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Existence and Asymptotic Behavior of a Nonlinear Axially
Moving String with Variable Tension and Subject to
Disturbances

Abdelkarim Kelleche and Athmane Abdallaoui

Abstract. In this paper, we consider the stabilization question for a nonlinear model of

an axially moving string. The model is assumed to undergo the variable tension and variable

disturbances. The Hamilton principle is used to describe the dynamic of transverse vibrations.
We establish the well-posedness by means of the Faedo–Galerkin method. A boundary control

with a time-varying delay is designed to stabilize uniformly the string. Then, we derive a

decay rate of the solution assuming that the retarded term be dominated by the damping one.
Some examples are given to clarify when the rate is exponential or polynomial.
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1. Introduction

For a variety of reasons, the vibration problem for axially moving systems is considered
to be a major factor that menaces their good functioning and their life duration.
The importance of these systems is due to their employment in different engineering
applications. Their use has increased rapidly these last decades. This development
has forced the researchers to explore more efficient techniques to attenuate or to
reduce these effects. Several methods and approaches have been adopted to reach a
typical model that describes the vibration behavior and dynamic characteristics of
an axially moving string. Many researchers have investigated in this area to control
these devices. This led to the emergence of several studies in this direction, Fung and
Tseng in [4] showed the exponential stability of a linear model of an axially moving
string using a feedback comprising the displacement, the velocity and the slope of
the string at one of the endpoints. Fung et al. in [5] proved that the system is
exponentially stable by employing a nonlinear feedback boundary controller including
an MDS controller. Several others results concerned with nonlinear models have been
investigated, see in [22, 23, 24]. The stabilisation using a boundary control of memory
type has been investigated recently in [7] where the control leads to the same result
compared to other types of control.
Model and mathematical formulation

Consider an axially moving string with a constant velocity c in the direction of its
axis, as illustrated in Fig. 1, with length l and density ρ. Let t be the time, x be
the spatial coordinate along the longitude of motion. The transverse displacement is
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Figure 1. An axially moving string under boundary control force

indicated by w(x, t). The string at the left boundary is assumed fixed, i.e., fixed in
the sense that there is no vertical movement, but it allows the string to move in the
horizontal direction. The tension P in the string is assumed to be a spatiotemporally
variable function. This is resulted from external disturbances and/or gravity, etc.
The string is subject to an external disturbance force d1(x, t) along the string and
an external disturbance force d2(t) at the right boundary. A control force denoted
by Fc(t) is located at the right boundary to suppress the transverse vibrations of
the string. We denote by w0(x), w1(x), respectively the initial displacement and the
initial velocity of the string.

The governing equation of the transverse displacement and the boundary conditions
of the controlled string can be derived applying the Hamilton’s principle. We recall
the generalized Hamilton’s principle formula (see [19])

δ

∫ t1

t0

(Ec − Ep +W ) = 0 (1)

where δ denotes the variational operator, t0, t1 are two time instants, t0 < t < t1 is
the operating interval. Ec and Ep are the kinetic energy and the potential energy of
the system, respectively. Their expressions are given by

Ec =
1

2

∫ l

0

ρ (wt + cwx)
2
dx, t ≥ 0 (2)

and

Ep =
1

2

∫ l

0

P (x, t)w2
xdx, t ≥ 0. (3)

The term W is the virtual work performed by the external forces

δW = [Fc(t)− d2(t)] δw(l, t) +

∫ l

0

d1(x, t)δwdx, t ≥ 0. (4)

The variation of the expressions (2) and (3) is given by

δEc =

∫ l

0

ρ (wt + cwx) δ (wt + cwx) dx, t ≥ 0 (5)

and

δEp =

∫ l

0

P (x, t)wxδwxdx, t ≥ 0. (6)
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Before proceeding to evaluate the Hamilton’s principle formula (1), we define as in
[28] and [21] the total derivative operator with respect to time by

d

dt
=

∂

∂t
+ c

∂

∂x
= (.)t + c(.)x. (7)

The substitution of (4)–(6) into (1) gives∫ t1

t0

∫ l

0

[ρ (wt + cwx) δ (wt + cwx) dx− P (x, t)wxδwx] dxdt

+

∫ l

0

d1(x, t)δwdx+

∫ t1

t0

[Fc(t)− d2(t)] δw(l, t)dt = 0. (8)

An integration by parts yields

ρ

∫ l

0

[(wt + cwx) δw]
t1
t0
dx− ρ

∫ t1

t0

∫ l

0

(
wtt + 2cwxt + c2wxx

)
δwdx

−
∫ t1

t0

[P (x, t)wxδw]
l
0 dt+

∫ t1

t0

∫ l

0

(P (x, t)wx)x δwdxdt

+

∫ l

0

d1(x, t)δwdx−
∫ t1

t0

(−Fc(t) + d2(t)) δw(l, t)dt = 0 (9)

or

−ρ
∫ t1

t0

∫ l

0

(
wtt + 2cwxt + c2wxx

)
δwdx+

∫ t1

t0

∫ l

0

(P (x, t)wx)x δwdxdt

+

∫ t1

t0

P (l, t)wx(l, t)δw(l, t)dt+

∫ l

0

d1(x, t)δwdx

−
∫ t1

t0

(−Fc(t) + d2(t)) δw(l, t)dt = 0 (10)

where we have used the fact δw(0, t) = 0 and the boundary conditions δw(t0) =
δw(t1) = 0. Since the displacement δw is arbitrary, the following system is obtained

ρ
(
wtt + 2cwxt + c2wxx

)
− (P (x, t)wx)x = d1(x, t), x ∈ (0, l) , t > 0,

w(0, t) = 0,
P (l, t)wx(l, t) = −Fc(t) + d2(t),
w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ (0, l) , t > 0,

(11)

Introducing the following non-dimensional parameters

x∗ = x/l, α =
√

1/ρ, t∗ = αt/l, y (x∗, t∗) = w (x, t) , T (x∗, t∗) = P (x, t),

v = c/α, f1 = l2d1, f = ld2, fc = lFc.

