned dictionaries [23, 29], which
provides an effective characterization of natural images. The low-rank prior is another
sparsity regularization in the domain of singular value decomposition (SVD). The
low-rank approximation is an effective tool for high dimensional data modeling which
has attracted more and more attention in several advanced imaging fields [?, 15, 2].
Nonlocal self-similarity prior characterizes the repetitiveness and the redundancy of
textures and structures in images. The nonlocal methods have achieved better empir-
ical results compared to some local regularization methods [14, 5]. Motivated by this,
patch-based low-rank prior has recently gained a growing interest [13, 14, 29, 4]. The
key point is that a group of similar patches can be well approximated by a low-rank
matrix. This approach has already achieved fast and impressive results in bidimen-
sional image recovery. For high dimensional data modeling, the low-rank modeling
and the redundant non-local self similarities have attracted more and more attention
in several applications [7, 14, 4, 31]. These models have been adopted successfully in
several high-dimensional image recovery due to their simplicity. Indeed, multidimen-
sional images have many repetitive local patterns, and a local patch can have many
similar patches to it across the whole image. The low-rankness of a tensor is essential
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to describe the intrinsic geometrical structure of these data. Patch-based low-rank
models have shown their ability to exploit the spatial redundancy of computer vision
data. In high dimensional data, considering both the spatial and spectral information
and the correlation between them has attracted more and more attention in several
reconstruction problems. To enhance the low-rankness structure in images, the nonlo-
cal self-similarity via grouping similar patches has been considered in unified models
leading to robust high-dimensional reconstruction approaches including, denoising,
completion, deblurring, and super-resolution [4, 31]. In [4], authors introduced a low-
rank restoration model for hyperspectral images based on a weighted operation for
modeling the spatial nonlocal self-similarity and spectral correlation exhibited in ad-
jacent bands. Further, they take the intrinsic sparsity of the core tensor into account
by using a reweighting strategy which demonstrates to better encode the structure
correlation. This model has been considered with subspace representation to remove
the mixed noise in the hyperspectral image in [31]. On the other hand, with the great
success achieved by deep learning models in several applications, image deblurring
also benefits from this advancement. Therefore, several deep deblurring models with
different deep architectures have been developed in recent years especially for blind
deblurring problems [24, 30]. However, to the best of our knowledge, only one deep
learning model has addressed the tensor deblurring problem [13] in which a deep con-
volutional network (ConvNet) structure has been employed as an image prior. This
model proposed an image/tensor modeling method using a denoising-auto-encoder in
combination with a multi-way delay-embedding transform.

Indeed, a good optimization algorithm has a critical role in producing accurate so-
lutions. Thus, concerning the optimization methods used to solve (2), various compu-
tational algorithms based on convex analysis have been sprung up in recent years. The
splitting theory has been among the successful techniques that have been exploited
for building efficient deblurring algorithms. The alternating direction method of mul-
tipliers (ADMM) method has emerged as an efficient splitting tool to address several
imaging inverse problems of the form (2). ADMM is an algorithm that attempts to
solve a convex optimization problem by decoupling it into simple subproblems easier
to solve.

In spite of the good results of splitting algorithms, the research for efficient image
deblurring methods is still a great challenge. Recently, a new iterative method based
on a decoupling technique has been introduced for 2D image deblurring problem [26].
This method has been shown to be particularly efficient for image restoration based on
the model (2). Instead of the variable-based splitting technique, the iterative decou-
pling method presents another view of the splitting concept. It consists of decoupling
the objective function; given by the sum of a fidelity term and a regularization term;
into two iterative problems yielding simpler optimization problems. The two steps
have been named differently, they have first been called denoising and the deblurring
steps in [26] and the observation fidelity and the model fidelity steps for recovery
problems [8]. Since the reconstruction task is supervised by the denoising step, we
call the decoupling steps the observation fidelity and the denoiser model steps.

1.2. Contribution. Motivated by the success of the iterative decoupling method for
image deblurring in the context of matrices, we are interested in extending this method
for the third-order tensor deblurring problems. The deblurring process is controlled
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by the denoiser model. The iterative decoupling presents a soft framework to easily
integrate sophisticated denoisers. Therefore, in this paper, we consider the iterative
decoupling method with the low-rank tensor regularization term [4]. In particular,
we envisage the weighted low-rank tensor recovery model as a model denoiser. In
contrast, by observing the decoupling property of the ADMM method used in [4],
it is basically based on the splitting of variables using an auxiliary procedure. The
ADMM method needs an auxiliary procedure to alternate between the minimization of
the augmented Lagrangian function to exchanging intermediate results with adjacent
subregions and updating the associated Lagrangian multipliers.

