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Local dynamics and bifurcation for a two-dimensional cubic
Lotka-Volterra system (I)

Raluca Efrem and Mihaela Sterpu

Abstract. A two-dimensional cubic Lotka-Volterra system depending on two parameters is
considered. Local dynamics in a neighbourhood of the origin of the phase plane, when the

parameters lay in a sufficiently small neighbourhood of the origin, is investigated. The study

is performed when some additional hypotheses on the coefficients are satisfied. From one up
to four different equilibria and several types of codimension one local bifurcations are found.

For each of the identified cases, bifurcation diagrams are given.
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1. Introduction

Lotka-Volterra systems are widely used to model predator-pray type of interactions
in biology and ecology [5], [8], as well as many other type of dynamical behavior
[10], [2], [20],[16], [17]. They are a special case of Kolmogorov systems serving to
model various phenomena in population modelling, biology, ecology, environment,
engineering, economics or mechanics [4], [7], [11], [18], [19].

In this paper we study local bifurcation and dynamics for a two-dimensional cubic
Lotka-Volterra system{

dx
dt = x

[
µ1 + p11x+ p12y + p13x

2 + p14xy + p15y
2
]

dy
dt = y

[
µ2 + p21x+ p22y + p23x

2 + p24xy + p25y
2
] (1.1)

where µ = (µ1, µ2) ∈ R2, and the coefficients pij = pij(µ), i = 1, 2, j = 1, 5, are
smooth functions of the parameter µ, while x, y are the state variables.

System (1.1) has an equilibrium point at the origin, which for the parameters
µ1 = 0, µ2 = 0 is a nongeneric double zero singularity.

The local dynamics around the origin of system (1.1) was analyzed, when all the
third order terms are present in [1], or only when some of these terms are present in
[3], in relation to the double Hopf bifurcation. In [1], [3], the system was restricted to
the invariant region D =

{
(x, y) ∈ R2, x ≥ 0, y ≥ 0

}
, and studied in the hypotheses

(HH.1) p11 (0) 6= 0, (HH.2) p12 (0) 6= 0, (HH.3) p21 (0) 6= 0, (HH.4) p22 (0) 6= 0, (HH.5)
(p11p22 − p12p21) (0) 6= 0 .

Tigan et al., considering only some of the third order terms, analyzed the local
dynamics of system (1.1), in the assumption p12 (0) p22 (0) < 0, in two different hy-
potheses (i) p11 (0) p21 (0) 6= 0 [14] and (ii) either p11 (0) = 0 or p21 (0) = 0 [15]. In
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[22] the case p12 (0) p22 (0) > 0 was treated when one of the hypotheses (HH.1) or
(HH.3) is not satisfied.

In a previous work [21], it was analyzed the dynamics of system (1.1) when
p12(0)p21(0) > 0, and one of the hypotheses (HH.1) or (HH.4) is not fulfilled.

The present work is concerned with the study of the local dynamics of the system
(1.1) when the hypotheses (HH.2) or (HH.3) are satisfied, and p12(0)p21(0) < 0.

Since Lotka-Volterra systems as (1.1) serve to model real-life phenomenas, from
application point of view only the case of non-negative variables is of interest. Thus,
we restrict the study to the first quadrant of the phase plane, respectively to the set

D =
{

(x, y) ∈ R2, x ≥ 0, y ≥ 0
}
.

Since the straight lines x = 0 and y = 0 are invariant curves for system (1.1), the set
D is invariant with respect to the associated dynamical system.

The parameters |µ1| and |µ2| are considered infitesimally small, i.e. |µ| < ε,
for some 0 < ε � 1 sufficiently small. The coefficients pij(µ) are assumed to be

smooth functions on the open set Vε =
{

(µ1, µ2) ∈ R2, |µ| =
√
µ2
1 + µ2

2 < ε
}

, such

that p12(0)p21(0) 6= 0.
As p12(0)p21(0) < 0, assume p12 (0) < 0 and p21 (0) > 0. The change of variable

ξ1 = −p12(µ)x, ξ2 = p21(µ)y

is well defined and nonsingular for all |µ| small enough. In addition, the set D remains
invariant.