Inserting them into the system (11) and dropping all the stars, we are lead to
ytt + 2vyxt + v2yxx − (T (x, t)yx)x = f1(x, t), x ∈ (0, 1) , t > 0,
y(0, t) = 0, t ≥ 0,
T (1, t)yx(1, t) = fc (t) + f2(t), t ≥ 0,
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1) ,

(12)

Control formulation and closed loop system. The control objective is to
design a bounded control force fc (t) that derives the string displacement y(x, t) to
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zero with a fast manner as t goes to infinity. The energy associated to (12) is defined
by

E(t) =
1

2

(∫ 1

0

y2
t dx+

∫ 1

0

T (x, t)y2
xdx

)
, t ≥ 0.

By using (7), the derivative of E(t) in the case of constant tension is equal to

d

dt
E(t) = (yt + vyx) (1, t)fc (t)− vy2

x(0, t) + (yt + vyx) (1, t)f2(t)

+

∫ 1

0

(yt + vyx) f1(x, t)dx, t ≥ 0.

Our proposed control force fc (t) for this system is the following

fc (t) = −µ1 (yt + vyx) (1, t) − µ2 (yt + vyx) (1, t− τ(t)), t ≥ 0. (13)

The control input fc (t) acts here with delay, as in most practical situations the
delays can not be neglected, due to delayed measurements, an intrinsic property of
the system, feedback control action, etc. The positive real numbers µ1 and µ2 are the
coefficients of the damping term and the retarded term, respectively. The function
τ(t) > 0, t ≥ 0 indicates that the delay is a varying function with time.

As well known, the delay term, which occurs in different applications, is a factor
of instability. It was shown that for the one dimensional wave equation when the
control acts without delays, a simple frictional boundary damping capable to stabilize
exponentially the system (see, e.g. [18, 29, 25]). However, when the delay acts with a
weak delay, the instability of the system is provoked as shown in [1]. For that reason,
the control fc (t) may be written as (see [30])

{
fc (t) = kµyt(1, t) + k(1− µ)yt(1, t− τ), k > 0, µ ∈ (0, 1), t > 0,
yt(1, t− τ) = f(1, t− τ), t ∈ (0, τ) .

(14)

The authors in [30], showed that when µ > 1
2 , the system is exponentially stable and it

is unstable when µ < 1
2 . In the case µ = 1

2 , it was shown that if τ is rational the system
is unstable and it is asymptotically stable if τ is irrational. The multi-dimensional
case has also been treated by Nicaise and Pignotti in [20]. The assumption that µ2

< µ1 is requested to stabilize exponentially the system. In addition, the authors
showed that if µ2 ≥ µ1 the system is unstable. The systems with variable tension and
delay term have been investigated in[2] where the author considered a plate equation
with a memory term and a time delay term in the internal feedback. The global
well-posedness has been established by using the Faedo-Galerkin approximations and
some energy estimates. A general decay result of the energy was obtained provided
that the weight of the delay is less than the weight of the damping. This result was
generalized lately in[3] for two classes of plate equations with past history and strong
time-dependent delay in the internal feedback.
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The closed loop system associated to (12) by considering the control force (13) is
given by

ytt + 2vyxt + v2yxx − (T (x, t)yx)x = f1(x, t), x ∈ (0, 1) , t > 0,
y(0, t) = 0, t ≥ 0,
T (1, t)yx(1, t) = −µ1 (yt + vyx) (1, t) − µ2 (yt + vyx) (1, t− τ(t)) + f2(t), t ≥ 0,
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1) ,
(yt + vyx) (1, t− τ) = f0(1, t− τ), t ∈ (−τ(0), 0)

(15)
where f0 stands for the measure of the observation of the system in (−τ(0), 0). Some
stability results related to the system (15) without delay have been obtained, see
[27, 10, 7, 8]. For Similar investigations in this regard, see [11, 12, 13, 14]. The
question of the stabilization of an axially moving structure with delay, like systems
(15) has not been investigated previously. Recently, the present authors investigated
in [9] the stability of a delayed Kirchhof moving string where the delay acts in the
boundary or in the inetrnal feedbacks. Their study was restricted on the case of
homogeneous system: i.e. f1(x, t) = f2(t) = 0 with τ(t) = τ > 0. It was proven that
if the delay coefficient satisfies µ2 < µ1, the solution decays exponentially to zero.

Our main contributions throughout this work are summarized as follows:
(i) Proposing a more practical model that takes into account the influence of both

internal and external factors depending on space such that the varying of tension,
delay measurements and disturbance effects.

(ii) Proving the well-posedness of the system by means of the Faedo-Galerkin method.
(iii) Studying the asymptotic behaviour of solutions and deriving a decay rate of the

system.
Our analysis is confronted by some difficulties: The axial movement of the string,

the variation of the tension and the disturbance functions. The first difficulty requires
the use of the Leibniz rule or the Reynolds Transport Theorem (for more details, see
[28] and [21]). The second point is related to the dissipativity of the system and needs
some extra assumption to deal with (see the total derivative of the energy below).
For the third issue, we shall make use of an inequality which is new in this theory.

