Annals of the University of Craiova, Mathematics and Computer Science Series
Volume 51(1), 2024, Pages 198-222, DOI: 10.52846/ami.v51i1.1775
ISSN: 1223-6934

Hermite-Hadamard Inequalities for Generalized
(m — F)-Convex Function in the Framework of Local Fractional
Integrals

ARSLAN RAZzZAQ, IRAM JAVED, JUAN E. NAPOLES V., AND FRANCISCO
MARTINEZ GONZALEZ

ABSTRACT. This work presents new versions of the Hermite-Hadamard Inequality, for (m —F)-
convex functions, defined on fractal sets RS (0 < ¢ < 1). So, we show some new results for
twice differentiable functions using local fractional calculus, as well as some new definitions.
‘We will construct these new integral inequality using the generalized Holder-integral inequality
and the power mean integral inequality. Furthermore, we present some new inequalities for
the midpoint and trapezoid formulas in a novel type of fractal calculus. The conclusions in
this paper are substantial advancements and generalizations of prior research reported in the
literature.
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1. Introduction

In the last few years, the study of generalized Hermite-Hadamard type inequalities
has become an area of significant interest in mathematical analysis. This research
area involves investigating the properties of generalized (m — F)-convex functions via
local fractional integrals. These functions are a generalization of convex functions
and have wide-ranging applications in several fields of mathematics, including opti-
mization, geometry, and mathematical physics. Using local fractional integrals, we
will discuss recent developments in the study of generalized Hermite-Hadamard type
inequalities for generalized (m — F)-convex functions. We will draw from the work of
Dragomir and Pearce [1] to provide a comprehensive understanding of this topic and
highlight its applications in various fields of mathematics. This review will showcase
the ongoing significance and impact of the research area and its potential to address
several fundamental problems in mathematical analysis.
We will need the following terms and works of writing before we start.

Definition 1.1. A function T : [¢1, 3] — R is said to be convex function, if we have
T (i + (1= h)y) < BT (x) + (1— ) T (y)

for all x,y € [{1,42] and ki € [0,1]. A function Y is said to be concave if —7T is convex.
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GENERALIZED HERMITE-HADAMARD TYPE INEQUALITIES 199

Readers interested in going through many of these extensions and generalizations
of the classical notion of convexity can consult [1, 2].

For convex functions, we have the following inequality, undoubtedly one of the
most famous in Mathematics, due to its multiple connections and applications:

12
T<€1+€2>< 161/T(X)d>€§w (1)
£y

2 4y — 2
this is called the Hermite-Hadamard inequality. Both inequality hold if T is concave
in the opposite direction. For more detail see [1, 4].
Definition 1.2. We call the function T : [{1, 5] — R, m-convex, if we have
T (hu 4+ m(1 — h)v) <AY (u) +m (1 —h) T (v) (2)

with i € [0, 1] and for all u,v € [¢1, mls)].
Definition 1.3. The real function T : I — R is called F-convex if

T(A(f1) + (1 = h)b2) < Y (L) + (1 = )Y (l2) — A(1 = R)F({1 — £2) (3)
for some fixed function F : R — R¢, for all £1,¢s € I and h € [0, 1].

For more detail see [5].
In this Remark we will introduce other important concepts of convexity [6, 7, 8, 9].

Remark 1.1. Let us notice that a highly convex function served as the basis for the
definition of the class of F-convex functions. However, they also combined a number
of other significant convexity ideas:

(i) Putting F(¢) = —cl?, we recreate the c-convex functions;
(ii) Making F(¢) = —c|¢| with ¢ > 0, we recreate essentially convex functions;
(iii) If F(¢) = —c|¢|P with ¢ > 0 and p > 0, we have the convex functions of essentially
order p;
(iv) For F(¢) = —|f|w(]z|) without diminishing, upper-semi continuous function w :

[0,00) — (0, 00] with w(0) = 0, we get the semi convex-functions.

Fractional calculus is widely used in various areas of mathematics, physics and
engineering, [10]. In recent years, fractal sets have gained significant interest from
scientists and engineers. Fractal Calculus is a relatively new field in Mathematical
Sciences, this local Calculus is designed for the study and visualization of fractal sets,
that is, it is a generalization of differentiation and integration of the functions defined
on fractal sets. This Local Fractional Calculus has found various applications in pure
and applied research, in the latter, in areas as dissimilar as music and soil mechanics,
including cryptography, without forgetting applications in software engineering.

The origin of Fractal Calculation is in Yang’s seminal paper [11] and has since
become a widely used topic in pure and applied research [12, 13, 14]. Numerous
studies have investigated the characteristics of functions on fractal spaces and, using
these applications, have developed numerous fractional calculus concepts [15, 16].
The concept of a generalized convex function on the fractal space R° (0 < ¢ < 1)
was defined by the authors in paper [17], and they also obtained the generalized
Hermite-Hadamard inequality for such functions within the framework of this Fractal
Calculus.
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The passage you provided discusses a number of studies that offer fresh approaches
and improvements to the local fractional calculus discipline. These papers specif-
ically address coupled nonlinear systems of partial differential equations with non-
differentiable solutions using effective methods. Additionally, local fractional integral
operators with Mittag-Leffler kernels are used in the papers to create new inequalities
for generalized h-convex functions. These inequalities are used to derive generalized
Fractal Jensen-Mercer and Hermite Mercer type inequalities via h-convex functions.
We must point out that other additional results have been found in other works
reported in the literature, for example, readers can consult [18, 19, 20].

Subsequently, we present the set R and on this basis, we classify the definitions
of local fractional derivatives, local fractional integrals, and other related operators,
with reference to the Gao-Yang-Kang notion. This is to properly determine the range
of the fractional order parameter in these derivatives and integrals.

The Yang’s theory of fractional sets [11] can be written as:

The element set of the ¢-type is provided below for 0 < ¢ < 1.