Since dξ1
dt = −p12(µ)dxdt and dξ2

dt = p21(µ)dydt , system (1.1) is locally topologically
equivalent near the origin to{

dξ1
dt = ξ1

(
µ1 − θ(µ)ξ1 + γ(µ)ξ2 +N(µ)ξ21 −M(µ)ξ1ξ2 + L(µ)ξ22

)
,

dξ2
dt = ξ2

(
µ2 − 1

γ(µ)ξ1 + δ(µ)ξ2 +Q(µ)ξ21 − S(µ)ξ1ξ2 + P (µ)ξ22

)
,

(1.2)

where the coefficients are given by θ(µ) = p11(µ)
p12(µ)

, γ(µ) = p12(µ)
p21(µ)

, N(µ) = p13(µ)
p212(µ)

,

M(µ) = p14
p12p21

(µ), L(µ) = p15
p221

(µ), δ(µ) = p22(µ)
p21(µ)

, Q (µ) = p23
p212
, S (µ) = p24

p21p12
(µ) , and

P (µ) = p25
p221

(µ) , with θ = θ (µ) , γ = γ (µ) , δ = δ (µ) , and similarly for the other

coefficients. However, as some of these expressions are needed only at µ = 0, we use
the notations θ = θ (0) , γ = γ (0) , δ = δ (0) , N = N (0) and so on.

Remark 1.1. 1) As p12(0)p21(0) < 0 it follows γ (0) < 0; we may consider ε such
that γ (µ) < 0 for µ ∈ Vε.

2) When p12 (0) > 0 and p21 (0) < 0, the change of variables ξ1 = p12(µ)x, ξ2 =
−p21(µ)y, leads to system{

dξ1
dt = ξ1

(
µ2 + θ(µ)ξ1 + γ(µ)ξ2 +N(µ)ξ21 −M(µ)ξ1ξ2 + L(µ)ξ22

)
dξ2
dt = ξ2

(
µ1 − 1

γ(µ)ξ1 − δ(µ)ξ2 +Q(µ)ξ21 − S(µ)ξ1ξ2 + P (µ)ξ22

)
and (θ, δ) 7−→ (−θ,−δ) lead to the same system (1.1).

The paper is organized as it follows. In Section 2 we determine the equilibrium
points of the model near the origin and establish their topological type. In Section
3 we prove the exitence of codimension one local bifurcations. In addition to the
transcritical bifurcation found in the case γ > 0 (studied in [21]), we found a richer
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dynamics, including limit cycles borned by supercritical or subcritical Hopf bifurca-
tion. The parameter portraits and the generic local phase portraits are presented in
section 4. Finally, some conclusions are formulated.

2. Local analysis of the system

We find that, in addition to the trivial equilibrium point in origin, the system (1.2)
possesses at most three other equilibria, near to the origin. We establish the topolog-
ical type of these equilibria and the parameter strata corresponding to nonhyperbolic
points.

As θ(0)δ(0) 6= 0, we may assume θ(µ)δ(µ) 6= 0 for µ ∈ Vε.
System (1.2) has the trivial equilibrium E0 = (0, 0) , and two other equilibria E 1 =(
ξ̂1, 0

)
and E2 =

(
0, ξ̂2

)
, close to E0. The existence of these two equilibria is ensured

by the Implicit Function Theorem (IFT) applied to equations µ1−θ(µ)ξ̂1+L(µ)ξ̂21 = 0,

and µ2 + δ(µ)ξ̂2 + P (µ)ξ̂22 = 0, respectively.

As θδ 6= 0, we find the solutions ξ̂1 = 1
θµ1 (1 +O (|µ|)) , ξ̂2 = − 1

δµ2 (1 +O (|µ|)) ,
close to 0, with |µ| sufficiently small, respectively.

The existence of a third equilibrium E3 = (ξ∗1 , ξ
∗
2) close to E0 for |µ| small is also

ensured by the IFT, applied to the system{
µ1 − θ (µ) ξ1 + γ (µ) ξ2 +N(µ)ξ21 −M(µ)ξ1ξ2 + L(µ)ξ22 = 0,
µ2 − 1

γ(µ)ξ1 + δ(µ)ξ2 +Q(µ)ξ21 − S(µ)ξ1ξ2 + P (µ)ξ22 = 0,

in the hypothesis θδ − 1 6= 0. The coordinates of E3 are

ξ∗1 =
δµ1 − γµ2

θδ − 1
+O

(
|µ|2

)
, ξ∗2 =

µ1 − θγµ2

γ(θδ − 1)
+O

(
|µ|2

)
.