The remaining parts of this paper are organized as follows. In Section 2, some
notions and definitions are introduced. In Section 3, we present the proposed iterative
algorithm-based decoupled method for third-order tensor deblurring. Moreover, we
introduce in detail the suggested denoising step, which is based on low-rank tensor
learning. In Section 4, extensive numerical experiments are presented to validate the
effectiveness of the proposed deblurring model. Finally, some concluding remarks are
given in Section 5.

2. Notions and preliminaries

Throughout this work, we use calligraphy letters to denote tensors, e.g. X , boldface
uppercase letters to denote matrices, e.g., X ∈ Rm×n, boldface lowercase letters to
denote vectors, e.g., xi ∈ Rn, and lowercase letters to denote scalars, e.g., xij . We
denote a d-th-order tensor and its entries by X ∈ Rn1×···×nd and xi1...id , respectively.
Let X(k) ∈ Rnk×(Πl 6=knl) denote the k-th-mode unfolding of tensor X for k = 1, . . . , d,
this transformation is called matrix unfolding.
The inverse operator of unfold is denoted as fold and defined as follows:

X = foldk

(
X(k)

)
The Frobenius norm of a N -way tensor X ∈ RI1×I2×···×IN is defined as

‖X‖F =

(
I1∑

i1=1

I2∑
i2=1

· · ·
IN∑

iN=1

|xi1i2...iN |
2

) 1
2

,

where xi1i2...iN is the (i1, i2, . . . , iN )-th element of the tensor X .
The inner product of two same-sized tensors X and Y is defined as:

〈X ,Y〉 =
∑

i1,i2,...,iN

xi1i2...iN · yi1i2...in

Definition 2.1 (mode-n tensor matrix product). ([6])
The mode-n product X = Y ×n A of a tensor Y ∈ RJ1×J2×···×JN and a matrix
A ∈ RIn×Jn is a tensor X ∈ RJ1×···×Jn−1×In×Jn+1×···×JN , with elements

yj1,j2,...,jn−1,in,jn+1,...,jN =

Jn∑
jn=1

gj1,j2,...,jNain,jn

Definition 2.2 (HOSVD). ([6])
The HOSVD can be considered as a special form of Tucker decomposition which
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decomposes an N -th order tensor X ∈ RI1×I2×···×IN as

X = D ×1 V 1 ×2 V 2 · · · ×N V N

where V n, (n = 1, 2, · · · , N) are orthogonal matrices and the core tensor D is an
all-orthogonal and ordered tensor of the same dimension as the data tensor X .

Remark 2.1. For a tensor X ∈ RI1×I2×···×IN and a matrix V ∈ RIn×Jn , we have

‖X ×j V ‖2F = ‖X‖2F , ∀ V TV = I

where ×j is mode-j tensor matrix product.

Theorem 2.1. ∀A ∈ Rm×n, the following problem:

max
UTU=I

〈A,U〉

has the closed-form solution Û = BCT , where A = BDCT is the SV D decomposition
of A.

Proof. The proof of Theorem 2.1 can be found in supplementary material of article
[28]. �

3. Methods

We address in this section the tensor deblurring problem. By using the iterative de-
coupling method, we therefore, handle two simple steps, the observation-fidelity given
by a smooth minimization problem addressing the deblurring task and a denoiser-
model based on the chosen prior. As a regularization term, we consider the low-rank
prior with sparse-nonlocal self similarity constraint used in DB-WLRTR method [4]
to observe the merit of the iterative decoupling algorithm over the ADMM method
by enhancing the DB-WLRTR deblurring model. Before introducing the proposed
algorithm, we first briefly present an overview about the iterative decoupling method
and the low-rank based nonlocal sparsity regularization term.