(i) Z¢ : The element set is described as a collection of integers of the ¢-type is

{05, 15,425, .. 4ns, ..}
(ii) Q° : A collection of rational numbers of the ¢-type set is defined as
{m® = (01/02)° : 01,00 € Z,09 # 0};
(iii) J° : A collection of irrational numbers of the ¢-type set is defined as

{m® # (01/03)° : 01,09 € Z,09 # 0} ;

(iv) Rs: A collection of real numbers of the ¢-type is used to define the set. R°=Q°
u Js.
The operations listed below hold for the real line numbers o}, 05 and p° in the
collection R*:
(i) o7 4+ 05 and ojo3 belong to the set R;
) 01 +05=03+05 = (01402)° = (014 02)%;
) 05 + (03 + p°) = (01 + 02)° + p;
v) oto3 = 0501 = (0102)° = (0201)%;
) 03(036%) = (0503)0";

) 0i(o3 + p°) = 0j05 + 01p%;

(vii) 05 +0° =0° + 05 = 0 and 071° = 1°0] = 07j.

Let’s go over some basics of local fractional calculus R*:

In the realm of local fractional calculus, a function that is non-differentiable is
considered to be continuous at x¢, and if the function Y is locally continuous on the
interval (¢1,¢3), it is denoted as T € C.(¢1,£2) [21]. Various endeavors have been
undertaken to establish definitions for local fractional derivative and integral [22].
Once more, we’ll go over the formulas for local fractional calculus [23].

Definition 1.4. The local fractional derivative of order ¢ of T(x) at x = x¢ is defined
by

AT AT~ Y(xo)

d(xc) R (x—x0)s

T (x0) = % DY (x) = ; (4)
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where AS(T(x) —T(x0)) Z T'(14¢)(T(x) — T(x0)) and T" which is the popular gamma

—_—
function. Let T()(x) = DSY(x). If there holds Y*+1s(x) = DS --- DSY(x) for any
x € I C R, then we indicate T € D(;11)c(1), where k € N.

For more detail see [17].

Definition 1.5. Let T € C.[¢1,¢2]. Then again, let P = ho--~hN,(N € N be a
division of the interval [¢1,¢5] that satisfies {1 = fig < Iy < -+ < Ay_1 < iy = {s.
For this partition P, as well, let AR := maxo<j<n—1AR;, Where Ahj = hjp1 — Ry
and j =0,...,N — 1. Then, T is a local fractional integral on the interval [¢1, f2] of
order ¢ (denoted by ZII,S)T) is defined by

1 t2

(<) _
Y =g

Y (h)(dh)S := lim Z T(h
considering that the limit is true (indeed, this limit exists if T € C.[¢1,¢5]). Here,
it follows that ¢, I;"T = 0if {1 = £y and ¢ I[))T = —, [T if 01 < by, If (0

holds for any x € [(1,03] and a function U : [¢1,¢s] — R°, after that, we indicate
v e I [61, 62]

For more detail see [17].

Below we present some known results that will be useful in our work and that
facilitate the reading of it (for convenience, local fractional derivative is 1.f.d. and
local fractional integration is 1.f.i.).

Lemma 1.1. [17]
(i) (The Lf.d. of x*<):

S ks
d°x _ (14 ko) (E=1)s (5)
dxs I'(1+ (k—1)s)
(ii) (The Lf.i. is the anti-differentiation):
If Y(x) = ¥ (x) € C[t1,ls], then, we have
(I T() = ()~ W (). (©)

(iii) (The formula of integration by parts):
Assume that Y(x), ¥(x) € D.[l1,0s] and YO (z), ) (x) € C.[f1,4s]. Then, we
have

12

1Ié;)’r(x)\y(c)(x) =T(x)¥(x) L leg)'r(c)(x)\p(x)' (7)

1

(iv) (The L.f.i., in this case definite, of x*):

1 “ kepgone D+ ko) (k1) _ y (k+1)s
rra S, O = wg g (474w

where k € R.

Additional details can be found in [22].
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Lemma 1.2. Let T,V € C([¢1,¢3] and p,q > 1 with % + % =1, then

1 t2 . 1 12 . 5
F(1+<>/g Y)W (x)[(dx)* < <m+g)/€ |T(x)|(dx)>

Lo %
x <ml+<> / T(X)|‘I’(X)|q(dx)<> | o

Definition 1.6. The function T : I C R — R° is called a generalized convex function
on I, if the following inequality is fulfilled

Y(hty 4 (1 — h)ly) < BSY(01) 4+ (1 — h) Y (L) (10)
for any ¢1,¢3 € I and h € [0,1].
For more detail see [17].

Definition 1.7. The function T : I € R — R° is called a generalized m-convex
function on I if the following inequality is fulfilled

Y(ht; +m(1l — h)le) < RY(6y) +m* (1 — h)*Y(4) (11)
for any ¢1,mly € I and ki € [0,1].
Definition 1.8. The function Y : I — R° is called generalized F-convex if
Y(hty + (1 —h)ly) <Y (l1) + (1 — h)*Y(le) — h* (1 — ) F(fy — £3) (12)
for some fixed function F : R — R¢, all ¢1,¢; € T and h € [0, 1].
For more detail see [24].

Theorem 1.3. [17] Let Y : [¢1,45] — R be a generalized convex function with {1 < £s.
Then for all x € [¢1,43], the following inequalities hold:

r(Bgh) < Mt g T, g

2. Generalized (m — F)-convexity

We then go over the class of convex functions we’ll be using in our research: the idea
of generalized (m — F)-convex function on a fractal set.

Definition 2.1. The function T : I — R is called a generalized (m — F)-convex if
Y(ls + (1 — Bymbs) < BSY(61) + m(l — ST (L) — mhS(1 — B)SF(y — £o)  (14)
for some fixed function F : R — R¢, for all £;,mly € T and h € [0, 1].

Remark 2.1. We can see the following results based on the Definition 2.1.
(i) Putting m = 1 in the above Definition, we obtain the class of Generalized F-
convex function [24].
(ii) Considering F(¢) = 0, m = 1 and ¢ = 1, the Definition 2.1 it boils down to the
class of convex function [1].
(iii) In the case that F(¢) = 0 and m = 1, the Definition 2.1 becomes the the class of
generalized convex function [17].
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(iv) If we have ¢ = 1 and m = 1 from Definition 2.1, we have the definition 1.3. This
way any generalized (m — F)-convex functions is a F-convex [5].

(v) Making F(¢) = ¢°|¢|>* and m = 1 from Definition 2.1, we obtain the class of
generalized strongly convex function; see in [25, Definition (2.1)].

(vi) Taking ¢ = 1, m = 1 and F({) = c¢? from Definition 2.1, we obtain the [25,
Definition 1.1].