We have organised the content of this paper as follows. The second section is
reserved to introduce our assumptions on the delay function, its coefficients and the
disturbance functions. We need also to introduce some lemmas which will help in the
proof of the results. In the third section, we give the statement of the well-posedness
and present the proof using the Faedo-Galerkin approximations. The fourth section is
concerned with the asymptotic behavior of the system. We prove under the condition
that the delay coefficient µ2 is dominated by the damping one µ1, the system can be
uniformly stabilized. The result obtained is illustrated by some examples clarifying
when the system is exponentially stable or polynomially stable. The fifth section
discusses some generalizations to other problems. In the last section, we conclude
and suggest some possible future investigations.

2. Preliminaries

This section is concerned with introducing of our assumptions and some lemmas used
in the proof of our result.
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Let L2(0, 1) be the usual Hilbert space with the inner product (·,·) and the induced
norm ‖.‖ . In order to state our existence result, we introduce

V =
{
w ∈ H1(0, 1) : w(0) = 0

}
.

The following inequalities will be utilized in this paper
Young inequality: Let (a, b) ∈ R2, for any η > 0, we have

ab ≤ ηa2 +
b2

4η
.

Poincaré inequality: Let w ∈ V, then the following inequalities hold

w(x) ≤ ‖wx‖2 , ∀x ∈ [0, 1]

and

‖w‖2 ≤ ‖wx‖2 .
Next, we introduce our assumptions. For the time-varying delay, we assume that

A1: : τ(t) ∈ W 2,∞([0, T ]), T > 0 and there exist positive constants τ0 and τ̄ such
that

0 < τ0 ≤ τ(t) ≤ τ̄ , t > 0 (16)

the delay derivative verifies

τ ′(t) ≤ d < 1, t > 0 (17)

and the coefficients µ1 and µ2 are related by

µ2 <
√

1− dµ1. (18)

For the tension T, we suppose that
A2: T (x, t) is continuously differentiable a.e. and satisfies

0 < Tmin ≤ Ts(x, t) ≤ Tmax, (19)

|(T (x, t))t| ≤ (Tt)max (20)

and

|(T (x, t))t| ≤ (Tx)max (21)

for all x ∈ [0, l] and t ≥ 0 and for some known constants Tmin, Tmax, (Tt)max and
(Tx)max. To conserve the hyperbolicity of the system, we assume that

Tmin > v2. (22)

A3: The functions f1(x, .) and f2 are continuous such that f1(., t) ∈ L2(0, 1) for

all t ≥ 0. For simplicity, we denote F (t) =
∫ 1

0
f2

1 (x, t)dx+ f2
2 (t).

Due to the presence of the disturbance functions f1 and f2, the system is not
necessarily dissipative (see 46). This does not allow to profit from the dissipativity
of the system. To resolve this problem we introduce the following lemma, which was
proven in [?].

Lemma 2.1. Let χ(t), β(t) ∈ C[0,+∞) and let v(t) be a nonnegative solution of the
following inequality

v′(t) ≤ −χ(t)v(t) + β(t), t ≥ 0

such that there exists a positive function ϕ(t) ∈ C1[0,+∞)

ϕ(t)χ(t)− ϕ′(t) ≥ 0, t ≥ 0
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and

β(t) ≤ 1

2ϕ(t)

(
χ(t)− ϕ′(t)

ϕ(t)

)
, t ≥ 0,

then

v(t) <
1

ϕ(t)
, t ≥ 0

provided that ϕ(0)v(0) < 1.

3. Existence result

In this section, we present an existence and uniqueness result for the problem (15). In
order to deal with the delay feedback term, we introduce the following new dependent
variable

z(ρ, t) = yt(1, t− ρτ(t)) + vyx(1, t− ρτ(t)), ρ ∈ (0, 1) , t > 0.

Then, it is easy to check that

τ(t)zt(ρ, t) + (1− τ ′(t)ρ)zρ(ρ, t) = 0, ρ ∈ (0, 1) , t > 0.

So, the problem (15) may be rewritten in the form

ytt + 2vyxt + v2yxx − (T (x, t)yx)x = f1(x, t), x ∈ (0, 1) , t > 0,
τ(t)zt(ρ, t) + (1− τ ′(t)ρ)zρ(ρ, t) = 0, ρ ∈ (0, 1) , t > 0,
y(0, t) = 0, t ≥ 0,
T (1, t)yx(1, t) = −µ1z(0, t) − µ2z(1, t) + f2(t), t ≥ 0,
z(0, t) = (yt + vyx) (1, t), t > 0,
y(x, 0) = y0(x), yt(x, 0) = y1(x), x ∈ (0, 1) ,
z(ρ, 0) = f0(1,−τρ), ρ ∈ (0, 1) .

(23)

Definition 3.1. A pair of functions (y, z) is said to be a weak solution of (23) on
[0, T ] if

y ∈ C ([0, T ), V ) ∩ C1
(
[0, T ), L2(0, 1)

)
, z ∈ C

(
[0, T ), L2(0, 1)

)
.

In addition, (y, z) satisfies for any (w, u) ∈ V × L2(0, 1) and for all t ∈ [0, T ]{ (
d2y
dt2 , w

)
= −(T (x, t)yx, wx)− w(1) [µ1z(0, t) + µ2z(1, t)] + (f1(x, t), w) + w(1)f2(t),

τ(t) (zt, u) + ((1− τ ′(t)ρ)zρ, u) = 0
(24)

and

y(0) = y0, yt(0) = y1, z(0) = f0.