3.1. Iterative algorithm based decoupled method for third-order tensor
deblurring. Generally, the deblurring problem is mathematically given by a mini-
mization problem of the form (2) which is the sum of a smooth and a convex function.
The decoupled method is an efficient algorithm for solving the problem (2) which has
been recently introduced for image restoration. The main idea of this algorithm is to
decouple the smooth and the convex functions into two simple minimization problems.
By starting from an initial guess X (0), the iterative method computes alternatively a
sequence of iterates such that: PK : X̂ (i) = arg min

X
‖Y − X ∗ K‖2F + µ‖X − X (i−1)‖2F

PJ : X (i) = arg min
X
‖X − X̂ (i)‖2F + λJ (X )

(3)

where ∗ designs the convolution operator, K is constructed from a linear shift-invariant
point spread function (PSF) and the boundary condition. Among the regularization
models that have attracted a revived interest and considerable amount of attention in
the tensor recovery literature are the low-rank prior, the sparsity regularization, and
the nonlocal self similarity. Thus, incorporating these priors’ knowledge in a unified
regularizer has caught the attention of the imaging community. Therefore, in this
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work, we consider a low-rank tensor learning with nonlocal weighted sparsity model
for the denoising step. Moreover, we develop a joint deblurring and denoising method
for tensor restoration problem.

3.1.1. Deblurring step: The computation of PK problem. We start with the
deblurring step given by the minimization problem PK

X̂ (i) = arg min
X
‖Y − X ∗ K‖2F + µ‖X − X (i−1)‖2F (4)

This is a least square problem which leads to a close-form solution for X̂ (i). The
solution can be efficiently computed by the 3D fast Fourier transforms (3D FFT).
Thus, in the Fourier domain, PK can be transformed into the following problem:

F(X̂ (i)) = arg min
F(X )

‖F(Y)−F(X ) ◦ F(K)‖2F + µ
∥∥∥F(X )−F(X (i−1))

∥∥∥2

F
. (5)

F(.) denotes the 3D discrete Fourier transform and the operator ◦ is element-wise

multiplication. The solution X̂ (i) is given as follows:

X̂ (i) = F−1

(
F∗(K) ◦ F(Y) + µF(X (i−1))

F∗(K) ◦ F(K) + µI

)
(6)

where F∗ and F−1 are the conjugate of the FFT and its inverse respectively.

3.1.2. Denoising step: Low-rank tensor learning with nonlocal weighted
sparsity model. Let us now return to the denoising step. As mentioned above, we
consider a low-rank learning based nonlocal weighted sparsity denoising model. The
approximation of the proposed regularization term consists of three steps namely, the
patch grouping, low-rankness property, and the sparse constraint. Before providing
the explicit form of the penalty term, we will present a brief overview of each of the
three steps.
• Patch extraction and grouping: Given a third-order tensor X ∈ Rn1,n2,n3 ,

we denote by Gp the operator that extracts nonlocal similar overlapping 3-D
patches from the tensor X , where GpX is the constructed 3-order tensor for each
exemplar cubic at location p. For each reference cubic patch with size s× s× k
in the whole 3-D images, we search for its similar cubic patches among adjacent
cubic in a local window using block matching. After patch grouping, we unfold
each 3-D patch into a 2-D matrix. Finally, these 2-D matrix is stacked into
several clusters, which can be represented by a 3rd-order tensor. Let N be the
number of the nonlocal similar patches, the obtained 3-order tensor is of the size
s2 × (N + 1)× k where s2 × k is the size of the matricization cubic.

• Low rank property: In many applications, one wants to approximate a data
matrix with a low-rank matrix. The SVD does this in the best way. The SVD is
useful whenever we have a two-dimensional data set, which is naturally expressed
in terms of a matrix. In the tensor view, the generalization of the SVD to
higher order tensors has been developed in several ways. One main approach is
the so-called high order singular value decomposition (HOSVD). Therefore, the
constructed tensor is then characterized by a low-rank approximation via the
HOSVD given as:

GpX = Dp ×1 V (1,p) ×2 V (2,p) ×3 V (3,p) (7)
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Then, by summing over all clusters and averaging the results, the original X can
be expressed as

X =

(∑
p

GTp Gp

)−1∑
p

GTp Dp ×1 V (1,p) ×2 V (2,p) ×3 V (3,p) (8)

• Sparsity constraint: The estimation of the core tensor Dp is a severely ill-
posed problem. To overcome this draw, the regularization method is considered.
In this regard, sparse regularization, which refers to a process of introducing
additional sparse constraint information in order to solve an ill-posed problem,
has been efficiently exploited in several applications. Herein, the l1-norm con-
straint is defined as the sum of absolute values of elements has been widely used.
However, the l1-norm regularization fairly penalizes all the components of the
underlying data. Thus, replacing the l1-norm with weighted l1-norm has demon-
strated to enhance the sparsity of the solution and improve the signal recovery
performance [1]. Therefore, the proposed low-rank based sparsity regularization
can be represented as:

J (X ) =
∑
p

∥∥GpX −Dp ×1 V (1,p) ×2 V (2,p) ×3 V (3,p)