(vii) Finally, putting ¢ = 1, m = 1 and F(¢) = ¢|| - ||* from above Definition we obtain
the [26, Definition 1].

3. Main results

3.1. Midpoint inequality. Next we will present various results related to inequal-
ities of the midpoint type for generalized (m — F)-convex function.

Theorem 3.1. Let be some fized function YT : R — R, locally fractional integrable
on each compact subinterval of (=3, 8), where 8 = supl —infI. If T : 1 — R° is an
generalized (m — F)-convex function, then

l1 + mbsy mI(1 +¢) 7© I'(1+5) ()
T F —2x — 7, I T
( 9 ) + 4(m€2 — )g 151 mZZ (61 + 4o ) (mEQ _ gl)g Gitme, (X)

for all 6y, mly € I and 01 # mls.

Proof. Taking into account the (m — F)-convexity of a function Y and equality

(fl + m€2> B hgl + (1 — h)mKQ + (1 — h)gl + hmﬁz
2 B 2 ’

we get

- (121 +meg> oy (hél + (1 — h)ymly + (1 — h)t, +hm€2>
2 - 2 ’

and

IN

T( 5 2) 2 . 2

1
—mo F((2h = 1)( — £2))
for all £;,mly € I and h € [0,1]. Thus

T (MQ'M?) + TRER-1)(6 — 6)

T(Ml + (1 — h)mfz) + T((l — h)gl + hm£2>
D) .

Fixing different ¢1, mly € I in (15) we obtain a generalized locally fractional integrable,
so we have after integration with respect to 'h’ on the interval [0, 1], the following

1 ! 0y + mly ., m 1 1 .
mﬂ)/o T <2> (dh) *Zm/o F((2h— 1)(¢1 — £3))(dh)

1 1 )
= 21“(1+<)/0 (T(hly + (1 — R)mls) + (1 — k)t + hmio))(dh)°.

<

(15)
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Substitutions (1 — A)¢; + hmby = x, m(2h — 1)(¢1 — €3) = 2x and Aly + (1 — h)mly = x
above the integrals, we have

0y + mly mI(1 +¢) I'(1+5) (<)
T —, 1) T(x).
< 2 ) 4(m€2 -/ ) el mez (m£2 - gl)g 1 mey (X)

Thus, the proof is completed. U

(f +€2—2X) <

Remark 3.1. From Theorem 3.1 we obtain, with m = 1, the following inequality:

01+ Uy (1+5¢) 1 P'l+¢)
T( 5 >+4(£2_€1) IF (0 + £ — 2x) < AR oIS (%),

which appeared in [24, Theorem 3.1].

Remark 3.2. In the same way, putting ¢ = 1 and m = 1, from Theorem 3.1, we have

b + 4 1 /52 1 t2
T F (6) + 0y — 2x) dx < Y(x)d
< P >+4(ég—el) , Flatb-njdcs g | T

inequality of [5, Lemma 3].

3.2. Trapezoid inequality. Now, for generalized (m — F)-convex function, we will
present various results related to integral inequalities of Trapezoidal type.

Theorem 3.2. Let be some fized function T : R — R, locally fractional integrable
on each compact subinterval of (—f3, ), with § = M If a generalized (m — F)
- convex function T : I — RS is one-sided differentiable and Y_ < Y, for all h €
[¢1,mfs] and {1 # mly, then we have the following inequality

1 ©) I'(1+5) 1 T'(1+5¢)
(mly — £;)< " 0T, Y00) < (1+2 )T( ks (F(l +¢) T+ 2<)> mT(t)
I'(l1+4¢) (1 + 2)
B (r(1 +2) I+ 3<)> mE(h — f).
Proof. From generalized (m — F)-convexity of function T we have
YRty 4+ (1 —h)mby) <Y (4) +m(l —h)° YT () —mh (1 —h)°Fly —l)  (16)

for all £1,mly € I and h € [0, 1].
Integrating member by member over the interval [0, 1], with respect to h, we derived

1 ! .

1 m

1 1
] / BT ) + / (1— W)Y (£2)(dh)

m ! < IS S
_m/o B (1= h)F(ty — &) (dh)°.

Substitution hé; 4+ (1 — h)ls = x, allows us to get

o [t = i any = 1 1)
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so, the following result is obtained

1 © L(1+5) 1 r(1+5)
mel[m%T(X) < m (61) + (F(l s - Tt 2§)) mY (¢s)
B ( I(14¢) T(1+2)

T(1+2) T+ 3<)> mE(h — &).

Thus we complete the proof. U

Remark 3.3. From Theorem 3.2, making m = 1, we have the following:

1 () F(1+C) 1 F(1+§)
=iyl YO < g T+ (m s RS VG 2<>> Tie)

B ( F(l14+¢) TI'(1l+2)

r1+2) TI(1+ 3<)) Bl =) (7

inequality which appeared in [24, Theorem 4.1].

Remark 3.4. Analogously, putting ¢ = 1 and m = 1 from Theorem 3.2, we have:

0y + lo 1 t2 0y + 0y 1 t2
T Fx— < T
( 5 >+€2_£1 /el (X 5 )dx_&_é1 /@1 (x)dx

< 1) ;r T(t) 1

inequality of [5, Lemma 1].

4. Results for Midpoint inequalities

Next, we present a result that establishes equality for twice (2¢) differentiable func-
tions: T2,
The following considerations will be necessary in the rest of the work:
(A1) I CRis an interval, I° is the interior of I;
(Ag) £1,mly € I°, such that Y) € D (I°) and T3 € C_[¢1, mls];
(A3) hel0,1] and 0 <¢ < 1.