For the existence of a local solution, we need only to have f1 ∈ L2
loc

(
0,∞, L2 (0, 1)

)
and f2 ∈ L2

loc (0,∞) . The third assumption is needed for the asymptotic behavior.

Theorem 3.1. Let (y0, y1, f0) ∈ V × L2(0, 1) × L2(0, 1). Assume that (A1)-(A2)
hold. Then, there exists a unique global weak solution of (23) such that

y ∈ C ([0, T ), V ) ,
dy

dt
∈ C

(
[0, T ), L2(0, 1)

)
, z ∈ C

(
[0, T ), L2(0, 1)

)
for any T > 0.

(25)
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Proof. In order to establish the existence of a weak solution to the system (23) we
shall use a standard Galerkin approximation scheme. For this we consider a complete
orthogonal system {wi}∞i=1 of V ∩ H2(0, 1). Then

{
wi
}∞
i=1

is an orthogonal basis

of V and an orthonormal basis in L2 (Ω). Next, we define for 1 ≤ i ≤ m the
sequence ui(x, ρ) by ui(x, 0) = wi(x). Then, we may extend ui(x, 0) to ui(x, ρ) in
L2((0, 1), (0, 1)). Let Wm = span{w1, w2, ..., wm}, Um = span{u1, u2, ..., um}. The
projection of the initial data on the finite dimensional subspace Vm and Um is given
by

ym0 =
m∑
i=1

aiw
i(x), ym1 =

m∑
i=1

biw
i(x), zm0 =

m∑
i=1

ciu
i (26)

satisfying  ym0 → y0 strongly in V ∩H2(0, 1),
ym1 → y1 strongly in L2(0, 1),
zm0 → f0 strongly in L2(0, 1).

(27)

For each m ∈ N, we seek the approximate solutions of the form{
ym(x, t) =

∑m
i=1 c

i
m(t)wi(x), x ∈ (0, 1), t ≥ 0,

zm(ρ, t) =
∑m
i=1 d

i
m(t)ui(1, ρ), ρ ∈ (0, 1), t ≥ 0

(28)

for the following approximate problem in Vm

(
d2

dt2 y
m, w

)
= −(T (x, t)ymx , wx)− w(1) [µ1z

m(0, t) + µ2z
m(1, t)]

+(f1(x, t), w) + w(1)f2(t),
τ(t) (zmt , u) +

(
(1− τ ′(t)ρ)zmρ , u

)
= 0,

zm(0, t) = (ymt + vymx ) (1, t),
ym(0) = ym0 , y

m
t (0) = ym1 , z

m(ρ, 0) = zm0 .

(29)

We deduce the existence of a solution (um, vm) of (29) on a maximal time interval
[0, Tm), for each m ∈ N. The system (29) leads to a system of ODEs for the unknown
functions

(
cim(t), dim(t)

)
i=1,m

. Based on Cauchy-Peano theorem, we deduce the ex-

istence of a solution (ym, zm) of (29) on a maximal time interval [0, tm). Next, we
show that tm = T and that the local solution is uniformly bounded independently of
m and t.

A priori estimate: Taking w = (ymt + vymx ) in the first equation of (29), it results
that

1

2

d

dt

(
‖ymt + vymx ‖

2
+

∫ 1

0

T (x, t) (ymx )
2
dx

)
=

1

2

∫ 1

0

[(T (x, t))t + v (T (x, t))x] (ymx )
2
dx

− zm(0, t) [µ1z
m(0, t) + µ2z

m(1, t)] + (f1(x, t), ymt + vymx ) + zm(0, t)f2(t) (30)

for all t ∈ [0, T ] with arbitrary fixed T . Applying Young inequality to the last two
terms in (30) and considering the assumption (A2), we get for η > 0

1

2

d

dt

(
‖ymt + vymx ‖

2
+

∫ 1

0

T (x, t) (ymx )
2
dx

)
≤ 1

2
[(Tt)max + v (Tx)max] ‖ymx ‖

2
+ η ‖ymt + vymx ‖

2 −
(
µ1 −

µ2

2
√

1− d
+ η

)
[zm(0, t)]

2

+
µ2

2

√
1− d [zm(1, t)]

2
+

1

4η

(∫ 1

0

f2
1 (x, t)dx+ f2

2 (t)

)
. (31)
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for all t ∈ [0, T ] with arbitrary fixed T. Let ξ > 0, by taking u = zm in the second
equation of (29) followed by an integrating by parts, we get

ξ

2
τ(t)

d

dt
‖zm‖2 +

ξ

2
τ ′(t) ‖zm‖2 = ξ

(
(1− τ ′(t)ρ)zmρ , z

m
)

= −ξ
2

∫ 1

0

(1− τ ′(t)ρ)
∂

∂ρ

(
zmρ
)2
dρ

= −ξ
2

(1− τ ′(t)) [zm(1, t)]
2

+
ξ

2
[zm(0, t)]

2
, t ∈ [0, T ). (32)

Adding the resulting relations (31) and (32), we arrive at

1

2

d

dt

(
‖ymt + vymx ‖

2
+

∫ 1

0

T (x, t) (ymx )
2
dx+ ξτ(t) ‖zm‖2

)
≤ 1

2
[(Tt)max+ v (Tx)max] ‖ymx ‖

2
+ η ‖ymt + vymx ‖

2−
(
µ1 −

µ2

2
√

1− d
− ξ

2
+ η

)
[zm(0, t)]

