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Large radial solutions of an overdetermined eigenvalue
problems for the polyharmonic operator
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Abstract. We consider an eigenvalue problem for the polyharmonic operator, with overdeter-

mined boundary conditions. We give radial solutions on balls and those solutions are expressed

by the mean of Bessel functions.
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1. Introduction

In this paper, we are interested in the overdetermined eigenvalue problems for the
polyharmonic operator given by:

(Pm)


(−1)m∆mu = λu+ µ in B(0, R),

u = a,
∂u

∂ν
= b on ∂B(0, R),

∆u = c1, .... ,∆
m−1u = cm−1 on ∂B(0, R) if m ≥ 2,

where m is a positive integer, λ > 0, µ, a, b ∈ R, cp ∈ R, ∀p ∈ {1, ...,m− 1}, B(0, R)

is an N-ball of raduis R in RN with N ≥ 2 and
∂

∂ν
is the outward normal derivative.

When m = 1, λ = 0, µ = 1 and a = 0, problem (P1) writes
∆u = −1 in B(0, R),

u = 0,
∂u

∂ν
= b on ∂B(0, R).

(1)

Serrin [7] showed that (1) admits a solution u on the ball of radius R = N |b| and
u is radially symmetric given by

u =
R2 − r2

2N
.

When m = 2, λ = 0, µ = −1 and a = b = 0, problem (P2) writes
∆2u = −1 in B(0, R),

u =
∂u

∂ν
= 0, ∆u = c1 on ∂B(0, R).

(2)
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Bennett [1] showed that (2) admits a solution u on the ball of radius R = [|c1|(N2+
2N)]1/2 and u is radially symmetric given by

u = − 1

2N

(
N + 2

4
(Nc1)2 +

Nc1
2
r2 +

1

4(N + 2)
r4
)
.

When m = 2, λ = 0, µ = 1 and a = b = 0, problem (P2) writes
∆2u = 1 in B(0, R),

u =
∂u

∂ν
= 0, ∆u = c1 on ∂B(0, R).

(3)

Dalmaso [2] showed that (3) admits a solution u on the ball of radius R = [c1(N2+
2N)]1/2 and u is radially symmetric given by

u =
(R2 − r2)2

8N(N + 2)
.

In the case m=2, we have considered in [4] the following problem :

(P2,τ )


Lτu = ∆2u− τ∆u = λu+ µ in B(0, 1),

u = a,
∂u

∂ν
= b, ∆u = c1 on ∂B(0, 1),

with τ ≥ 0. Under some conditions, we prove:

Theorem 1.1. Let β := N−2
2 , θ :=

(√τ2 + 4λ− τ
2

) 1
2

and consider the Bessel func-

tion of the first kind of order β denoted by Jβ . Then, we have the following.

(i) Suppose µ = 0, a = c1 = 0, b 6= 0 and θ satisfies Jβ(θ) = 0. Then, there exists a
radial solution to problem (P2,τ ), given by

u(x) = v(r) =
b

θJ
′
β(θ)

r−βJβ(θr), ∀r = |x| ∈ (0, 1].

(ii) Suppose µ = 0, a 6= 0, b = 0, c1 = −θ2a and θ satisfies θJ
′

β(θ) − βJβ(θ) = 0.

Then, there exists a radial solution to problem (P2,τ ), given by

u(x) = v(r) =
a

Jβ(θ)
r−βJβ(θr), ∀r = |x| ∈ (0, 1].

(iii) Suppose µ 6= 0, a = b = 0, c1 = −θ
2µ

λ
and θ satisfies θJ

′

β(θ)−βJβ(θ) = 0. Then,

there exists a radial solution to problem (P2,τ ), given by

u(x) = v(r) =
µ

λ

[
1

Jβ(θ)
r−βJβ(θr)− 1

]
, ∀r = |x| ∈ (0, 1].

Our result deals with radial solutions of problem (Pm) when B(0, R) is an N-ball
of raduis R. Let β := N−2

2 and consider the Bessel function of the first kind of order
β denoted by Jβ .

We have the following theorem.
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Theorem 1.2. Let B(0, R) the ball in RN with N ≥ 2. Then, we have the following.

1- Suppose µ = 0, a = cp = 0, b 6= 0 and R satisfies Jβ(λ
1

2mR) = 0. Then, the
problem (Pm) admits a radial solution, given by :

u(x) = v(r) =
b

λ
1

2m J
′
β(λ

1
2mR)

(R
r

)β
Jβ(λ

1
2m r), ∀r = |x| ∈ (0, R].