Lemma 4.1. If we take into account the assumptions (A1), (Az), (As), a function
Y :I° C R — RS twice locally fractional differentiable on I°, the we have

F(l + 2§) G) F(l + 2§) 51 + mEQ (m£2 — gl)Zg
— T TS )| - T = I + I
25 (mly — )¢ [Zl mé2 (Z)} 2T(1+¢) 2 2 (Lt L)
(18)
where
g
IL=—— [ KXY h+ (1 — h)mby)(dh)°
=g (tah+ (1 = yme) (dn)
and

= =T 1 — s (29) _ .
= L(1+c) / (1= n)*>TE) L1k + (1 — h)mly)(dh)*.
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Proof. Take I; and I, integrating by parts in each of these integrals leads us

I = 1 () 1 + mly _ F(l + 2) v 1 + mly
T (mly — £7)522 2 2T (1 + <) (mly — £1)25 2

(1 + 2) /5 ‘
YT(l1h+ (1 —h)mby)(dh)* 19
(mly — 6)2T(1+<) J, (trh+ ( Jymlz)(dh) (19)
and
I, = 1 T {1+ mly _ F(l + 2() T ly + mly
(mEQ — £1)§22§ 2 2§F(1 + §) (m€2 — 61)2§ 2

I'(1+2)

+ (mﬁg — 41)2§F(1 + §)

/11 Y (015 + (1 — B)mly)(dh)S. (20)

If we make the change of variables ¢1 + (1 — A)mfy = 2z in each of these integrals,
and adding the results obtained, we obtain easily

B D(1+42)(1° +1°) £ + mly (14 2)
hth= T 2T(1 + o) (mly — el)%T ( 2 ) (mly — £1)3T(1 4 <)
7212'"22 més
X (/@1 Y(z)(dz)* + /21+2mfz Y (2)(dz) > . (21)

Multiplying the two members of (21) by (mézz—ifﬁ)%’ we have the (22) what is the
desired inequality. O

Remark 4.1. The following result is obtained from Lemma 4.1 putting m = 1:

I'(1+42) I'(1+2) 40\ (b —4)*
25 (0y — £1)S { B 2<F(1+§)T( 2 2) == 2¢

1) T(2)] (h+D), (22)

which appeared in [24, Lemma 5.1].

Remark 4.2. From Lemma 4.1 we obtain, making ¢ = 1:

1 mez 61 + m€2
—_— YT(2)dz — Y | ——=
(mly — £1) /zl (2)dz ( 2 >

= (1115272—41) / WY (hty + (1 = h)mtz)dh
0
. 1
» et / (1= R)*T" (Rt + (1 = h)més)dh.

Remark 4.3. From Lemma 4.1 we have, with ¢ =1 and m = 1:

1 t - 3
/ Y(2)dz — T Gl _(=f) / R (hty + (1 — h)ls)dh
62 - gl 61 2 2 0
o 1
+ w/ (1 —h)2Y"(hty + (1 — R)ly)dh.
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Theorem 4.2. Considerations (A1), (Asz), (A3) are valids. Let us consider a function
T :I° c R — RS, twice locally fractional differentiable on I°. If |T(2§)f s a
generalized (m — F)-convex function, so the following inequality:

I'(1+2) () I'(1+2) ly +mly
Tl o LT - 2<r(1+<>T< 2 >

<t (e () e

—m(mly — ) 2F(ly — o) [m (116)§ - m (312ﬂ . (23)

+ m‘T<2<> (ﬁz)H

holds, for all ¢ > 1.

Proof. Since the |Y(9)] is a generalized (m — F)-convex function, we have from |I;],
the following

1 I
I < T(Zc) / 2¢+¢ S

+m ‘T@@ 05) ] ri) /2h2‘(1 — RS (dh)¢
0

—mF(¢ — Eg)ﬁ /02 B2hS (1 — h)S(dh)°. (24)

Calculating both integrals in the previous inequality, we have

| < {F(1+3c) <>§’T(2<)(51)’

(1 +45) \16)
- (?El i 53 ()g - m (116)<> m‘T(2<)(£2)H —mF(¢y — £)
’ [m (116) B ?813‘3 (312) ] - (25)

And likewise integrating I, we obtain
el ) ini (56)7 \T@”“ﬂ\
<[Fr (m)s : Ei (32) ] &
By adding (25) and (26), we get
1|+ 1) < (M (1)g> [ 7@ )| + m| 1) (1)

I'(1+3¢) \8
T(1+3¢) /1Y T(1+4) /1\°
—2mEF(l — b)) |[—— (=) o () ] 27
mE (6 2){F(1+4§ (16) T(1+5¢) \ 32 27)
If we multiply the previous inequality by (mb;ifﬁ: we obtain the inequality sought.

O
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Remark 4.4. (i) From (23), putting ¢ = 1, we derived the following result, not
reported in the literature, for (m — F)-convex function

Y(z)dz—T7T (W)

1 még

még — fl 0

mly — {1)? 3
< OBl )] 4 m e - e~ (s £2) (555 ).
(ii) If we take F(£) = c°|¢|* in (23), that is, we consider generalized strongly m-
convex function, we have the following
I'l+2 r'a+2
(14 2) [ 19 7 )}_ 1+ C)T(ﬁl—i—mﬁg)‘

Litme,

25(mby — £1)° 2T(1+5) 2
< S (R (3)) Il

T(1+3¢) /1\° T(1+4¢) [ 1\°

_ _ 26, S _ 26 |2\ 2T ) 9
(e = f1)"me (6 = £2) [F(l +4s (16) fi+sg\32) |0 &
a new inequality in literature.

(iii) If we take m = 1 and F(¢) = c*|¢|* from (23), we have:

F(1+2§) < F(1+2§) {1+ ls
25(by — £1)s [41]52) (Z)} - 2<r(1+g)T( 2 )

<5 (R 6)) e
: [m (16) m (312> ] : (29)

[ TE(8)]] - (02— )

inequality which appeared in [24, Remark 5.2].
(iv) Putting F(¢) =0 in (23), we have this new result:

R e [+ YO - ey ()| = (gt
X (m () ) HT@‘) ) ‘+m‘T(2<) @)H (30)

(v) Considering ¢ =1, m =1 and F(¢) = 0 from (23), we have:

1 £ {1+ 4o (62 4 )
T -7
0y — 1 /Z (2)dz ( 2 )

- 48
inequality of [27, Proposition 1].
Theorem 4.3. From the considerations (A1), (A2), (As), let p,q > 1 with %Jré =1,
and consider a function Y : I C R — RS twice locally fractional differentiable on I°.