∥∥2

F
+ γ ‖Dp‖W,1 (9)

where ‖Dp‖W,1 =
∑

ijk |wijkDp(i, j, k)|, and wijk is positive weight. To pro-

mote the same sparsity structure in the solution that is present in the original
tensor,wijk are selected such that they have small values on the nonzero loca-
tions and significantly larger values otherwise. Actually, information about the
locations of the nonzero coefficients is not available, the critical task of select-
ing the weights is performed iteratively via iterative reweighting. The idea is
to recompute weights at every iteration using the update of Dp at the previous
iteration. Let t be the iteration reweighted counter, using an appropriate choice
of positive values for parameters c and ε, we have

wi,j,k =
c

|Dt
p(i, j, k)|+ ε

(10)

Therefore, the denoising problem PJ is given as follows:

PJ :


{
Dp,V (j,p)

}
= arg min
Dp,V (j,p)

∑
p

∥∥∥GpX (i−1) −Dp ×1 V (1,p) ×2 V (2,p) ×3 V (3,p)

∥∥∥2
F

+γ ‖Dp‖W,1

X (i) = arg min
X
‖X − X̂ (i)‖2F + λ

∑
p

∥∥GpX −Dp ×1 V (1,p) ×2 V (2,p) ×3 V (3,p)

∥∥2
F
.

(11)

The computation of PJ problem.
• updating (Dp,V (j,p)) : The usual strategy to solve the first equation in problem

(11) is by using an alternating procedure which basically consists in alternatively
learning the core tensor Dp approximation when the V (j,p) is considered fixed
and then in updating the V (j,p) with the current Dp. In doing so, updating the
core tensor Dp can be given by:

Dp = arg min
Dp

∥∥GpX −Dp ×1 V (1,p) ×2 V (2,p) ×3 V (3,p)

∥∥2

F
+ γ ‖Dp‖W,1 (12)
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it’s closed solution can be directly given by the following equation:

Dp = shrink1 (Cp,Wp � γ) (13)

where

Cp = GpX ×1 V
T
(1,p) ×2 V

T
(2,p) ×3 V

T
(3,p) (14)

and

[shrink1(X , ξ)]i,j,k = sign (xi,j,k) max (|xi,j,k| − ξ, 0) (15)

Now, the sub-problem of updating the singular factors V (j,p), {j = 1, 2, 3} is
given by:

V (j,p) = arg min
V (j,p)

∑
p

∥∥GpX −Dp ×1 V (1,p) ×2 V (2,p) ×3 V (3,p)

∥∥2

F
(16)

Each V (j,p), {j = 1, 2, 3} can be solved independently. First, let M = GpX and
without loss of generality, we take V (1,p) as an example, by unfolding the preced-
ing problem according to the first direction, we have the equivalent minimization
problem

V (1,p) = arg min
V (1,p)

∥∥M(1) − V (1,p)Unfold1

(
Dp ×2 V (2,p) ×3 V (3,p)

)∥∥2

F
(17)

by remark 2.1, the equation (17) is equivalent to

max
V T

(1,p)
V (1,p)=I

〈
L(1),V (1,p)

〉
(18)

where

L(1) =
(
M(1)Unfold1

(
Dp ×2 V (2,p) ×3 V (3,p)

))
. (19)

In the same way we can see that the factors V (2,p) and V (3,p) can be updated
by solving the following problem

max
V T

(j,p)
V (j,p)=I

〈
L(j),V (j,p)

〉
(20)

Finally, by using theorem 2.1 the solution of each V (j,p), {j = 1, 2, 3} can be
given by the following matrix formula:

V +
(j,p) = BjC

T
j (21)

where L(j) = BjDCT
j is the SVD decomposition of L(j).

• updating X (i) : We turn now to compute the solution X (i) which is obtained
by solving the following quadratic optimization problem

arg min
X

{
‖X − X̂ (i)‖2F + λ

∑
p

∥∥GpX −Dp ×1 V (1,p) ×2 V (2,p) ×3 V (3,p)

∥∥2

F

}
(22)

Setting the derivative of the above problem to zero with respect to X , we obtain
the following closed solution

X (i) =

(
I + λ

∑
p

GTp Gp

)−1(
X̂ (i) + λ

∑
p

GTp Dp ×1 V (1,p) ×2 V (2,p) ×3 V (3,p)

)
(23)
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4. Results and discussion

This section is devoted to numerically evaluating the effectiveness of the proposed
method on deblurring three-way tensors. We compare the proposed method with three
current state-of-the-art HSI deblurring methods including FPD [16], SSTV [12], and
DB-WLRTR [4]. In fast positive deconvolution (FPD) method, an efficient approach
performing deconvolution of large hyperspectral images under a positivity constraint
is presented. In the SSTV approach, an hyperspectral image deconvolution method
based on spectral-spatial total variation prior and nonnegative constraint is exploited
to obtain the restored images. In [4], the nonlocal similarity within spectral-spatial
cubic and spectral correlation are both represented simultaneously. For this work, we
are interested only to the deblurring section, since the manuscript describes several
restoration tasks.