2- Suppose µ = 0, a 6= 0, b = 0, cp = (−1)pλ
p
m a, ∀p ∈ {1, ...,m− 1} and R satisfies

λ
1

2mRJ
′

β(λ
1

2mR)−βJβ(λ
1

2mR) = 0. Then, the problem (Pm) admits a radial solution,
given by :

u(x) = v(r) =
a

Jβ(λ
1

2mR)

(R
r

)β
Jβ(λ

1
2m r), ∀r = |x| ∈ (0, R].

3- Suppose µ 6= 0, a ∈ R, b = 0, cp = (−1)pλ
p
m

[
a+ µ

λ

]
, ∀p ∈ {1, ...,m − 1} and R

satisfies λ
1

2mRJ
′

β(λ
1

2mR)− βJβ(λ
1

2mR) = 0. Then, the problem (Pm) admits a radial
solution, given by :

u(x) = v(r) =
µ

λ

[
(λaµ + 1)

Jβ(λ
1

2mR)

(R
r

)β
Jβ(λ

1
2m r)− 1

]
, ∀r = |x| ∈ (0, R].

Remark 1.1. Let B(0, R) the ball in R3. Then, we have the following.

1- Suppose µ = 0, a = cp = 0, b 6= 0 and R = kπλ−
1

2m ,∀k ∈ N∗. Then, the problem
(Pm) admits a radial solution, given by :

u(x) = v(r) =
(−1)kkπb

λ
1

2m

sin(λ
1

2m r)

λ
1

2m r
, ∀r = |x| ∈ (0, R].

2- Suppose µ = 0, a 6= 0, b = 0, cp = (−1)pλ
p
m a, ∀p ∈ {1, ...,m− 1} and R satisfies

tan(λ
1

2mR) = λ
1

2mR. Then, the problem (Pm) admits a radial solution, given by :

u(x) = v(r) = a
R

r

sin(λ
1

2m r)

sin(λ
1

2mR)
, ∀r = |x| ∈ (0, R].

3- Suppose µ 6= 0, a ∈ R, b = 0, cp = (−1)pλ
p
m

[
a+ µ

λ

]
, ∀p ∈ {1, ...,m − 1} and R

satisfies tan(λ
1

2mR) = λ
1

2mR. Then, the problem (Pm) admits a radial solution, given
by :

u(x) = v(r) =
µ

λ

[(
(
λa

µ
+ 1)

R

r

sin(λ
1

2m r)

sin(λ
1

2mR)

)
− 1

]
, ∀r = |x| ∈ (0, R].

2. Proof of Theorem 1.2

In this section we prove Theorem 1.2. We assume that the domain is a ball in RN
with N ≥ 2 and for sake of simplicity, we consider the ball B(0, R). As mentioned in
the Introduction, radial solutions for problem (Pm) are constructed with the use of
Bessel functions.
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We recall that the Bessel functions , discovered by Bernoulli and used by Bessel as
part of his studies of the movement of the planets induced by gravitational interaction,
are canonical solutions y(r) of the differential Bessel equation:

r2y′′(r) + ry′(r) + (r2 − α2)y(r) = 0, (4)

for any real or complex number α. Most often, α is a natural integer (then called the
order of the function), or a half-integer.

There are two kinds of Bessel functions:
• The Bessel functions of the first kind, denoted by Jn, solutions of the above

differential equation which are defined at 0.
• The Bessel functions of the second kind, denoted by Yn, solutions which are not

defined in 0 (but which have an infinite limit in 0).
We also recall that for integer values α = n, the Bessel functions of the first kind can
be represented by integrals given by

Jn(x) =
1

π

∫ π

0

cos(nt− x sin t) dt

or else by

Jn(x) =
1

2π

∫ π

−π
e−i (nt−x sin t) dt.

For α = n+ 1
2 , the Bessel functions of the first kind given by

Jn+ 1
2
(x) = (−1)n

√
2x

π
xn
( d

xdx

)n{ sinx

x

}
, ∀x ∈ R+. (5)

This definition can extend to the non-integer case of α (for Re(x) > 0), by adding
another term

Jα(x) =
1

π

∫ π

0

cos(αt− x sin t) dt− sin(απ)

π

∫ ∞
0

e−x sinh(t)−αt ddt.

Here, we consider the Bessel functions of the first kind and we denote them by Jβ ,

where β = N−2
2 (N ≥ 2) is an integer or half-integer.