If |Y29)]9 s generalized (m — F)-convex on [{1, mly], then we have:
I'(1+2) ) I'(1+2) £y +mly
25 (mly — £q)s [ 1Im52T(Z)} sT(1+ g)T 2

2
< (R ()

(07 ()] + [ X7 (E2)]],
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where

W= { (m (;)g) HT(%)(&)’O{ +m"r(2<)(g2)‘q}

r(1 1\ T(1+4¢) (1\°\]1"
— 2mF({y — £y) w — ) - M — )
T(1+45) \16) ~ T(I+5¢) \ 32
Proof. From Lemma 4.1, it is very easy to obtain the following result, by means of
the Inequality of Holder:

F(l + 2§) (<) F(l + 2() {1+ mly
25 (mly — £)s { I<mfa>T(Z)] >T(11¢) " 2
(m€2 fl)

2

< ([11] + 1 12]), (32)

and

11| <

]. 2g 2¢
— | ATATYE) A+ (1 — h)mby)(dR)S
r(1+<)/ (a1~ Bymez) (dn)

< QS T(QC / 3g
(F1+</h dh) (U el 1+< 1< (dh)<

+m’r<2<>(£2)‘qr(1lﬂ)/ H2(1— R)S (dh)]

ifg@ / : R(1—h dh))é, (33)
< (e (é)) {[Eiiii (5%
(e (5) ~rieag () )
o (3 () - ()
Similarly from ||, we obtain the inequality
ER G IODIC =10 =160
e+ B (L) e ]

Rt R ETC)) S

From (34) and (35), we obtain the following

1|+ 5| < (m (;))W (36)

or
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Given this last inequalities (36) and (32), we derive (31), inequality desired. O

Remark 4.5. (i) Putting ¢ = 1 in (31), we can get the following result, valids for
(m — F)-convex function:

1 més l + mly
- T oy (A2
(mly —£y) /21 (2)dz ( 2 ) |

< (mZQ — 61)2
- 48

s mirp - e - (25) ]

a new inequality, not reported in the literature.
(i) If we take F(£) = c*|¢|* in (31), for generalized strongly m-convex function, we
have the following new inequality:
F(1+2§) |: F(1+2§) 1+ mly < (mﬁg 761)2§
25 (mly — £4)s | 2T(1+<) 2 = 25

GREIO) {(C)) fel ey

1
L(1+3c) /1) T(1+4c) [ 1\° b
—2meS(fy — )2 | 2 ) - T 2 .
me* (61— £z2) [(r(1+4<) (16) T(1+ 5¢) \32
(iii) The inequality [24, Remark (5.3)], can be obtained by doing m = 1 and F(¢) =
S0 in (31).
(iv) Similarly, the inequality what we present next, is reached from (31), if we consider
F(¢)=0:

I'(1+2) ©) I'(1+ 2) {1 +mlo (mly — £1)*
— <
2¢(mly — £1)¢ [‘31]““2 T(z)} 2¢T(1 +5) 2 - 2¢

T(L+26) (INP [(TA+25) (1N (fmnizer 1[0 IURNTNE
8 (F(l T 39) (8) ) [(F(l T30 \8 (‘T (61)‘ +m‘T (EQ)‘ )|
a new inequality not published.

(v) The following inequality, is easily obtained putting F(¢/) =0, m =1 and ¢ =1 in
(31):

15,7()] -

17 mly

22 — 2 1
ST (MR < = O oy s, 87)
by — 1ty Jy, 2 48

posed in [27, Theorem 2].

Theorem 4.4. From the considerations (A1), (As), (As), let |Y39|9, a generalized
(m — F)-convex on [l1,mls], the following inequality:

I'(1+ 2) [ T +2) T 0 +mly
2<(m€2 — 61)§ 2<F(1 + C) 2

et ()

0 1) T(z)]

1 mby

IN
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holds, for q > 1 and
o (TA+2) (1 \ @
S \I(1+36) \8
(1 1\° T(1+4 1\°|*°
—mF(f; — 05) PA+3) (1) TA+49) (1 .
T(1+4c) \ 16 T(1+5q) \ 32
Proof. The following result, can be obtained from Lemma 4.1

I'(1+2¢) <) - P +2) £y +mly
25(mly — £1)s {éllmezT(Z)] 25T(1 4¢) T 2

‘T(2<) (gl)‘q + m’ff(k)(gz)’q

=

< (még Y4 )
- 2¢

using the generalized power mean integral inequality. Where from

(Ml + [L2]),

|| =

1 E ,
— [ RETE) R+ (1 — h)mby)(dR)S
T/ (Eh+ (1~ hyma) (dh)

1 -3
< <F(11—|—§)/0 h2<(dh)<> {UT<2<>(€1)

+ m’T(Qc)(EQ)’qﬁ /0é B2 (1 - h)%dhf]

1

1 %2<< S S ’
F(1+<)/0 B2 (1— h) (dh)” ,

r(1+2) (1 (143¢) [ 1
< - (QC)
L] < (P 1+ 3) (8)) { (1 +4) ( ) ‘T El)‘
P +29) (1 1+39) (1 29 (g,)|"
+<r1+3< (8) 1+4< (6))‘“‘T KQ‘
F(1+3) [ 1\° T(1+4¢) /1\°]]"
mee = [ (i) ~resg () ]

Similarly from |I3|, we obtain the inequalities

— mF(Kl — 62)

or

=

O (=TOR =l

a T'(1+ 3¢ 1\° a
e« HE) (L) wfresgf

e i () - ()

Q=

q 1 /E hgg(dh)g
L(1+¢) Jo

i))

(40)
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Considering the inequalities (40) and (41), is obtained

1

T(1+2) (1)) @
I L <|=—/——21= E. 42
ni+ial < (Hres (5) (42)
The inequality (38), is easily obtained by putting (42) in (39). O

Remark 4.6. (i) Putting ¢ = 1, from (38) we have the following
1 mes 0+ m€2> ‘

(még —61) 0 2

Y(2)dz — T (

3

C (mt—6r)? [[IT”(&)Iq +m[ X7 (6)[) = mEF(6 = £s) (320> } "

- 48
a new inequality for (m — F')-convex function.