2

−
(
ξ

2
(1− τ ′(t))− µ2

2

√
1− d

)
[zm(1, t)]

2
+

1

4η

(∫ 1

0

f2
1 (x, t)dx+ f2

2 (t)

)
(33)

for all t ∈ [0, T ] with arbitrary fixed T. Conisdering the assumption (A2) and choosing
µ2√
1−d < ξ < 2µ1 − µ2√

1−d and η small enough, the relation (33) becomes

1

2

d

dt

(
‖ymt + vymx ‖

2
+

∫ 1

0

T (x, t) (ymx )
2
dx+ ξτ(t) ‖zm‖2

)
≤ 1

2
[(Tt)max + v (Tx)max]

× ‖ymx ‖
2

+ η ‖ymt + vymx ‖
2

+
1

4η

(∫ 1

0

(
f2

1 (x, t)dx+ f2
2 (t)

)
dx

)
(34)

for all t ∈ [0, T ] with arbitrary fixed T. Letting

wn(t) = ‖ymt + vymx ‖
2

+

∫ 1

0

T (x, t) (ymx )
2
dx+ ξτ(t) ‖zm‖2 .

The assumptions (A1) and (A2) and (34) lead to

d

dt
wn(t) ≤ C1 (wn(t) + F (t)) (35)

where C1 is a positive constant independant of m and t. Gronwall’s inequality implies

wn(t) ≤ eC1t

(
wn(0) +

∫ t

0

F (s)ds

)
(36)

Since f1 ∈ L2
loc

(
0,∞, L2 (0, 1)

)
and f2 ∈ L2

loc (0,∞) then, it follows from (36) that

wn(t) ≤ eC1T (wn(0) + C2) (37)

for all t ∈ [0, T ] with arbitrary fixed T, where

wn(0) = ‖ym1 + v (ym0 )x‖
2

+

∫ 1

0

T (x, 0) (ymx )
2
dx+ ξτ(0) ‖zm0 ‖

2
.

By the strong convergence of the initial data (27), it follows from (37) that

wn(t) ≤ eC1T (wn(0) + C2) ≤ C3 (38)
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for all t ∈ [0, T ] with arbitrary fixed T and C3 is a positive constant independent of t
and m. From this, we conclude that ym is uniformly bounded in L∞(0, T ;V ),

ymt + vymx is uniformly bounded in L∞(0, T ;L2(0, 1)),
zm is uniformly bounded in L∞(0, T ;L2(0, 1)).

(39)

Passage to the limit
It follows from (39) that there exist subsequences still denoted by ym, zm and y, z
such that

y ∈ L∞(0, T ;L2(0, 1)), yt + vyx ∈ L∞(0, T ;L2(0, 1)), z ∈ L∞(0, T ;L2(0, 1)) (40)

and yµ ⇀ y weakly star in L∞(0, T ;V ) and weakly in L2(0, T ;V ),
yµt + vyµx ⇀ yt + vyx weakly star in L∞(0, T ;L2(0, 1)) and weakly in L2(0, T ;L2(0, 1)),
zµ ⇀ z weakly star in L∞(0, T ;L2(0, 1)) and weakly in L2(0, T ;L2(0, 1)).

(41)
We apply Lions-Aubin theorem (see [17]), for any T > 0 to obtain the required

compactness. The Passage to the limit in (29) permits to see that y is a solution of
(23) satisfying (23). To finish the proof, there remains check that

y ∈ C ([0, T ), V ) , yt + vyx ∈ C
(
[0, T ), L2(0, 1)

)
, z ∈ C

(
[0, T ), L2(0, 1)

)
for any T > 0. It follows from (38) and the result in Reference [[26], Chapter II,
Lemma 3.3] that y is weakly continuous from [0, T ] in V . Similarly, we deduce from
(23) that

ytt + 2vyxt + v2yxx = (T (x, t)yx)x + f1(x, t).

Since f1 ∈ L2(0, T ;L2(0, 1)), y ∈ L∞(0, T ;V ) which implies that yx ∈ L∞(0, T ;L2(0, 1))

and yxx ∈ L∞(0, T ;V ′), then d2y
dt2 ∈ L

∞(0, T ;V ′). This implies that y is weakly con-

tinuous from [0, T ] in V and dy
dt is weakly continuous from [0, T ] in L2(0, 1). Moreover

y and z satisfy an equation (35), namely

d

dt

(
‖yt + vyx‖2 +

∫ 1

0

T (x, t) (yx)
2
dx+ ξτ(t) ‖z‖2

)
≤ C1 (w(t) + F (t)) (42)

This shows that the function

t 7→ ‖yt + vyx‖2 +

∫ 1

0

T (x, t)y2
xdx+ ξτ(t) ‖z‖2

is continuous on [0, T ]. Gathering this with the properties of weak continuity, we
deduce that

y ∈ C ([0, T ), V ) , yt + vyx ∈ C
(
[0, T ), L2(0, 1)

)
, z ∈ C

(
[0, T ), L2(0, 1)

)
.