Remark that E1 ∈ D only if θµ1 ≥ 0, E2 ∈ D if δµ2 ≤ 0, while E3 is inside D
whenever the parameter (µ1, µ2) lies inside the region

R1 = {(µ1, µ2) , µ1 − θγµ2 < 0, δµ1 − γµ2 > 0} (2.1)

if θδ > 1, respectively, in

R2 = {(µ1, µ2) , µ1 − θγµ2 > 0, δµ1 − γµ2 < 0} (2.2)

if θδ < 1. This equilibrium exits D when (µ1, µ2) crosses the bifurcation curves

T1 =
{

(µ1, µ2) , µ1 = θγµ2 +O
(
µ2
2

)
, µ2 < 0

}
(2.3)

or

T2 =
{

(µ1, µ2) , γµ2 = δµ1 +O
(
µ2
1

)
, µ1 > 0

}
. (2.4)

For parameters in T1 we have ξ∗2 = 0, thus E3 collides with E1, while for parameters
in T2 we have ξ∗1 = 0, thus E3 collides with E2. Note that only the lowest terms in
(µ1, µ2) are used to describe regions R1, R2.

The following results concerning the topological type of equilibria E0, E1, E2, E3

can be easily obtained.

Lemma 2.1. For |µ| sufficiently small the following hold, the trivial equilibrium point
E0 is:
((i) a saddle as µ1µ2 < 0,
(ii) a repeller as µ1 > 0, µ2 > 0,



250 R. EFREM AND M. STERPU

(iii) an attractor as µ1 < 0, µ2 < 0, or
(iv) nonhyperbolic of fold type as µ1 = 0 or µ2 = 0.

Proof. As the eigenvalues of the Jacobi matrix associated at E0 are µ1 and µ2, the
result is evident. �

Lemma 2.2. For |µ| sufficiently small the following hold, whenever E1 lies in D, E1

is either:
(i) a saddle as θµ2 − 1

γµ1 > 0,

(ii) a repeller as µ2 − 1
θγµ1 > 0, θ < 0,

(iii) a stable node as µ2 − 1
θγµ1 < 0, θ > 0, or

(iv) nonhyperbolic of fold type as µ1 = 0 or θγµ2 − µ1 = 0.

Proof. The eigenvalues of the Jacobi matrix associated at E1 are −µ1 (1 +O (|µ|))
and

(
µ2 − 1

θγµ1

)
(1 +O (|µ|)) , hence the results. �

Lemma 2.3. For |µ| sufficiently small, whenever the equilibrium point E2 lies in D,
E2 is either:
(i) a saddle as δµ1 − γµ2 < 0,
(ii) a stable node as µ1 − γ

δ µ2 < 0, δ < 0,
(iii) a repeller node as µ1 − γ

δ µ2 > 0, δ > 0,or
(iv) nonhyperbolic of fold type as µ2 = 0 or δµ1 − γµ2 = 0.

Proof. The eigenvalues of the Jacobi matrix associated at E1 are
(
µ1 − γ

δ µ2

)
(1 +O (|µ|)),

and −µ2 (1 +O (|µ|)) , hence the results. �

The topological type of the nontrivial equilibrium E3 is established bellow.

Proposition 2.4. Assume that the equilibrium point E3 is inside D. The following
assertions are true.
1) If θδ − 1 > 0, then E3 is a saddle.
2) If θδ − 1 < 0 and µ ∈ R2, then E3 is

(i) an attractor, if either θ > 0, δ < 0 or for δ > 0, θ > 0, and µ2 <
δ(θγ−1)
θγ(γ−δ)µ1+O

(
µ2
1

)
,

or for δ < 0, θ < 0 and sign(γ − δ)(µ2 − δ(θγ−1)
θγ(γ−δ)µ1 +O

(
µ2
1

)
) < 0;

(ii) a repeller if either θ < 0, δ > 0 or for δ > 0, θ > 0, µ2 >
δ(θγ−1)
θγ(γ−δ)µ1 + O

(
µ2
1

)
, or

for δ < 0, θ < 0, sign(γ − δ)(µ2 − δ(θγ−1)
θγ(γ−δ)µ1 +O

(
µ2
1

)
) > 0;

(iii) nohyperbolic of Hopf type if 0 < θδ < 1 and µ2 = δ(θγ−1)
θγ(γ−δ)µ1 +O

(
µ2
1

)
. .