Now, writing y(r) = Jβ(λ
1

2m r) with r ∈ (0, R] and taking α = β in the equation
(4), we are led to the equation

J
′′

β (λ
1

2m r) +
1

λ
1

2m r
J

′

β(λ
1

2m r) +
(

1− β2

λ
1
m r2

)
Jβ(λ

1
2m r) = 0, ∀r ∈ (0, R]. (6)

Proof of Theorem 1.2. 1- Let µ = 0, b 6= 0 and suppose thatR satisfies Jβ(λ
1

2mR) = 0.
Consider the radial function

u(x) = v(r) =
b

λ
1

2m J
′
β(λ

1
2mR)

(R
r

)β
Jβ(λ

1
2m r), ∀r = |x| ∈ (0, R]. (7)

We have

v′(r) = − bβRβ

λ
1

2m J
′
β(λ

1
2mR)

r−β−1Jβ(λ
1

2m r) +
bRβ

J
′
β(λ

1
2mR)

r−βJ
′

β(λ
1

2m r).
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Using (6), we have

v
′′
(r) = −(2β + 1)r−1

[
− bβRβ

λ
1

2m J
′
β(λ

1
2mR)

r−β−1Jβ(λ
1

2m r) +
bRβ

J
′
β(λ

1
2mR)

r−βJ
′

β(λ
1

2m r)

]

− λ
1
m b

λ
1

2m J
′
β(λ

1
2mR)

(R
r

)β
Jβ(λ

1
2m r) = −(2β + 1)r−1v′(r)− λ 1

m v(r)

= −(N − 1)r−1v′(r)− λ 1
m v(r).

Then

−∆u(x) = −
[
N − 1

r
v′(r) + v′′(r)

]
= λ

1
m v(r) = λ

1
mu(x).

By induction, we obtain

(−1)p∆pu(x) = λ
p
m u(x), ∀p ∈ {1, ...,m}.

In particular for p = m, we have

(−1)m∆mu(x) = λu(x), ∀m ≥ 1.

Then u(x) = v(r) given by (7) is a solution of the equation

(−1)m∆mu = λu on B(0, R).

Moreover, on ∂B, we have

u(x) = v(r)
∣∣∣
r=R

=
1

λ
1

2m J
′
β(λ

1
2mR)

Jβ(λ
1

2mR) = 0,

∂u

∂ν
(x) = ∇u(x) · ~ν(x) =

1

r
v′(r) ~x · ~ν(x)

∣∣∣
r=R

= − bβRβ

λ
1

2m J
′
β(λ

1
2mR)

r−β−1Jβ(λ
1

2m r) +
bRβ

J
′
β(λ

1
2mR)

r−βJ
′

β(λ
1

2m r))
∣∣∣
r=R

= b

and

∆u(x) = (−1)1λ
1
m u(x) = 0.

By induction, for m ≥ 2 we obtain

∆pu(x) = (−1)pλ
p
m u(x), ∀p ∈ {1, ...,m− 1},

then

cp = ∆pu(x) = (−1)pλ
p
m u(x) = 0, ∀p ∈ {1, ...,m− 1}.

2- Let µ = 0, a 6= 0 and suppose that R satisfies λ
1

2mRJ
′

β(λ
1

2mR)− βJβ(λ
1

2mR) = 0.
Consider the radial function

u(x) := v(r) =
a

Jβ(λ
1

2mR)

(R
r

)β
Jβ(λ

1
2m r), ∀r = |x| ∈ (0, R]. (8)

We have

v′(r) = − aβRβ

Jβ(λ
1

2mR)
r−β−1Jβ(λ

1
2m r) +

a λ
1

2m Rβ

Jβ(λ
1

2mR)
r−βJ

′

β(λ
1

2m r).



244 S. BARAKET, W. MTAOUAA, AND I. ZOUHIR

Using (6), we have

v
′′
(r) = −(2β + 1)r−1

[
− aβRβ

Jβ(λ
1

2mR)
r−β−1Jβ(λ

1
2m r) +

a λ
1

2m Rβ

Jβ(λ
1

2mR)
r−βJ

′

β(λ
1

2m r)

]

− λ 1
m

a

Jβ(λ
1

2mR)

(R
r

)β
Jβ(λ

1
2m r) = −(2β + 1)r−1v′(r)− λ 1

m v(r)

= −(N − 1)r−1v′(r)− λ 1
m v(r).