Uniqueness: Let (y1, z1) and (y2, z2) be two solutions of (23) satisfying (25), and
let (y, z) = (y1 − y2, z1 − z2). Then (y, z) satisfy

(
d2

dt2 y, w
)

= −(T (x, t)yx, wx)− w(1) [µ1z(0, t) + µ2z(1, t)] ,

τ(t) (zt, u) + (1− τ ′(t)ρ (zρ, u) = 0,
z(0, t) = (yt + vyx) (1, t),
y(0) = y0, yt(0) = y1, z(ρ, 0) = z0.
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Taking w = yt + vyx, the following estimate is obtained (see (34))

1

2

d

dt

(
‖yt + vyx‖2 +

∫ 1

0

T (x, t) (yx)
2
dx+ ξτ(t) ‖z‖2

)
≤ 1

2
[(Tt)max + v (Tx)max] ‖yx‖2 + η ‖yt + vymx ‖

2

for some constant η > 0. Letting

ϕ(t) = ‖yt + vyx‖2 +

∫ 1

0

T (x, t)y2
xdx+ ξτ(t) ‖z‖2 .

The assumptions (A1) and (A2) lead to

d

dt
ϕ(t) ≤ Kϕ(t)

for some positive constant K. Gronwall’s inequality implies

ϕ(t) ≤ eKtϕ(0) = 0

This termines the proof of the theorem. �

4. Asymptotic behavior

We define the energy associated to system (23) by

E(t) =
1

2
‖yt + vyx‖2 +

1

2

∫ 1

0

T (x, t)y2
xdx+

ξ

2

∫ t

t−τ(t)

eλ(s−t) (yt + vyx)
2

(1, s)ds, t ≥ 0

(43)
where ξ and λ are positive constant satisfying

µ2√
1− d

< ξ < 2µ1 −
µ2√
1− d

. (44)

and

λ <
1

τ̄

∣∣∣∣log
µ2

ξ
√

1− d

∣∣∣∣ . (45)

Lemma 4.1. The energy functional E(t) defined by (43) satisfies along solution of
(23)

d

dt
E(t) ≤ − (k1 − η) z2(0, t)− k2z

2(1, t) +
1

2

∫ 1

0

(Tt(x, t) + vTx(x, t)) y2
xdx

−λξ
2

∫ t

t−τ(t)

eλ(s−t) (yt + vyx)
2

(1, s)ds+
1

4η
F (t), t ≥ 0 (46)

where k1 = µ1 − µ2

2
√

1−d −
ξ
2 , k2 = ξ

2 (1− d)e−λτ̄ − µ2

2

√
1− d and η is a small positive

constant to be determined later.
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Proof. It follows by applying (7) that

d

dt
E(t) =

∫ 1

0

(yt + vyx)
(
ytt + 2vyxt + v2yxx

)
dx+

∫ 1

0

T (x, t)yx (yxt + vyxx) dx

+
1

2

∫ 1

0

(Tt(x, t) + vTx(x, t)) y2
xdx+

∫ 1

0

(yt + vyx) f1(x, t)dx

+
ξ

2

d

dt

∫ t

t−τ(t)

eλ(s−t) (yt + vyx)
2

(1, s)ds, t ≥ 0. (47)

The substitution of the second derivative of y from (23) in (47) followed by an inte-
gration by parts produces

d

dt
E(t) ≤T (1, t) (yt + vyx) yx(1, t) +

1

2

∫ 1

0

(Tt(x, t) + vTx(x, t)) y2
xdx (48)

+

∫ 1

0

(yt + vyx) f1(x, t)dx+
ξ

2

d

dt

∫ t

t−τ(t)

eλ(s−t) (yt + vyx)
2

(1, s)ds, t ≥ 0.

The evaluation of last term gives

d

dt

∫ t

t−τ(t)

eλ(s−t) (yt + vyx)
2

(1, s)ds (49)

= z2(0, t)− e−λτ(t)(1− τ ′(t))z2(1, t)− λ
∫ t

t−τ(t)

eλ(s−t) (yt + vyx)
2

(1, s)ds, t ≥ 0.

By inserting (49) and then using the boundary conditions, the relation (48) becomes

d

dt
E(t) ≤− z(0, t) [µ1z(0, t) + µ2z(1, t)− f2(t)] +

∫ 1

0

(yt + vyx) f1(x, t)dx+
ξ

2
z2(0, t)

− ξ

2
e−λτ(t)(1− τ ′(t))z2(1, t) +

1

2

∫ 1

0

(Tt(x, t) + vTx(x, t)) y2
xdx

− λξ
2

∫ t

t−τ(t)

eλ(s−t) (yt + vyx)
2

(1, s)ds, t ≥ 0. (50)

We now apply Young inequality and consider the assumptions (A2). It holds for
η > 0 that

d

dt
E(t) ≤−

(
µ1 −

µ2

2
√

1− d
− ξ

2
+ η

)
z2(0, t)−

[
ξ

2
(1− d)e−λτ̄ − µ2

2

√
1− d

]
z2(1, t)

− λξ
2

∫ t

t−τ(t)

eλ(s−t) (yt + vyx)
2

(1, s)ds+
1

2

∫ 1

0

(Tt(x, t) + vTx(x, t)) y2
xdx

+ η ‖yt + vyx‖2 +
1

4η
F (t), t ≥ 0.

This proves the assertion (46). �

Our main result is summarized in the following

Theorem 4.2. Assume that the hypotheses (A1)-(A3) hold. If the lower bound of
the tension Tmin is larger than its time and space derivatives (T )t,max and (T )x,max
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and if there exists a positive function ϕ(t) ∈ C1[0,∞) such that

χ(t)ϕ(t)− ϕ′(t) ≥ 0, t ≥ 0

and

F (t) ≤ B

ϕ(t)

(
χ(t)− ϕ′(t)

ϕ(t)

)
, t ≥ 0

where B and χ(t) are given in 64 and 65 below, then

E(t) ≤ K

ϕ(t)
, t ≥ 0.

such that ϕ(0)L(0) < 1, t ≥ 0.