3) If µ ∈ T1 ∪ T2, then E3 is a nonhyperbolic equilibrium of fold type.

Proof. The equilibrium E3 = (ξ∗1 , ξ
∗
2) , which bifurcates from O along the curves T1

and T2.
Notice that E3 collides with E1 on T1, respectively, with E2 on T2, for |µ| small,

hence 3) is proved.
The eigenvalues λ1,2 of E3 satisfy the relations

λ1λ2 = ξ∗1ξ
∗
2 (1− δθ +O(|µ|)) ,

λ1 + λ2 = −δ(θγ − 1)

γ(δθ − 1)
µ1 +

θ(γ − δ)
δθ − 1

µ2 +O(|µ|2).
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Consequently, if δθ − 1 > 0, then E3 is a saddle.

If δθ − 1 < 0, we have to evaluare the sign of the function p (µ) = − δ(θγ−1)γ(δθ−1)µ1 +
θ(γ−δ)
δθ−1 µ2 +O(|µ|2), for small ‖µ‖ .

Using IFT applied to equation p (µ1, µ2) = 0, we obtain a curve

H =

{
(µ1, µ2) , µ2 =

δ(θγ − 1)

θγ (γ − δ)
µ1 +O

(
µ2
1

)}
(2.5)

provided that θγ 6= 1 and γ 6= δ. This curve intersect region R2, if δθ > 0, while
R2 ∩H = ∅ if δθ < 0. It is easy to prove that we have p(µ) < 0 if θ > 0, δ < 0 and
that p(µ) > 0 if θ < 0, δ > 0.

If δ > 0, θ > 0 and µ ∈ R2, we obtain p(µ) < 0 for µ2 <
δ(θγ−1)
θγ(γ−δ)µ1 + O

(
µ2
1

)
, and

p(µ) > 0 for µ2 >
δ(θγ−1)
θγ(γ−δ)µ1 +O

(
µ2
1

)
. If δ < 0, θ < 0 and µ ∈ R2, we obtain p(µ) > 0

for sign(γ − δ)(µ2 − δ(θγ−1)
θγ(γ−δ)µ1 + O

(
µ2
1

)
) > 0, and p(µ) < 0 for sign(γ − δ)(µ2 −

δ(θγ−1)
θγ(γ−δ)µ1 +O

(
µ2
1

)
) < 0. �

3. Local bifurcations

Here we prove the existence of transcritical bifurcations and find necessary and suffi-
cient conditions for the existence of Hopf bifurcation for the system (1.2).

Denote by

X+ = {(µ1, µ2) , µ2 = 0, µ1 > 0} , X− = {(µ1, µ2) , µ2 = 0, µ1 < 0} ,

Y+ = {(µ1, µ2) , µ1 = 0, µ2 > 0} , Y− = {(µ1, µ2) , µ1 = 0, µ2 < 0} ,
the four semiaxes of the (µ1, µ2) parameter plane.

Proposition 3.1. The following transcritical bifurcations occur for system (1.2):
(i) at the point E0 as the parameter crosses the curves Y+ or Y− (when E0 = E1);
(ii) at the point E0 as the parameter crosses the curves X+ or X− (when E0 = E2);
(iii) at the point E1 as the parameter (µ1, µ2) crosses the curve T1 (when E1 = E3);
(iv) at the point E2 as the parameter (µ1, µ2) crosses the curve T2 (when E2 = E3).

Proof. In order to prove these statements we apply a Sotomayor Theorem ([6], p.
338).