In the experiments, we consider a set of test problems, where the data are obtained
by convoling the image with a point spread function (PSF) with a boundary condition.
To demonstrate the efficiency of our strategy against various types of degradation,
we test the proposed algorithm and compare it with other restoration methods using
two blurring kernels, Gaussian blur kernel of size 8× 8 with standard deviation 3 and
averaging blur of size 12. The two kernels are generated using the Matlab functions
fspecial(’gaussian’,8*8,3) and fspecial(’average’,12), respectively. Moreover, the peak
signal-to-noise rate (PSNR) and the structural similarity index (SSIM) [25] are used
as a criterion for evaluating the quality of the reconstructed results.

In this section, we test seven data sets, including egyptian statue 1, cloth 1, chart
and stuffed toys1, stuffed toys1, origami2, spray2, and butterfly22 data set. In our
tests, we select a part of them (of size 256× 256 × 31) for the four first images, and
a portion of size 256× 256× 30 of last tree images.

Table 1 summarizes the PSNR and SSIM values achieved by the reconstructed
results of the four deblurring methods for the Gaussian kernel. In terms of both
PSNR and SSIM values, results demonstrate that the proposed method consistently
outperforms the comparative methods. Similarly, under the averaging blur, from the
PSNR and SSIM values presented in Table 2, we can see that the proposed method
achieves higher values comparing to the other deblurring methods.

For comprehensive comparisons of the performance of the four utilized deblurring
methods for Gaussian and averaging kernels, we consider four reconstructed images
egyptian statue, cloth, origami, spray as representations. We have displayed one
frame of all reconstructed images. To further compare the visual results, in Figure 1 to
Figure 8, we have zoomed different regions in images to compare the significance of the
four methods in recovering local details. In Figures 1,3,5,7, we illustrate the original,
degraded image by gaussian kernel, resulted image using FPD, SSTV, DB-WLRTR
methods, and the reconstructed image using our method. Similarly, in Figures 2,4,6,8,
we display the original, the degraded image by averaging kernel, the resulted image
using FPD, SSTV, DB-WLRTR approaches, and the reconstructed image using our
method.

1https://www.cs.columbia.edu/CAVE/databases/multispectral/
2http://www.ok.sc.e.titech.ac.jp/res/MSI/MSIdata59.html

https://www.cs.columbia.edu/CAVE/databases/multispectral/
http://www.ok.sc.e.titech.ac.jp/res/MSI/MSIdata59.html
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Table 1. The PSNR/SSIM obtained by the reconstruction of differ-
ent images degraded by gaussian kernel. For each test, four results
are provided FPD, SSTV, DB-WLRTR, and our proposed method.

Images Measures Methods

FPD SSTV DB-WLRTR Our method

egyptian statue PSNR 29.525 36.498 55.205 59.043
SSIM 0.9438 0.9669 0.9989 0.9996

cloth PSNR 30.024 31.263 46.116 50.289
SSIM 0.8950 0.8226 0.9918 0.9966

chart and stuffed toy PSNR 23.015 28.237 48.855 52.776
SSIM 0.8942 0.8517 0.9972 0.9988

stuffed toys PSNR 26.036 41.496 55.585 57.546
SSIM 0.9682 0.9780 0.9986 0.9992

Origami PSNR 24.835 30.999 51.187 56.191
SSIM 0.9230 0.9017 0.9979 0.9992

Spray PSNR 22.601 26.359 43.696 50.403
SSIM 0.8985 0.8133 0.9953 0.9986

Butterfly2 PSNR 16.880 32.967 51.318 55.410
SSIM 0.8247 0.9411 0.9981 0.9990

Table 2. The PSNR/SSIM obtained by the reconstruction of differ-
ent images degraded by averaging kernel. For each test, four results
are provided FPD, SSTV, DB-WLRTR, and our proposed method.