Proof. In order to prove the main result, we shall construct a lyamunov functional
L(t) which will play the role of an equivalent energy. The candidate functional L(t)
is defined by

L(t) = E(t) + εΦ(t), t ≥ 0

where

Φ(t) =

∫ 1

0

xyx (yt + vyx) dx, t ≥ 0

and ε is a positive constant to be determined later. The first step consists to establish
an equivalence result between L(t) and E(t): There exist βi, i = 1, 2 such that for
small ε

β1E(t) ≤ L(t) ≤ β2E(t), t ≥ 0. (51)

The result follows immediately by applying Young inequality to the functional Φ(t)
and by considering ε small enough.

The second step consists to establish a relation of the form d
dtL(t) ≤ −A1E(t) +

A2F (t) for some positive constants A1 and A2 so that we can apply Lemma 2.1. A
differentiation of the functional Φ(t) gives

d

dt
Φ(t) =

∫ 1

0

x (yxt + vyxx) (yt + vyx) dx+ v

∫ 1

0

yx (yt + vyx) dx

+

∫ 1

0

xyx
(
ytt + 2vyxt + v2yxx

)
dx, t ≥ 0. (52)

Replacing the expression of the second derivative of y from 23 into (52). It results
that

d

dt
Φ(t) =

∫ 1

0

x (yxt + vyxx) (yt + vyx) dx+ v

∫ 1

0

yx (yt + vyx) dx

+

∫ 1

0

xyx (T (x, t)yx)x dx+

∫ 1

0

xyxf1 (x, t) dx, t ≥ 0. (53)

Next, we would like to estimate the last three terms in the right hand side of (53).
Exploiting the expression of z, the boundary conditions, integration by parts and
Young inequality to estimate∫ 1

0

x (yxt + vyxx) (yt + vyx) dx =
1

2
z2(0, t)− 1

2
‖yt + vyx‖2 , t ≥ 0, (54)

v

∫ 1

0

yx (yt + vyx) dx ≤ v
√
Tmin

2
‖yx‖2 +

v

2
√
Tmin

‖yt + vyx‖2 , t ≥ 0 (55)
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and∫ 1

0

xyx (T (x, t)yx)x dx =
1

2
T (1, t)y2

x(1, t)

− 1

2

∫ 1

0

T (x, t)y2
xdx+

1

2

∫ 1

0

Tx(x, t)y2
xdx, t ≥ 0. (56)

It results from the second boundary condition that

T (1, t)y2
x(1, t) ≤ 3

T (1, t)

[
µ2

1z
2(0, t) + µ2

2z
2(1, t) + f2

2 (t)
]
, t ≥ 0. (57)

Next, the insertion of (56) in (57) gives

∫ 1

0

xyx (T (x, t)yx)x dx ≤
3

2T (1, t)

[
µ2

1z
2(0, t) + µ2

2z
2(1, t) + f2

2 (t)
]

− 1

2

∫ 1

0

T (x, t)y2
xdx+

1

2

∫ 1

0

Tx(x, t)y2
xdx, t ≥ 0. (58)

Using Young inequality, we estimate

∫ 1

0

xyxf1 (x, t) dx ≤ η ‖yx‖2 +
1

4η

∫ 1

0

f2
1 (x, t) dx, t ≥ 0. (59)

Combining the estimates (53), (54), (55), (59) and (58) to obtain

d

dt
Φ(t) ≤ 1

2

(
1 +

3

T (1, t)
µ2

1

)
z2(0, t) +

3µ2
2

2T (1, t)
z2(1, t)− 1

2

(
1− v√

Tmin

)
‖yt + vyx‖2

− 1

2

∫ 1

0

T (x, t)y2
xdx+

1

2

∫ 1

0

Tx(x, t)y2
xdx+

(
vTmin

2
+ η

)
‖yx‖2 + k1F (t) ,

t ≥ 0. (60)

where k1 = max
{

3
2T (1,t) ,

1
4η

}
. Exploiting the previous estimates (46) and (60), we

entail that

d

dt
L(t) ≤ −

[
(k1 − η)− ε

2

(
1 +

3µ2
1

T (1, t)

)]
z2(0, t)−

(
k2 − εCµ2

2

)
z2(1, t)

+

[
η − ε

2

(
1− v

Tmin

)]
‖yt + vyx‖2 −

ε

2

∫ 1

0

T (x, t)y2
xdx+

ε

2

∫ 1

0

Tx(x, t)y2
xdx

+
1

2

∫ 1

0

(Tt(x, t) + vTx(x, t)) y2
xdx+ ε

(
v
√
Tmin

2
+ η

)
‖yx‖2

− λξ
2

∫ t

t−τ(t)

eλ(s−t) (yt + vyx)
2

(1, s)ds+ k2F (t) , t ≥ 0 (61)
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where k2 = 1
4η + εk1. We now pick ε and η sufficiently small such that the coefficients

of the first two terms in (61) are negative. It results that

d

dt
L(t) ≤

[
η − ε

2

(
1− v

Tmin

)]
‖yt + vyx‖2 −

ε

2

∫ 1

0

T (x, t)y2
xdx (62)

+
1

2Tmin

∫ 1

0

(Tt(x, t) + vTx(x, t) + εTx(x, t))T (x, t)y2
xdx

+ε

(
v

2
√
Tmin

+
η

Tmin

)∫ 1

0

T (x, t)y2
xdx+ k2F (t) , t ≥ 0

where we have used the fact that ‖yx‖2 ≤ 1
Tmin

∫ 1

0
T (x, t)y2

xdx. Our assumptions on

the tension T (x, t) permit to simplify (62) as follows

d

dt
L(t) ≤

[
η − ε

2

(
1− v√

Tmin

)]
‖yt + vyx‖2 −

1

2

{
ε

(
1− v√

Tmin

− η

Tmin

)
− 1

Tmin
[(Tt)max + v (Tx)max + ε (Tx)max]

}∫ 1

0

T (x, t)y2
xdx+ k2F (t) , t ≥ 0.