(i) The Jacobian matrix Df(E0, µ0) at µ0 = (0, µ2) , µ2 6= 0, has a zero eigenvalue

with the right eigenvector v = (1, 0)
T

and the left eigenvector w = (1, 0)
T
. It follows

wT fµ1 (E0, µ0) = 0, wTDfµ1(E0, µ0) = 1 6= 0,

wT [D2f(E0, µ0)(v, v)] = −2θ(1 +O(µ2)) 6= 0,

thus the transcritical bifurcation conditions are satisfied.
Here f is the vector field associated to system (1.2).
(ii) The Jacobian matrix Df(E0, µ0) at µ0 = (µ1, 0) , µ1 6= 0, has a zero eigenvalue

with the right eigenvector v = (0, 1)
T

and the left eigenvector w = (0, 1)
T
. It follows

wT fµ2
(E0, µ0) = 0, wTDfµ2

(E0, µ0) = 1 6= 0,

wT [D2f(E0, µ0)(v, v)] = 2δ(1 +O(µ1)) 6= 0,

ensuring the existence of a transcritical bifurcation.
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(iii) Consider µ0 = (µ1, µ2) ∈ T1, µ1 6= 0, and µ2 as a bifurcation parameter,
thus µ0 = (µ1, 1/θγµ1). We find that v = (γ, θ)T , in its lowest terms, and w =
(0, 1)T are right and left eigenvectors of the Jacobian matrix Df(E1, µ0), respectively,
corresponding to the zero eigenvalue, and

wT fµ2 (E1, µ0) = 0, wTDfµ2(E1, µ0) = θ +O (µ1) 6= 0,

wT [D2f(E1, µ0)(v, v)] = 2θ(δθ − 1) +O (µ1) 6= 0,

consequently, for sufficiently small |µ| , the conditions are satisfied.
(iv) Finally, consider µ0 = (µ1, µ2) ∈ T2, µ2 6= 0, and µ1 as a bifurcation parameter,

thus µ0 = (γδ µ2, µ2). We find the eigenvectors v = (δγ, 1)T , in its lowest terms, and

w = (1, 0)T , and

wT fµ1 (E2, µ0) = 0, wTDfµ1(E2, µ0) = δγ +O(µ2) 6= 0,

wT [D2f(E1, µ0)(v, v)] = −2δγ2(δθ − 1) +O(µ2) 6= 0,

for sufficiently small |µ|. �

From Proposition 2.4 it follows that system (1.2) may exhibit a Hopf bifurcation
only in the hypothesis 0 < θδ < 1.

Theorem 3.2. For all γ < 0, and θ,δ, satisfying 0 < θδ < 1, a nondegenerated Hopf
bifurcation takes place at E3, when the parameters (µ1, µ2) transversally cross the
curve H, for sufficiently small |µ| , if the expression:

V (µ) = θ
(
Lθ − 2Mδγθ + 3Nδγ2 − 2Sδγθ + 3Pθ +Qδγ2

)
is nonzero for µ ∈ H. In addition,

1) if V (µ) < 0 for µ ∈ H, then the Hopf bifurcation is supercritical;
2) if V (µ) > 0 for µ ∈ H, then the Hopf bifurcation is subcritical.

Proof. To simplify the computation, we chose to cross the curve H in the direction
of the Oµ2 axis, thus µ1 6= 0, is fixed, and µ2 is the bifurcation parameter. Similar
computations can be performed for other transversal directions.

The first condition for the Hopf bifurcation is satisfied, as

Re(λ1)

dµ2 |H
=
θ(γ − δ)
θδ − 1

(1 +O (µ1)) 6= 0,

for sufficiently small |µ|. For µ on H we obtain that the signum of first Lyapunov
coefficient is the same with the signum of V (µ) and the results follows from the
Andronov-Hopf Theorem. �

4. Bifurcation diagrams

For a fixed γ < 0, the curves θδ − 1 = 0, θ = 0, δ = 0, determine six regions in the
(θ, δ)− plane, corresponding to the following cases:

A1: θδ − 1 > 0, θ > 0, δ > 0;
A2: θδ − 1 > 0, θ < 0, δ < 0;
A3: θ > 0, δ < 0;
A4: θ < 0, δ > 0;
A5: θδ − 1 < 0, θ > 0, δ > 0;
A6: θδ − 1 < 0, θ < 0, δ < 0.
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Figure 1. Six regions in the (θ, δ) plane, γ < 0, for system(1.2) (up-left).