(i) If we take F(£) = ¢*|¢|* in (38), we have the following

1—‘(1 + 2§) (<) F(l + 2() {1+ mly
2 (mls — 01)° [ 1. ()] ST A

< e (M (1Y) (10120 (1)

q a r(1+3 1)\*
e e mee - e | 5 (5)

- 1
r(1+4 1\*1]¢
_PA+4e) (1 , (43)
I'(1+5¢) \ 32
also a new inequality for generalized strongly m-convex function.
(iii) If we take m = 1 and F(¢) = ¢¢|¢|* in (38), we have the inequality stated in [24,

Remark (5.4)].
(iv) The following inequality is obtained, taking F(¢) = 0 in 38:

2<1;11(11£; —22)< [51]*(“35)2“2)} - 22(;(112?)* (61 +2m€2>‘

<t (s (1) e

where

#= (13 () e sniree ]

(v) Considering ¢ =1, m =1 and F(¢) = 0 in (38), we have the following result:

ﬁ /j T(2)dz Y (fl ;éz)

inequality posed in [27, Theorem 2].

(b — £1)?
48

= (107 (64)] + 1T (£2)]) 5,
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5. Results for trapezoid inequalities

The following equality, is basic in obtaining the results of this section for T(2¢).

Lemma 5.1. From the considerations (A1), (As), (As), let |Y29)]9, o generalized
(m — F)-convex on [€1, ml3], twice locally fractional differentiable function on I°, the
following inequality:

T(01) +mY(l) [r(1+3<) P1+2)] oIS ()

— 2°T(1+2
2¢ Fl+2) T(1+g) +2§(mz—€1)g (1+29)

T+ 3<)] _(mly — £y)*
I(l+¢) | 2¢

(J1 + J2), (44)

holds, where

1 Lo ‘
hi= m/o R (L= R YE (ki + (1 — h)mey)(dh)*
and 1
1
2= g /0 B (1 — B> T (1 — h)ey + hmdy)(dh)*.

Proof. The integrals J; and Ja, can be calculated by making the change of variables
1 — h = s, so we have, after integrating twice by parts:
1 v,
——— | s%(1 =) TE)((1 — s)l; + smly)(ds)°
o [ T = e+ st )
o mY(6) [F(l +3) T+ 2<)]
(mly —£1)2 |D(1+2) T(1+45)
I'(1+2)
(m€2 — 61)2<
I'(1+ 3¢) 1 /1 .
— 5T ((1 —8)l1 + smhsy)(ds)".
T+ o) (mb — = T+ J, © T1=9)h 2)(ds)
Similarly for J,, we have

1

Ji =

x F(11+<)/o T((1 — s)t1 + smiy)(ds)*

Iy = ) /01 52§(1 75)§T(2<) (sf1 + (1 — s)mly)(ds)®

I'l+s
Tk [r(l +3) T+ 2<)]
~ (mlp— )% [T(14+2) T(1+¢)
I'(1+2) 1 ! s
ity — 1) X Tt 9 /0 Y(sl1 + (1 — s)mly)(ds)
I'(1+ 3¢) 1

1
; T(1+¢)(mly —£1)2 T(1+5) /O 5T (sly + (1 — s)mbsy)(ds)°.

In this way you have

Tt Jy = YT(¢1) +mY(ls) {F(l +3¢) T'(1+ Qg)}

(mly — )% |T(1+2) T(1+9)
I8 0(2) T r(1+3
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2¢
Multiplying this inequality, member by member, by the term %, leads us to

(44). Thus the proof is completed. g
Remark 5.1. Putting ¢ = 1 from (44) we have:

T(61) + mY (L) 1 e (mfy — £1)°
) / Y(2)d

2 (mfg — (1

B 2
! E\2Ap _ ' _ B\2Yy _
X (/O (1 — B)2Y" (015 + (1 h)mez)dm/o (1 — B)2Y7((1 h)£1+hm£2)dh>.

Remark 5.2. The inequality [24, Lemma 6.1] is easily obtained considering m = 1
n (44).

Remark 5.3. The equality presented below is obtained from (44), considering ¢ = 1
and m = 1:

) L [P = CO ([ - wran

2 Oy —
1
+ (1 — h)ly)dh + / R(1 — R)*Y"((1 — h)ey + ﬁ@g)dh).
0
Theorem 5.2. Under the assumptions (A1), (Az2), (As) and T : I° CR - R°, is a

funtion twice locally fractional differentiable function on I°. If|Y39)| is a generalized
(m — F)-convex on [¢1,mls], then the following inequality holds:

T(0) +mY(6) [TL+3) TO+2)] | als,T(:)
x [ Fl+2) T(+5) ] T 5 mey — )

o (mly — )™ { (3,3) | T(1+3¢) r(1+4<)]

B z I(l1+¢)  T(1+4c) T(1+5¢)

mF(El — EQ)B(?), 4)

><HT(QC)(gl)‘—|—m‘T(2§)(€2)H—(m€2—£1)2< fiag @
where
and

1
B. = / hE=Ds(1 — p)v=Ds(dh)s
is local beta function.

Proof. From Lemma 5.1 we get the following result, after using elemental properties:

T(61) + mY (L) {m +30) T+2)7] . al,Te)
2¢ F(l+2) TI'(1+9) 2¢(mly — £1)°
(ng — 61)2§

<
= 5

([ 1] +[J2]) - (47)
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Taking into account that Y(¢) is a generalized (m — F)-convex function we obtain,
from the first integral, the following

1 1
< - S(1 —
< g [ ra-n
[reoe)
P(1+g)

mF 51 - 42 / hgg 3§ dh)
1 +9)

_ B(3,3) T (0y)] N ( (1+3¢) r(1+4<)> m‘wg)%)‘
I'l+c) I'l1+4¢) T(1+5¢)
mF({, — ¢3)B(3,4)
a T(1+)
Analogously, we have from the second integral, this result
N1+3) I'(l1+4+4¢
|J| < (F§1+4<; - r21+5<§> e (@)
_ mF(6 —)B(3,4) | Bi(3,3)m |TC)(£)]
I(1+5) I'(1+5) '
Using these last two inequalities (48) and (49), we have
B.(3,3 F1+3) TI'(1+4¢
il 41l < {F(Sl(ﬁ— g)) rgl + 4g§ - ]_“El - 5<”

29 (0 5+ (1 — )m@)‘ (dh)s

h2< 2§ dh) |T 2§) | / hq 2§+<(dh)§
P(1+g)

(48)

25mF (¢; — 03)B(3,4)
I'(1+5) '

The required inequality (46) is obtained after multiplying this last inequality by the
(mla—£1)2° O
PR

x HT<2<>(z1)’ +m ‘T(2<) (zz)H - (50)
term

Remark 5.4. (i) In the class of (m — F)-convex function, the following result, a
new inequality, is obtained from the above result, putting ¢ = 1 in (46):

Y (41) +mY(£2) 1 mes
2 Tl — 0 / Y(2)dz
(mfy — 61)2 " " 1
< o 1)+ m X (6] — (mby — ) mF (6 — £) (60) .