(63)

To eliminate the first term in the right hand side of (63), it suffices to consider again
ε and η so small. The negativity of the second term is guaranteed by considering the
lower bound of the tension Tmin is larger than its time and space derivatives (Tt)max

and (Tx)max . This leads to

d

dt
L(t) ≤ −k3E(t) + k2F (t) , t ≥ 0 (64)

where is k3 a positive constant. Lemma 2.1 with: χ(t) = k3 and β(t) = k2F (t) such
that

F (t) ≤ B

ϕ(t)

(
C2 −

ϕ′(t)

ϕ(t)

)
, t ≥ 0 (65)

where B = 1/ (2k2) and
C2ϕ(t)− ϕ′(t) ≥ 0 (66)

allows us to conclude from 64 that

E(t) ≤ K

ϕ(t)
, t ≥ 0

for some positive constant K such that ϕ(0)L(0) < 1, t ≥ 0 where L(0) = E(0) +
εΦ(0). �

Examples
Next, we illustrate the main result in Theorem 4.2 by two examples

Example 4.1. Assume that f1 and f2 are such that f1 (x, t) = g (x) e−
α1
2 t and

f2 (t) = f0e
−α2

2 t for some positive constants α1 and α2.Clearly F (t) = ‖g‖22 e−α1t +
f2

0 e
−α2t. Take ϕ(t) = ϕ0e

βt with 0 < β < λ4 as this choice corresponds to the fact
that

F (t) ≤
(
‖g‖22 + f2

0

)
e−αt ≤ 1

2λ2ϕ(t)

(
λ4 −

ϕ′(t)

ϕ(t)

)
=

(λ4 − β)

2ϕ0λ2
e−βt

is fulfilled provided that β ≤ α = min {α1, α2} and ‖g‖22 + f2
0 ≤

(λ4−β)
2ϕ0λ2

. We conclude

that E(t) ≤ Ke−βt, t ≥ 0 for some positive constant K.
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Example 4.2. Assume that f1 (x, t) = g (x) (1 + t)
−α1

2 and f2 (t) = f0 (1 + t)
−α2

2

for some positive constants α1 and α2. Then F (t) = ‖g‖22 (1 + t)
−α1 + f2

0 (1 + t)
−α2 .

One can take ϕ(t) = ϕ0 (1 + t)
β

with β < λ4, we have

F (t) ≤
(
‖g‖22 + f2

0

)
(1 + t)

−α ≤

[
C2 − β (1 + t)

−1
]

2C3ϕ0
(1 + t)

−β

provided that β ≤ α = min {α1, α2} and ‖g‖22 + f2
0 ≤

λ4−β
2ϕ0λ2

. We conclude that

E(t) ≤ K (1 + t)
−β

, t ≥ 0 for some positive constant K.

5. Some other systems

5.1. System with more than one delay. A similar result is obtained when the
system acts with more than one delay term, that is, the second boundary condition
in (15) is rewritten as

T (1, t)yx(1, t) = −µ0 (yt + vyx) (1, t)−
n∑
i=1

µi (yt + vyx) (1, t− τi(t)) + f2(t), t ≥ 0,

where the positive constants µ0, µi, i = 1, ..., n, are the coefficients of the damping
and the delay terms, respectively. The delay functions satisfy: τi(t) ∈ W 2,∞([0, T ]),
i = 1, ..., n, T > 0 and there exist positive constants τ̃i and τ̄i such that

0 < τ̃i ≤ τi(t) ≤ τ̄i, i = 1, ..., n, t > 0, (67)

τ ′i(t) ≤ di < 1, i = 1, ..., n, t > 0 (68)

and the coefficients µ0 and µi, i = 1, ..., n, satisfy

µ0 >

n∑
i=1

µi√
1− di

. (69)

The energy that corresponds to the system (15) is defined by

E(t) =
1

2
‖yt + vyx‖2+

1

2

∫ 1

0

T (x, t) y2
xdx+

n∑
i=1

ξi
2

∫ t

t−τi(t)
eλi(s−t) (yt + vyx)

2
(1, s)ds, t ≥ 0

where ξi , i = 1, ..., n, are positive constant satisfying

n∑
i=1

µi√
1− di

<

n∑
i=1

ξi < 2µ0 −
n∑
i=1

µi√
1− di

.

and

λi <
1

τ̄i

∣∣∣∣log
µi

ξi
√

1− di

∣∣∣∣ .
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6. Conclusion

Throughout this study, we have dealt with the stabilization of an axially moving
string subject to a variable tension and variable disturbances. Local stability but
of arbitrary rate is proved under some reasonable conditions. Two example were
provided illustrating the exponential case and the polynomial case. For precisely
these examples one may prove in fact a global stability result. This is established
in the presence of a varying delay term which is known to be of destructive nature
in other circumstances. Our future concerns are to examine the impact of the above
considerations on other axially moving systems, namely moving beams, such as Euler-
Bernoulli beams and Timoshenko beams.
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