Then

−∆u(x) = −
[
N − 1

r
v′(r) + v′′(r)

]
= λ

1
m v(r) = λ

1
mu(x).

By induction, we obtain

(−1)p∆pu(x) = λ
p
m u(x), ∀p ∈ {1, ...,m}.

In particular for p = m, we have

(−1)m∆mu(x) = λu(x), ∀m ≥ 1.

Then u(x) = v(r) given by (8) is a solution of the equation

(−1)m∆mu = λu on B(0, R).

Moreover, on ∂B, we have

u(x) = v(r)
∣∣∣
r=R

= a,

∂u

∂ν
(x) = ∇u(x) · ~ν(x) =

1

r
v′(r) ~x · ~ν(x)

∣∣∣
r=R

= − a

RJβ(λ
1

2mR)

(
λ

1
2mRJ

′

β(λ
1

2mR)− β Jβ(λ
1

2mR)
)

= 0

and

∆u(x) = (−1)1λ
1
m u(x) = (−1)1λ

1
m a.

By induction, for m ≥ 2 we obtain

∆pu(x) = (−1)pλ
p
m u(x), ∀p ∈ {1, ...,m− 1},

then

cp = ∆pu(x) = (−1)pλ
p
m u(x) = (−1)pλ

p
m a, ∀p ∈ {1, ...,m− 1}.

3 - Let µ 6= 0, a ∈ R and suppose that R satisfies λ
1

2mRJ
′

β(λ
1

2mR)− βJβ(λ
1

2mR) = 0.
Consider the radial function

u(x) = v(r) =
µ

λ

[
(λaµ + 1)

Jβ(λ
1

2mR)

(R
r

)β
Jβ(λ

1
2m r)− 1

]
, ∀r = |x| ∈ (0, R]. (9)

We have

v
′
(r) =

µ

λ

[
−(λaµ + 1)βRβ

Jβ(λ
1

2mR)
r−β−1Jβ(λ

1
2m r) +

(λaµ + 1)λ
1

2mRβ

Jβ(λ
1

2mR)
r−βJ

′

β(λ
1

2m r)

]
.
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Using (6), we obtain

v
′′
(r) = −(2β + 1)r−1

µ

λ

[
−(λaµ + 1)βRβ

Jβ(λ
1

2mR)
r−β−1Jβ(λ

1
2m r) +

(λaµ + 1)λ
1

2mRβ

Jβ(λ
1

2mR)
r−βJ

′

β(λ
1

2m r)

]

− λ 1
m

[
µ

λ

(λaµ + 1)

Jβ(λ
1

2mR)

(R
r

)β
Jβ(λ

1
2m r)

]
= −(2β + 1)r−1v′(r)− λ 1

m

[
v(r) +

µ

λ

]
= −(N − 1)r−1v′(r)− λ 1

m

[
v(r) +

µ

λ

]
.

Thus

−∆u(x) =

[
N − 1

r
v′(r) + v′′(r)

]
= λ

1
m

[
v(r) +

µ

λ

]
= λ

1
m

[
u(x) +

µ

λ

]
.

By induction, we obtain

(−1)p∆pu(x) = λ
p
m

[
u(x) +

µ

λ

]
, ∀p ∈ {1, ...,m}.

In particular for p = m, we have

(−1)m∆mu(x) = λu(x) + µ, ∀m ≥ 1.

Then u(x) = v(r) given by (9) is a solution of the equation

(−1)m∆mu = λu+ µ on B(0, R).

Moreover, on ∂B, we have

u(x) = v(r)
∣∣∣
r=R

= a,

∂u

∂ν
(x) = ∇u(x) · ~ν(x) =

1

r
v′(r) ~x · ~ν(x)

∣∣∣
r=R

=
µ(λaµ + 1)

λJβ(λ
1

2mR)

(
λ

1
2mRJ

′

β(λ
1

2mR)− β Jβ(λ
1

2mR)
)

= 0

and

∆u(x) = −λ 1
m

[
u(x) +

µ

λ

]
= −λ 1

m

[
a+

µ

λ

]
.

By induction, for m ≥ 2 we obtain

∆pu(x) = (−1)pλ
p
m

[
u(x) +

µ

λ

]
, ∀p ∈ {1, ...,m− 1},

and so

cp = ∆pu(x) = (−1)pλ
p
m

[
a+

µ

λ

]
, ∀p ∈ {1, ...,m− 1}.
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