(ii) A new inequality, for functions of the class generalized strong m-convex, is ob-
tained considering F(¢) = ¢<|¢|* in (46):

Y(61) + mY (L) {r(1+3g) - r(1+2<)} N nIi) T (2)
2 T(14+2) T(1+c)| 25(mly— )

< (mby — £1)% [B§(3,3) F(1+3) T+ 4;)}
- 2¢ I'l+¢) TI'(l1+4c) TI'(1+5¢)

X HT@@(&)\ tm ]T<2€>(42)H — (s — 1) meE (6 — )%

B(3,4)

iy O
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(iii) Taking m =1 and F(¢) = 0 in (46), we have the inequality of [24, Remak (6.1)].
(iv) In the class of generalized m-convex, taking F(¢) = 0 in (46), we have the follow-
ing result:

T(6) + mY (L) [r(1+3<) ) r(1+2<)] L el YG)
2¢ F(1+2§) F(1+§) 2<(m€2 —é1)§
_ (mly — 01)* [Bg(:s, 3) , T(1+3) T+ 4<)]
- 2¢ F'1+¢) TI(1+4+4¢) TI'(1+5¢)
X HT<2<>(£1)] Fm T (4) ] : (52)

a new inequality not reported in the literature.
(v) The inequality of [27, Proposition 2], is easily obtained from (46), considering
¢=1, m=1and F({) =0:

Y(61) + YT (l) 1 b2
5 - (62—61)/21 Y (z)dz

(y — £1)?
24

< [T ()] + 177 (£)]]-

Theorem 5.3. Considering the assumptions (A1), (A2), (As). If the function Y :
I° C R — RS is twice locally fractional differentiable on I° and assuming that |T(2§)|Ol
is a generalized (m—F)-convex function on [¢1, mls], then we have the following result,
with p,q > 1, %—i—é =1:

T(t1) + mT(6s) [F(l—i—Sg) F(l—l—?g)} 0 I, T(2) ‘

2¢ r1+2) T(1+g) 2¢(mly — £y)¢

(mly — £)% ([ T(1+¢) \7
< H
=T ri+)) (53)
where : :
I'(1+4 3¢
U= [2T(142%) - ——21|,
Zraee0 - )
and
B(3,2q + 1) | 1@ (¢1)[* a  mF(f; — £)B(3,2q+2) | °
H= +&m | T (6y)| — S
T(1+) 5‘"‘ (2)‘ T(1+s)
29) (£)[ a
- §‘T(2<)(g1) ¢, BB2a+ Dm [T (l)|"  mE(6y — £o)B(3,2q +2) ,
r(1+5) I(1+9)
whith
‘- {F(l +(29+1)) T+ (2q+ 2)<)]
F(1+(2a+2)) T+ (2a+3)s)]
Proof. Using the triangular inequality, we have from Lemma 5.1:
T(0) +mY(6) [TL+3) TO+2)] | alw),T() .
2s N1+4+2) T1+9) 2¢(mly — £1)s
_ 2¢
< ™8 (1514 1. 64)

2¢
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If in this last inequality, we use the (m — F)-generalized convexity of |T(2§) |q7 and the
well-known Holder’s Inequality, then we obtain the following result:

_ 1 ! S(1 _ )25 (2¢ _ S
|J1|—‘F(1+g)/o RS (1 — )T (01 h + (1 — B)mbs)(dh)

1 Lo )
<—— [ Bvha(1 = A>T A+ (1 — R)mby)|(dh)*
< Frrg | B T (G + (1= ) ()

< (F(ll—l—g) /Olhﬁp(dhf)é UT<2<)(£1) °_ 1 /1 B2 (1 — h)*9(dh)*

L(1+5) Jo

q 1 !
x |m| T3 (e 7/ B (1 — ) (1 — h)>9(dh)*
1) g - wa - wpan
: :
_ mF(€1 — 62) / th(l _ h)2§q+<(dh)g:| ,
Fl+<) Jo
or
T(1+¢) \* [Be(3,2q+ 1) [T (¢)[* a
< T2 (p
< (riaas) o Tt +emXC0 (6
 mF(f — £)B(3,24 + 2)] 55)
I'(1+5) '
Analogously for the second integral, |Ja|, we have:
I(1+¢)\* @ By(3,2q+ 1)m [T (6)|*
b <[ ——L T (¢
= () [l + Ll
 mF(f — £)B(3,24 + 2) ] (56)
I'(1+5) '
If we add the inequalities (55) and (56), we have
T(1+5) \?
< | =—F= . 7
10 < (i) B 657)
The sought inequality (53) is easily obtained, if we put (57) in (54). O

Remark 5.5. (i) In the case of functions of the class (m — F)-convex, we have the
new result, putting ¢ = 1 in (53):

T(6)) + mY (6) 1 /%T@W

2 (m£2 —fl) 0

< [3(3,2q+ 1) [T2(6)[* + €m| Y2(6)[* — mF(61 — £2) B(3,2q + 2)} .

Q=

n [5|T2(e1)|q + B(3,2q + 1)m | Y2(£)|* — mF (61 — £,)B(3,2q + 2)} :

being

¢ = {F(1+(2q+1)) 1+ (2q+2))}
T ITA+(2q+2) T(1+(2q+3)]"
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(ii) Taking F(¢) = c*|¢|* in (53), we have the following result:

Y(61) + mY () { (1+39) T+ 2<>} 0 Inl, ()
2¢ (1+2§) I'(l+¢) 2¢(mly — £1)¢
(m£2—£1)2< 1—|—§ 2q+1 ‘ng) €1)| @ q
< S)
< 9 I'(1+2) T(1+o) +£m‘T (52)‘
_ mc§(£1 — 62)2§B (3 2q+ 2 :|
(1 +¢)
(29) (p.)|4 B
£’T<2<>(£1)’q+ Be(3,2q + 1)m [TCO(6) |7 mes(€y — £5)* B(3,2q + 2) 7
P(1+¢) I'l+45)

a new inequality in literature for generalized strongly m-convex function.