Images Measures Methods

FPD SSTV DB-WLRTR Our method

egyptian statue PSNR 26.811 34.992 54.494 57.550
SSIM 0.8429 0.9388 0.9984 0.9994

cloth PSNR 25.332 29.902 43.250 43.259
SSIM 0.5887 0.7606 0.9808 0.9814

chart and stuffed toy PSNR 18.485 26.819 48.340 51.038
SSIM 0.5791 0.7991 0.9969 0.9980

stuffed toys PSNR 22.398 37.743 55.059 56.956
SSIM 0.8558 0.9481 0.9984 0.9990

Origami PSNR 19.653 28.376 49.297 54.317
SSIM 0.6308 0.7982 0.9973 0.9984

Spray PSNR 18.557 25.609 41.660 44.859
SSIM 0.4839 0.7815 0.9910 0.9943

Butterfly2 PSNR 14.817 29.683 50.525 54.304
SSIM 0.7271 0.8702 0.9977 0.9986

We observe that the visual effect of the reconstructed image by the proposed
method is quite good and is comparable to the other tree restoration methods es-
pecially comparing to FPD and SSTV results. The proposed approach is capable
to efficiently generating the image edges and textures. Clearly, our method is able
to recover the losing details in the degraded images.In contrast, the results obtained
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by FPD and SSTV contain evident blurry area, leading to losing some details. On
the other hand, DB-WLRTR can perform comparatively better in deblurring image
with respect to FPD and SSTV. However, comparing with our algorithm, we can see
from the enlarged parts that our approach restore more details, whilst visually the
results may look similar. In several tests, we can remark that the zoomed regions
in the DB-WLRTR results present some imperfections. For example, in Figure 1. if
we observe deeply, we can easily notice that fine details are distorted and there has
some considerable artifacts. Besides, in Figures 3 and 4, it is seen that the symbol
illustrated the zoomed part of the results of DB-WLRTR is not clear as for our re-
sults whether under the gaussian or averaging kernels. Moreover, It is well-known
that, higher PSNR and SSIM indicates higher reconstruction quality. In this context,
PSNR and SSIM values of our algorithm are larger in overall test.

(a) (b) (c)

(d) (e) (f)

Figure 1. The visual comparison results of the recovered egyptian image.
(a) The original image at band 6, (b) The degraded image by kernel 1,
The recovered results by (c) FPD, (d) SSTV, (e) DB-WLRTR, and (f) the
proposed method, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 2. The visual comparison results of the recovered egyptian image.
(a) The original image at band 3, (b) The degraded image by kernel 2,
The recovered results by (c) FPD, (d) SSTV, (e) DB-WLRTR, and (f) the
proposed method, respectively.

5. Conclusion

In this paper, we have proposed an effective iterative algorithm based on a decoupled
method for multidimensional image deblurring problem. The idea is to split the ob-
jective function into two iterative minimization problems. Thus, we obtain a simple
deblurring problem based on a model denoiser. The nonlocal low rank and weighted
sparsity regularization is employed, is the core of the deblurring process. The sug-
gested approach outperforms the other classical methods in literature via extensive
numerical experiments. Our method can be extended to consider other denoising
model in the aim to enhance the deblurring step.
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Figure 3. The visual comparison results of the recovered Spray image.
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proposed method, respectively.
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Figure 4. The visual comparison results of the recovered Spray image.
(a) The original image at band 24, (b) The degraded image by kernel 2,
The recovered results by (c) FPD, (d) SSTV, (e) DB-WLRTR, and (f) the
proposed method, respectively.
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Figure 5. The visual comparison results of the recovered Cloth image.
(a) The original image at band 5, (b) The degraded image by kernel 1,
The recovered results by (c) FPD, (d) SSTV, (e) DB-WLRTR, and (f) the
proposed method, respectively.
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Figure 6. The visual comparison results of the recovered Cloth image.
(a) The original image at band 5, (b) The degraded image by kernel 2,
The recovered results by (c) FPD, (d) SSTV, (e) DB-WLRTR, and (f) the
proposed method, respectively.

(a) (b) (c)

(d) (e) (f)

Figure 7. The visual comparison results of the recovered Origami image.
(a) The original image at band 24, (b) The degraded image by kernel 1,
The recovered results by (c) FPD, (d) SSTV, (e) DB-WLRTR, and (f) the
proposed method, respectively.
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Figure 8. The visual comparison results of the recovered Origami image.
(a) The original image at band 24, (b) The degraded image by kernel 2,
The recovered results by (c) FPD, (d) SSTV, (e) DB-WLRTR, and (f) the
proposed method, respectively.
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