For each region (see Fig. 1), in the parametric portraits in the (µ1, µ2)- plane, the
parameter strata are determined by the origin and the codimension one bifurcation
curves X−, X+, Y−, Y+, T1, T2, and H. As a consequence of Theorem 3.2, the curve
H is present only in regions A5 and A6.

Gathering all of the above information, we can formulate the following result.

Theorem 4.1. For all γ < 0, and θ, δ, in regions A1, A2, A3, A4 of the (θ, δ)−
plane, the parameter portraits consist of

O ∪ T1 ∪ T2 ∪X− ∪X+ ∪ Y− ∪ Y+.

The parameter portraits and the corresponding generic phase portraits are shown in
Fig. 2, 3, 4, 5.

In the above figures we used the following markers to emphasize the topological
type of the equilibria: a black disc for an attractor, a black square for a repeller and
a diamond for a saddle point.

Remark 4.1. As the curves T1, T2, X−, X+, Y−, Y+ correspond to transcritical bifur-
cations, the phase portrait for each of these strata is the one of the adjacent region
where there exist fewer equilibria. For instance, in A1, the regions adjacent to T1 are
5 (with 4 equilibria) and 6 (with 3 equilibria). Thus the phase portrait corresponding
to parameters in T1 is the one in region 6.

Remark 4.2. For cases A5 and A6, a Hopf bifurcation occurs when parameters cross
H, if the first Lyapunov coefficient is nonzero. As the parameters move away from
H, the limit cycle born through this bifurcation may encounter a saddle equilibrium,
transforming into a homoclinic loop, or it may exit the visible neighborhood of origin
in D (”it blows up”), thus it disappears. In such cases there should exist o bifurcation
curve L originating at µ = 0, along which system (1.2) exhibits either a saddle
homoclinic bifurcation or the limit cycle ”blows up” [3]. Note that it is also possible
that for parameters on the curve H the equilibrium E3 could be a nonlinear center
as the first Lyapunov coefficient vanishes.

Remark 4.3. As (θ, δ) belong to region A5, A6 for µ ∈ H, sufficiently small, we have

sign(L1(µ)) = sign
(
θ
(
Lθ − 2Mδγθ + 3Nδγ2 − 2Sδγθ + 3Pθ +Qδγ2

))
.

As a consequence, we obtain the following result.
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Figure 2. Parametric portrait and generic phase portraits in the
case γ < 0, regions A1.
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Figure 3. Parametric portrait and generic phase portraits in the
case γ < 0, regions A2.

Theorem 4.2. For all γ < 0, and θ, δ, with 0 < δθ < 1 (in regions A5 and A6 of the
(θ, δ)− plane), the generic parameter portrait consists of

O ∪ T1 ∪ T2 ∪X− ∪X+ ∪ Y− ∪ Y+ ∪H ∪ L.
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Figure 4. Parametric portrait and generic phase portraits in the
case γ < 0, regions A3.
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Figure 5. Parametric portrait and generic phase portraits in the
case γ < 0, regions A4.

The parameter portraits and the generic phase portraits are shown in Fig. 6, 7.

Remark that in Fig. 7, we considered only the cases when the Hopf bifurcation
is supercritical. We found three different positions for the curve H, namely A6(i) if
γ−δ > 0, A6(ii) if γ−δ < 0 and θγ > 1, A6(iii) if γ−δ < 0 and θγ < 1. In Fig. 6, we
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represented both cases when the Hopf bifurcation is supercritical A5(i) or subcritical
A5(ii).
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Figure 6. Parametric portrait and generic phase portraits in the
case γ < 0, region A5: (i) L1 < 0, (ii) L1 > 0.

5. Conclusions

In this paper we have studied local dynamics and bifurcation for the cubic Lotka-
Volterra system (1.1), with coefficients depending on two parameters, in the hypoth-
esis p12(0) · p21(0) < 0. This study completes the one done in [21], where the case
p12(0) · p21(0) > 0 was investigated. Compared to the situation treated in [21] (called
”the simple case”), we have obtained similar dynamics for certain parameter strata,
but also bifurcations that are not present in the simple case. Such bifurcations arose
mainly due to the presence of Hopf singularities.
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