(iii) Considering m = 1 and F(¢) = ¢*|¢|* in (53), we have the inequality of [24
Remark (6.3)].

(iv) The following result, is derived from (53), putting F(¢) = 0:

T(0) +mT(6) [T1+3¢) TA+2)] ol T()
2¢ |:F(1—|—2§) B F(l—I—C) :| 2<(m€2 —61)
(mﬁg —81)2g P(l +§) p
< 2 (F(l T 2<)> v, (58)

where

1
a

Be(3,2q+ 1) | 1@ (¢1)[*
I'(1+5)

+ §m‘T(2<) (Eg)‘q]

+ g +

B(3,2q + 1)m | T(20) (éz)lq] . (59)

I'(1+5)

(v) Considering ¢ = 1, m = 1 and F(¢) = 0 in (53), the following result is easily
derived:

Y(41) 4+ Y(¢s) 1 b2
5 — 62—61/ Y (z)dz

(by — £1)?
24

< [T (62) | + | (€)[9] .

Theorem 5.4. Under the assumptions (A;), (As), (Az) and let |Y 9|9 a generalized
(m — F)-convexity on [¢1, ml3], then the following result is fulfilled with q > 1:
Y(41) +mY(¢s) [F(l +3¢) T+ 2<)]
2¢ F1+2) T(1+g)

Iéfz (z) [.. I'(1+ 3)
Fmis ) {2 Pl +26) - F(1+<>”

(mly — £1)> (T(1+2) T(1+3¢)\" "«
= 2s <F( 143¢) F(1+4§)> B,
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where
B [Bg(3,3) <F(1 +3) IQ +4§))
T TA+¢)  \I'1+4¢) T(1+5¢)
mE(ly — l2)B(3,4) , an(2e q 2 q
- B e g4 e

Proof. Taking into consideration the Lemma 5.1, the following result is obtained:

Q=

T(0)+mY(6) [T1+3) TA+%)] | alun, () [, T(1+3¢)
’ 2¢ [F(l +2)  T(1+49) } 2<(m;2 —ly)s [2 P +2) - I'(l1+¢) } ’
< M (Jl + J2) . (61)

< 9
If we now use the generalized power mean integral inequality of |Y(39)|4 and known
properties of the module we will have the following:

1 Lo
Ji| < |l——— | A1 = R)2YE) (418 + (1 — h)ymby)(dh)S
1 gty ) = BT wn s - mymean

< (F(llm/olff(l — h)*‘(dh)@)

1 b < p(2o) <
X (F(1+<)/0 i (1 — R)* YR (01h + (1 — h)ymby)|(dR) >

From the F-convexity and integrating, we have the following result:

1—1
a

Q=

1—1

Lm(l+/m s any )
T (4y) \q/ 2 2 m|T(2< \/
LS Vin A e (1 —h
. ( Tite J, " 0=N T(1+)

=) [ ysany)
0

I'(1+5)
or
T(1+2) T(1+39))' =
Al < (F(1+3<) - F(1+4<))
[YENDIB(3.3) | a0 g,ypa (LAA3S) T+ 40)
{ T(1+q) +m{TE(6)] (F(1+4§) F(1+5§)>
mF(ly — £o)B.(3,4)] 4
B I'(l+5) ] (62)
Similarly,
T(1+2) TO43)\" " [, v (FA+3) T +49)
|J2|§<r(1+3<) r(1+4<)> ['T2 (&)l <r(1+4<) r<1+5<))
mmw%m&@@_mwﬁ&W@mr (63)
T(1+59) I'(1+¢)
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The following result, is obtained after adding inequalities (62) and (63):

(1 + 2) r(1+3c))153 (64

Tl + e < -
il +12) < (F(1+3<) (1 + 49)

The inequality (60), is reached after put (64) in (61). This completes the proof. O

Remark 5.6. (i) In the class of (m — F)-convex functions, putting ¢ = 1 in (60),
we have the following result:

2 m€2 761 0

a new inequality not known in the literature.
(i) If we take F(¢) = c*|¢|* in (60), the following result is derived, for generalized
strongly m-convex functions:

Y (41) +mY(¢s) 1 /mb T(2)d-

Q=

Y(0y) +mY (L) [D(1+3¢) T(1+2) WIS 0 T T(1 + 3¢)
‘ 2 | Nirsg ~ Tare) * Fmem oy {QF(HQC)F(H@)H

_ (mly = 0y) <F(1+2g) F(1+3g)>1‘i

= 2 T(1+3¢) T(1+49)

B.(3,3) (F(l +3¢)
L(1+¢)  \T(1+4)

Q=

F(]. + 4§) ng(gl — 82)2§B§(3 4)
- - YD ()[4 4+ m| YR ()| |
) O e a4 ) e
a new inequality in literature for this class of functions.
(iii) If we take m = 1 and F(¢) = c*|¢|* in (60), then we obtain the inequality, which
appeared in [24, Remark (6.4)].
(iv) Putting F(¢) = 0 in (60), the following result is easily obtained:

T(0y) +mY (L) [D(1+3¢) T(1+2) WIS 0 T T(1 + 3¢)
‘ 2¢ |:F(1+2§) B F(l-i—C) :| 2<(m£2—€1)< |:2 F(1+2<)7 F(1+§> :H

< (mly — £,)% (r(1+2<) F(1+3g)>1_éB7

2 D(1+3¢) T(1+4c)
where

[ B«(3,3) N(1+3) T(1+4) 2 . o . 1
p= g (R riey) (M@ e

(v) Putting ¢ =1, m =1 and F(¢) = 0 in (60), we have the following result:

T(f1) + T(fz) 1 &2
5 — G-t )., Y(2)dz

(by — £1)?
24

< (127 (£2)| + | (€2)[9] .
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Conclusions

In this paper, we have obtained various results referring to inequalities of the Hermite-
Hadamard type for the class of (m—F)-convex functions using local fractional calculus.

Throughout the work we have shown that many results known from the litera-
ture are particular cases of ours. We also derive new, unpublished inequalities, as a
consequence of various considerations in our results. All this shows the scope and
generality of them.

Of course our methods illustrate the possibility of obtaining new generalizations
for other classes of convex functions.
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